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1 Spectral Clustering

Spectral clustering is a technique for segmenting data into non-overlapping subsets. It is used in many
machine learning applications (e.g., von Luxberg 2007) and was introduced into computer vision by Shi and
Malik (2000).

The data is defined by a graph with an affinity, or similarity measure, between graph nodes. The
computation – to segment the data – can be performed by linear algebra followed by thresholding. Note
that affinities relates to kernels (those that fall off with distance, like radial basis functions) used in machine
learning. For some problems it is easier to define affinities between objects directly instead of obtaining
them by the more standard method of specifying the objects by features and then calculating the distance
between the features.

Spectral clustering is an alternative to probabilistic methods for segmentation. The main difference is
that the probabilistic models define data at the nodes of the graph while spectral clustering defines data at
the edges between nodes. (There are ways to relate the two approaches which will be discussed later).

For image segmentation a typical affinity between pixels i and j is defined by wij = exp{−γ|Ii −
Ij |} exp{−τ |xi − xj |} where Ii, Ij are the intensities at pixels i, j and xi, xj are their spatial positions.
Hence the affinity is high between neighboring pixels which have similar intensity values (small xi − xj and
small |Ii − Ij |) and the affinity is small between pixels which are far apart (large xi − xj |) or which have
very different intensity values (large |Ii− Ij |). If this affinity is used, the spectral clustering will segment the
data into subregions within which the intensity values changes slowly with position.
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• Shi and Malik, Normalized cuts and image segmentation, PAMI, 2000

2 Basic Concepts

Let G = (V,E) be an undirected graph with nodes V = v1, v2, ..., vn. The graph has weighted edges
wij = wji ≥ 0 which are called affinities and are measures of similarity between nodes. Large wij means
strong affinities, or bonds, between node i and node j.

The degree of a vertex vi is defined as: di =
∑n
j=1 wij . The degree matrix of the graph is defined by

D = diag{d1, d2, ..., dn}.
For two subsets A,B (which do not need to be disjoint) of V , w(A,B) is defined by:

w(A,B) =
∑
i∈A,j∈B wij
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The size of a subset A ⊆ V has two definitions.

|A| = number of vertices in A (unweighted volume)

vol(A) =
∑

i∈A
di (weighted volumn)

2.1 Examples of affinities

wij =

{
1 if (i, j) ∈ E
0 otherwise.

(1)

Shi and Malik’s definition of wij is given by:

wij =




e
−‖Ii−Ij‖

2

σ2
I × e−

‖xi−xj‖2
σ2x if ‖Ii − Ij‖ < r

0 otherwise.
(2)

where r, σx, σI are parameters.

3 The Graph Laplacian Matrix (ref. Chung, Spectral graph the-
ory, AMS-1997)

This section defines graph Laplacians on the graphs. In the special case where the affinities wij takes values
{0, 1} then the connected components of the graph can be found from the eigenvectors with zero eigenvalues.
This enables us to segment the graph into its connected components by linear algebra. If we allow the wij to
take continuous values, as will happen for computer vision applications, then we can estimate a segmentation
of the data by using the eigenvectors of the Laplacian with sufficiently small eigenvalues. There are several
different Laplacians (normalized and unnormalized) which will give different segmentations.

3.1 Unnormalized graph Laplacians

Given an undirected, weighted graph G = (V,E), its Laplacian matrix is defined to be

L := D −W (3)

where D = diag(di) and W = (wij)n×n with n = |V |. Note that L does not depend on wii (which cancels
between D and W ).

Why do we call this matrix the “Laplacian”? From Figure 1, we see that it is similar to the standard
discretization for the Laplacian differential operator −∇2u = −(uxx +uyy) in the special case where wij = 1
for nearest neighbor pixels and wij = 0 otherwise:

Here are some useful properties of L which will be useful for spectral clustering:

1. fTLf = 1
2

∑n
i,j=1 wij(fi − fj)2,∀f ∈ Rn

2. L is a symmetric positive semi-definite matrix (this follows from 1).

3. The smallest eigenvalue is 0, the corresponding eigenvector is the vector 1 = (1, 1, ..., 1).

4. L has n non-negative eigenvalues. 0 = λ1 ≤ λ2 ≤ · · · ≤ λk < λk+1 ≤ · · · ≤ λn.

5. If 0 = λ1 = λ2 = · · · = λk < λk+1 ≤ · · · ≤ λn, then G has k-connected components A1, . . . , Ak
(V =

⋃k
i=1Ai). The eigenspace of eigenvalue 0 is spanned by the indicator vectors 1A1

, . . . ,1Ak of
these components.
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Figure 1: A simple graph and its corresponding Laplacian

Figure 2: A simple graph G with two connected components

Here is a simple example of Property 5. The graph G = (V,E) in Fig 2 has two connected components,
A1 and A2. W = {wij} of G is defined in Equation (6).

wij =

{
1 eij ∈ E
0 otherwise.

(4)

Let L = D−W and calculate the eigenvalues and eigenvectors of L. It follows that the first two eigenvalues
λ1, λ2 are 0, and the corresponding eigenvectors (u1 and u2) correspond to the connected components A1

and A2.

A1 = {v1, v2, v3, v4, v5, v6}
A2 = {v7, v8, v9, v10, v11, v12}

u1 = (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0)
u2 = (0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1)

Note that the eigenvalues are degenerate and so that eigenvectors will be of form cosθu1 + sinθu2 and
sinθu1 − cosθu2 where θ is any value. An additional algorithm is needed to find u1 and u2 as described in
the next section.

3



3.2 Normalized graph Laplacians

There are two matrices which are called normalized graph Laplacians in the literature. Both matrices are
closely related to each other and are defined by:

Lsym := D−1/2LD−1/2 = I −D−1/2WD1/2 (Ng, Jordan, Weiss, 2002) (5)

Lrw := D−1L = I −D−1W. (Shi, Malik, 2000) (6)

The normalized Laplacian matrix satisfy the following properties:

1. fTLsymf = 1
2

∑n
i,j=1 wij(

fi√
di
− fj√

dj
)2,∀f ∈ Rn

2. (λ, u) is an eigenpair of Lrw if and only if (λ,w = D1/2u) is an eigenpair of Lsym.

3. (λ, u) is an eigenpair of Lrw if and only if λ and u solve the generalized eigen-problem Lu = λDu.

4. (0, 1) is an eigenpair of Lrw, and (0, D1/2
1) is an eigenpair of Lsym.

5. Lsym and Lrw are positive semi-definite and have n non-negative eigenvalues 0 = λ1 ≤ · · · ≤ λn.

6. If 0 = λ1 = · · · = λk < λk+1 ≤ · · · ≤ λn, then G has k-connected components A1, . . . , Ak. And the
eigenspace of eigenvalue λ = 0 is spanned by the 1A1 , . . . ,1Ak for Lrw and D1/2

1A1 , . . . , D
1/2

1Ak for
Lsym.

4 Spectral Clustering Algorithms

Input: Affinity matrix S ∈ Rn×n, and number of clusters to construct k.

1. Compute the unnormalization Laplacian L = D −W .

2. Compute the first k eigenvectors u1, . . . , uk of L.
or Solve the general eigenvalue problem, i.e. Lu = λDu, to get u1, . . . , uk (for Lrw).
or Compute the first k eigenvectors u1, . . . , uk of Lsym = D−1/2LD−1/2(for Lsym).

3. Let

U = [u1, . . . , uk] ∈ Rn×k (7)

=




yT1
...
yTn


 , yi ∈ Rk (8)

that is, yi is the vector corresponding to the i-th row of U .

4. Cluster the k-dimension points (yi)i=1,...,n using e.g. k-means, into clusters C1, . . . , Ck.

Output: Clusters A1, . . . , Ak, with Ai = {j|yj ∈ Ci}.
Main point: In the new representation yi, clustering is much easier. For example, suppose n = 5 and there
are two connected components — nodes 1, 2, 3 and nodes 4, 5. Then the zero eigenvectors will be of form
(cosθ, cosθ, cosθ, sinθ, sinθ) and (−sinθ,−sinθ,−sinθ, cosθ, cosθ), where θ is an angle (this is because we
know the zero eigenvectors must lie in the subspace spanned by (1, 1, 1, 0, 0) and (0, 0, 0, 1, 1), because of
property 6 of the laplacian, and the eigenvectors must be orthogonal). Then if we set k = 2 we find that
the clusters are (cosθ,−sinθ) and (sinθ, cosθ). Then the first three points are associated to the first cluster
(i.e. the first connected component) and the last two points are associated to the second cluster (second
connected component).
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Figure 3: Random walk

5 The Graph cut point of view

We define several global measures of segmentation. These will be associated to different laplacians. They
typically assume that there will be high affinity within subregions Ai and low affinities between subregions.

cut(A1, . . . , Ak) :=
1

2

k∑

i=1

W (Ai, Āi) (9)

Ratiocut(A1, . . . , Ak) :=
1

2

k∑

i=1

W (Ai, Āi)

|Ai|
=

k∑

i=1

cut(Ai, Āi)

|Ai|
(10)

Ncut(Ai, . . . , Ak) :=
1

2

k∑

i=1

W (Ai, Āi)

vol(Ai)
=

k∑

i=1

cut(Ai, Āi)

vol(Ai)
(11)

These have the following relations to the three laplacians. Ratiocut ∼ unnormalized spectral clustering
Normalized cut ∼ normalized spectral clustering of Shi & Malik.

6 Random walks point of view

Note: advanced topic.
A random walk on a graph is a stochastic process which randomly jumps from vertex to vertex. The

transition probability of jumping in one step from vertex vi to vertex vj is proportional to the edge weight
wij and is given by pij := wij/di, as shown in Figure 3. The transition matrix P = (pij)i,j=1,...,n of the
random walk is thus defined by

P = D−1W. (12)

If the graph is connected and non-bipartite, then the random walk always possesses a unique stationary
distribution π = (π1, . . . , πn)′, with πi = di/vol(V ).

Obviously, we have the relationship between Lrw and P , as Lrw = I − P . As a consequence, (λ, u) is an
eigenpair of Lrw if and only if (1 − λ, u) is an eigenpair of P, and the smallest eigenvectors of Lrw are the
largest eigenvectors of P .

We obtain the following conclusion: Let G be connected and non-bipartite. Assume that we run the
random walk (Xt)t∈N starting with X0 in the stationary distribution π. For disjoint subsets A,B ⊂ V ,
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denote by P (B|A) := P (X1 ∈ B|X0 ∈ A). Then:

Ncut(A, Ā) = P (Ā|A) + P (A|Ā). (13)

A second connection between random walks and graph Laplacians can be made via the commute distance on
the graph. The commute distance(also called resistance distance) cij between two vertices vi and vj is the
expected time it takes the random walk to travel from vertex vi to vertex vj and back. As opposed to the
shortest path distance on a graph, the commute distance between two vertices decreases if there are many
different short ways to get from vertex vi to vertex vj . So instead of just looking for the one shortest path,
the commute distance looks at the set of short paths. (Ref. L.Grady, Random walks for image segmentation,
PAMI-06).

We obtain the following conclusion: Let G = (V,E) a connected, undirected graph. Denote by cij the

commute distance between vertex vi and vertex vj , and by L† = (l†ij)i,j=1,...,n the generalized inverse of L.
Then we have:

cij = vol(V )(l†ii − 2l†ij + l†jj) = vol(V )(ei − ej)′L†(ei − ej). (14)

This conclusion leads to an important consequence. It shows that
√
cij can be considered as a Euclidean

distance function on the vertices of the graph. This means that we can construct an embedding which maps
the vertices vi of the graph on points zi ∈ Rn such that the Euclidean distances between the points zi coincide
with the commute distances on the graph.

7 Berkeley Edge Detector

In this section we describe the Berkeley edge detector which has two stages. The first stage is local and
couples multi-scale local brightness, color, and texture cues. The second stage is global and uses spectral
clustering. This is based on the paper “Contour Detection and Hierarchical Image Segmentation”1.

7.1 Building Blocks

The basic ideas of the contour detector is that the intensity properties are different on the two sides of an
edge. To detect an edge at (x, y) at orientation θ we split a circular neighborhood of radius σ centered at
(x, y) into two semi-circles, then we compute the histograms g and h of the filter responses (see below) in
the semi-circles, and then compute a measure of difference by the χ2 distance:

χ2(g, h) =
1

2

∑

i

(g(i)− h(i))2

g(i) + h(i)
(15)

Figure 4 shows an example.
The features used are texture and CIE Lab colorspace (brightness, color a and color b). For texture

channel, first the image is converted to grayscale and convolved with 8 × 2 Gabor filters. Each pixel is
associated with a 17-dimensional vector of responses. These vectors are then clustered using K-means and
each pixel is assigned to the closest cluster center. The histograms for texture channel is the frequency of
the occurrence of each clusters. For color channel, each color component is quantized into 25 and three
histograms are computed.

7.2 Multiscale Cue Combiniation

In order to detect fine as well as coarse structures, gradients at three scales are considered [σ/2, σ, 2σ] for
each of the brightness, color, and texture channels. Figure 5 shows an example of the oriented gradients

1http://www.cs.berkeley.edu/~malik/papers/arbelaezMFM-pami2010.pdf
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2.3.2 Rand Index
Originally, the Rand Index [62] was introduced for gen-
eral clustering evaluation. It operates by comparing the
compatibility of assignments between pairs of elements
in the clusters. The Rand Index between test and ground-
truth segmentations S and G is given by the sum of the
number of pairs of pixels that have the same label in
S and G and those that have different labels in both
segmentations, divided by the total number of pairs of
pixels. Variants of the Rand Index have been proposed
[5], [7] for dealing with the case of multiple ground-truth
segmentations. Given a set of ground-truth segmenta-
tions {Gk}, the Probabilistic Rand Index is defined as:

PRI(S, {Gk}) =
1

T

∑

i<j

[cijpij + (1− cij)(1− pij)] (6)

where cij is the event that pixels i and j have the same
label and pij its probability. T is the total number of
pixel pairs. Using the sample mean to estimate pij , (6)
amounts to averaging the Rand Index among different
ground-truth segmentations. The PRI has been reported
to suffer from a small dynamic range [5], [7], and its
values across images and algorithms are often similar.
In [5], this drawback is addressed by normalization with
an empirical estimation of its expected value.

2.3.3 Segmentation Covering
The overlap between two regions R and R′, defined as:

O(R,R′) =
|R ∩R′|
|R ∪R′| (7)

has been used for the evaluation of the pixel-wise clas-
sification task in recognition [8], [11]. We define the
covering of a segmentation S by a segmentation S′ as:

C(S′ → S) =
1

N

∑

R∈S

|R| · max
R′∈S′

O(R,R′) (8)

where N denotes the total number of pixels in the image.
Similarly, the covering of a machine segmentation S by

a family of ground-truth segmentations {Gi} is defined
by first covering S separately with each human segmen-
tation Gi, and then averaging over the different humans.
To achieve perfect covering the machine segmentation
must explain all of the human data. We can then define
two quality descriptors for regions: the covering of S by
{Gi} and the covering of {Gi} by S.

3 CONTOUR DETECTION

As a starting point for contour detection, we consider
the work of Martin et al. [2], who define a function
Pb(x, y, θ) that predicts the posterior probability of a
boundary with orientation θ at each image pixel (x, y)
by measuring the difference in local image brightness,
color, and texture channels. In this section, we review
these cues, introduce our own multiscale version of the
Pb detector, and describe the new globalization method
we run on top of this multiscale local detector.

0 0.5 1

Upper HalfíDisc Histogram

0 0.5 1

Lower HalfíDisc Histogram

Fig. 4. Oriented gradient of histograms. Given an
intensity image, consider a circular disc centered at each
pixel and split by a diameter at angle θ. We compute
histograms of intensity values in each half-disc and output
the χ2 distance between them as the gradient magnitude.
The blue and red distributions shown in the middle panel
are the histograms of the pixel brightness values in the
blue and red regions, respectively, in the left image. The
right panel shows an example result for a disc of radius
5 pixels at orientation θ = π

4 after applying a second-
order Savitzky-Golay smoothing filter to the raw histogram
difference output. Note that the left panel displays a larger
disc (radius 50 pixels) for illustrative purposes.

3.1 Brightness, Color, Texture Gradients
The basic building block of the Pb contour detector is
the computation of an oriented gradient signal G(x, y, θ)
from an intensity image I . This computation proceeds
by placing a circular disc at location (x, y) split into two
half-discs by a diameter at angle θ. For each half-disc, we
histogram the intensity values of the pixels of I covered
by it. The gradient magnitude G at location (x, y) is
defined by the χ2 distance between the two half-disc
histograms g and h:

χ2(g, h) =
1

2

∑

i

(g(i)− h(i))2

g(i) + h(i)
(9)

We then apply second-order Savitzky-Golay filtering
[63] to enhance local maxima and smooth out multiple
detection peaks in the direction orthogonal to θ. This is
equivalent to fitting a cylindrical parabola, whose axis
is orientated along direction θ, to a local 2D window
surrounding each pixel and replacing the response at the
pixel with that estimated by the fit.

Figure 4 shows an example. This computation is moti-
vated by the intuition that contours correspond to image
discontinuities and histograms provide a robust mech-
anism for modeling the content of an image region. A
strong oriented gradient response means a pixel is likely
to lie on the boundary between two distinct regions.

The Pb detector combines the oriented gradient sig-
nals obtained from transforming an input image into
four separate feature channels and processing each chan-
nel independently. The first three correspond to the
channels of the CIE Lab colorspace, which we refer to
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Figure 4: Oriented gradient of histograms. Given an intensity image, consider a circular disc centered
at each pixel and split by a diameter at angle θ. We compute histograms of intensity values in each half-disc
and output the χ2 distance between them as the gradient magnitude. The blue and red distributions shown
in the middle panel are the histograms of the pixel brightness values in the blue and red regions, respectively,
in the left image. The right panel shows an example result for a disc of radius 5 pixels at orientation θ = π.
Note that the left panel displays a larger disc (radius 50 pixels) for illustrative purposes.

obtained for each channel. For the brightness channel, we use σ = 5 pixels, while for color and texture we
use σ = 10 pixels. We then linearly combine these local cues into a single multiscale oriented signal:

mPb(x, y, θ) =
∑

s

∑

i

αi,sGi,σ(i,s)(x, y, θ) (16)

where s indexes scales, i indexes feature channels and Gi,σ(i,s)(x, y, θ) measures the histogram difference
in channel i between two halves of a disc of radius σ(i, s) centered at (x, y) and divided by a diameter at
angle θ. The parameters αi,s weight the relative contribution of each gradient signal. Taking the maximum
response over orientations yields a measure of boundary strength at each pixel:

mPb(x, y) = max
θ
{mPb(x, y, θ)} (17)

7.3 Globalization

As input to the spectral clustering stage, a sparse symmetric affinity matrix W is constructed using the
maximal value of mPb along a line connecting two pixels. All pixels i and j within a fixed radius r are
connected with affinity:

Wij = exp

(
−max

p∈ij
{mPb(p)}/ρ

)
(18)

where ij is the line segment connecting i and j and ρ is a constant.
In order to introduce global information, we define Dii =

∑
jWij and solve for the generalized eigenvec-

tors {v0, . . . , vn} for (D −W )v = λDv, where 0 = λ0 ≤ λ1 ≤ . . . ≤ λn. Figure 6 displays an example with
four eigenvectors.

The eigenvectors themselves carry contour information. Treating each eigenvector vk as an image, we
convolve with Gaussian directional derivative filters at multiple orientations θ, obtaining oriented signals
∇θvk(x, y). Taking derivatives in this manner ignores the smooth variations that previously lead to errors
(middle right in Figure 6). The information from different eigenvectors is then combined to provide the
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Fig. 5. Filters for creating textons. We use 8 oriented
even- and odd-symmetric Gaussian derivative filters and
a center-surround (difference of Gaussians) filter.

as the brightness, color a, and color b channels. For
grayscale images, the brightness channel is the image
itself and no color channels are used.

The fourth channel is a texture channel, which assigns
each pixel a texton id. These assignments are computed
by another filtering stage which occurs prior to the
computation of the oriented gradient of histograms.
This stage converts the input image to grayscale and
convolves it with the set of 17 Gaussian derivative and
center-surround filters shown in Figure 5. Each pixel is
associated with a (17-dimensional) vector of responses,
containing one entry for each filter. These vectors are
then clustered using K-means. The cluster centers define
a set of image-specific textons and each pixel is assigned
the integer id in [1, K] of the closest cluster center. Exper-
iments show choosing K = 32 textons to be sufficient.

We next form an image where each pixel has an
integer value in [1, K], as determined by its texton id.
An example can be seen in Figure 6 (left column, fourth
panel from top). On this image, we compute differences
of histograms in oriented half-discs in the same manner
as for the brightness and color channels.

Obtaining G(x, y, θ) for arbitrary input I is thus the
core operation on which our local cues depend. In the
appendix, we provide a novel approximation scheme for
reducing the complexity of this computation.

3.2 Multiscale Cue Combination

We now introduce our own multiscale extension of the
Pb detector reviewed above. Note that Ren [28] intro-
duces a different, more complicated, and similarly per-
forming multiscale extension in work contemporaneous
with our own [3], and also suggests possible reasons
Martin et al. [2] did not see performance improvements
in their original multiscale experiments, including their
use of smaller images and their choice of scales.

In order to detect fine as well as coarse structures,
we consider gradients at three scales: [σ

2 , σ, 2σ] for each
of the brightness, color, and texture channels. Figure 6
shows an example of the oriented gradients obtained for
each channel. For the brightness channel, we use σ = 5
pixels, while for color and texture we use σ = 10 pixels.
We then linearly combine these local cues into a single
multiscale oriented signal:

mPb(x, y, θ) =
∑

s

∑

i

αi,sGi,σ(i,s)(x, y, θ) (10)

where s indexes scales, i indexes feature channels
(brightness, color a, color b, texture), and Gi,σ(i,s)(x, y, θ)
measures the histogram difference in channel i between

Channel θ = 0 θ = π
2 G(x, y)

mPb(x, y)

Fig. 6. Multiscale Pb. Left Column, Top to Bottom: The
brightness and color a and b channels of Lab color space,
and the texton channel computed using image-specific
textons, followed by the input image. Rows: Next to each
channel, we display the oriented gradient of histograms
(as outlined in Figure 4) for θ = 0 and θ = π

2 (horizontal
and vertical), and the maximum response over eight
orientations in [0, π) (right column). Beside the original
image, we display the combination of oriented gradients
across all four channels and across three scales. The
lower right panel (outlined in red) shows mPb, the final
output of the multiscale contour detector.
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Figure 5: Multiscale Pb. Left Column, Top to Bottom: The brightness and color a and b channels
of Lab color space, and the texton channel computed using image-specific textons, followed by the input
image. Rows: Next to each channel, we display the oriented gradient of histograms (as outlined in Figure 4)
for θ = 0 and θ = π/2 (horizontal and vertical), and the maximum response over eight orientations in [0, π)
(right column). Beside the original image, we display the combination of oriented gradients across all four
channels and across three scales. The lower right panel (outlined in red) shows mPb, the final output of the
multiscale contour detector.
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Fig. 7. Spectral Pb. Left: Image. Middle Left: The thinned non-max suppressed multiscale Pb signal defines a sparse
affinity matrix connecting pixels within a fixed radius. Pixels i and j have a low affinity as a strong boundary separates
them, whereas i and k have high affinity. Middle: First four generalized eigenvectors resulting from spectral clustering.
Middle Right: Partitioning the image by running K-means clustering on the eigenvectors erroneously breaks smooth
regions. Right: Instead, we compute gradients of the eigenvectors, transforming them back into a contour signal.

Fig. 8. Eigenvectors carry contour information. Left: Image and maximum response of spectral Pb over
orientations, sPb(x, y) = maxθ{sPb(x, y, θ)}. Right Top: First four generalized eigenvectors, v1, ...,v4, used in
creating sPb. Right Bottom: Maximum gradient response over orientations, maxθ{∇θvk(x, y)}, for each eigenvector.

two halves of a disc of radius σ(i, s) centered at (x, y) and
divided by a diameter at angle θ. The parameters αi,s

weight the relative contribution of each gradient signal.
In our experiments, we sample θ at eight equally spaced
orientations in the interval [0, π). Taking the maximum
response over orientations yields a measure of boundary
strength at each pixel:

mPb(x, y) = max
θ

{mPb(x, y, θ)} (11)

An optional non-maximum suppression step [22] pro-
duces thinned, real-valued contours.

In contrast to [2] and [28] which use a logistic regres-
sion classifier to combine cues, we learn the weights αi,s

by gradient ascent on the F-measure using the training
images and corresponding ground-truth of the BSDS.

3.3 Globalization

Spectral clustering lies at the heart of our globalization
machinery. The key element differentiating the algorithm
described in this section from other approaches [45], [47]

is the “soft” manner in which we use the eigenvectors
obtained from spectral partitioning.

As input to the spectral clustering stage, we construct
a sparse symmetric affinity matrix W using the interven-
ing contour cue [49], [64], [65], the maximal value of mPb
along a line connecting two pixels. We connect all pixels
i and j within a fixed radius r with affinity:

Wij = exp

(
−max

p∈ij
{mPb(p)}/ρ

)
(12)

where ij is the line segment connecting i and j and ρ is
a constant. We set r = 5 pixels and ρ = 0.1.

In order to introduce global information, we define
Dii =

∑
j Wij and solve for the generalized eigenvectors

{v0,v1, ...,vn} of the system (D − W )v = λDv (2),
corresponding to the n+1 smallest eigenvalues 0 = λ0 ≤
λ1 ≤ ... ≤ λn. Figure 7 displays an example with four
eigenvectors. In practice, we use n = 16.

At this point, the standard Normalized Cuts approach
associates with each pixel a length n descriptor formed
from entries of the n eigenvectors and uses a clustering
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Figure 6: Spectral Pb. Left: Image. Middle Left: The thinned non-max suppressed multiscale Pb signal
defines a sparse affinity matrix connecting pixels within a fixed radius. Pixels i and j have a low affinity
as a strong boundary separates them, whereas i and k have high affinity. Middle: First four generalized
eigenvectors resulting from spectral clustering. Middle Right: Partitioning the image by running K-means
clustering on the eigenvectors erroneously breaks smooth regions. Right: Instead, we compute gradients of
the eigenvectors, transforming them back into a contour signal.

7

Fig. 7. Spectral Pb. Left: Image. Middle Left: The thinned non-max suppressed multiscale Pb signal defines a sparse
affinity matrix connecting pixels within a fixed radius. Pixels i and j have a low affinity as a strong boundary separates
them, whereas i and k have high affinity. Middle: First four generalized eigenvectors resulting from spectral clustering.
Middle Right: Partitioning the image by running K-means clustering on the eigenvectors erroneously breaks smooth
regions. Right: Instead, we compute gradients of the eigenvectors, transforming them back into a contour signal.

Fig. 8. Eigenvectors carry contour information. Left: Image and maximum response of spectral Pb over
orientations, sPb(x, y) = maxθ{sPb(x, y, θ)}. Right Top: First four generalized eigenvectors, v1, ...,v4, used in
creating sPb. Right Bottom: Maximum gradient response over orientations, maxθ{∇θvk(x, y)}, for each eigenvector.

two halves of a disc of radius σ(i, s) centered at (x, y) and
divided by a diameter at angle θ. The parameters αi,s

weight the relative contribution of each gradient signal.
In our experiments, we sample θ at eight equally spaced
orientations in the interval [0, π). Taking the maximum
response over orientations yields a measure of boundary
strength at each pixel:

mPb(x, y) = max
θ

{mPb(x, y, θ)} (11)

An optional non-maximum suppression step [22] pro-
duces thinned, real-valued contours.

In contrast to [2] and [28] which use a logistic regres-
sion classifier to combine cues, we learn the weights αi,s

by gradient ascent on the F-measure using the training
images and corresponding ground-truth of the BSDS.

3.3 Globalization

Spectral clustering lies at the heart of our globalization
machinery. The key element differentiating the algorithm
described in this section from other approaches [45], [47]

is the “soft” manner in which we use the eigenvectors
obtained from spectral partitioning.

As input to the spectral clustering stage, we construct
a sparse symmetric affinity matrix W using the interven-
ing contour cue [49], [64], [65], the maximal value of mPb
along a line connecting two pixels. We connect all pixels
i and j within a fixed radius r with affinity:

Wij = exp

(
−max

p∈ij
{mPb(p)}/ρ

)
(12)

where ij is the line segment connecting i and j and ρ is
a constant. We set r = 5 pixels and ρ = 0.1.

In order to introduce global information, we define
Dii =

∑
j Wij and solve for the generalized eigenvectors

{v0,v1, ...,vn} of the system (D − W )v = λDv (2),
corresponding to the n+1 smallest eigenvalues 0 = λ0 ≤
λ1 ≤ ... ≤ λn. Figure 7 displays an example with four
eigenvectors. In practice, we use n = 16.

At this point, the standard Normalized Cuts approach
associates with each pixel a length n descriptor formed
from entries of the n eigenvectors and uses a clustering
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Figure 7: Eigenvectors carry contour information. Left: Image and maximum response of spectral Pb over
orientations, sPb(x, y) = maxθsPb(x, y, θ). Right Top: First four generalized eigenvectors, v1, ..., v4, used
in creating sPb. Right Bottom: Maximum gradient response over orientations, maxθ∇θvk(x, y), for each
eigenvector.
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“spectral” component of the boundary detector:

sPb(x, y, θ) =

n∑

k=1

1√
λk
|∇θvk(x, y)| (19)

Figures 6 and 7 present examples of the eigenvectors, their directional derivatives, and the resulting sPb
signal.

Note that this differs from how the eigenvectors vk are used in the standard spectral clustering algorithm,
described in the earlier sections, which uses a threshold to determine which eigenvalues to use and then uses
their eigenvectors as indicator functions to determine the segmented regions. In practice, finding a good
threshold is difficult. Instead observe that if the vk act as indicator functions for the regions then their
gradients will be large at the edges (e.g., the indicator function takes value 1 in one region and is 0 is all the
others). To avoid picking a threshold then instead they sum the gradients of the eigenvectors and weight
them inversely by the square root of the eigenvalue, so that small eigenvalues contribute most.

Our final globalized probability of boundary is then written as a weighted sum of local and spectral
signals:

gPb(x, y, θ) =
∑

s

∑

i

βi,sGi,σ(i,s)(x, y, θ) + γ · sPb(x, y, θ) (20)
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