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1 Spectral Clustering

Spectral clustering is a technique for segmenting data into non-overlapping subsets. It is used in many
machine learning applications (e.g., von Luxberg 2007) and was introduced into computer vision by Shi and
Malik (2000).

The data is defined by a graph with an affinity, or similarity measure, between graph nodes. The
computation — to segment the data — can be performed by linear algebra followed by thresholding. Note
that affinities relates to kernels (those that fall off with distance, like radial basis functions) used in machine
learning. For some problems it is easier to define affinities between objects directly instead of obtaining
them by the more standard method of specifying the objects by features and then calculating the distance
between the features.

Spectral clustering is an alternative to probabilistic methods for segmentation. The main difference is
that the probabilistic models define data at the nodes of the graph while spectral clustering defines data at
the edges between nodes. (There are ways to relate the two approaches which will be discussed later).

For image segmentation a typical affinity between pixels i and j is defined by w;; = exp{—7|l; —
I;|} exp{—7|z; — x;|} where I;,I; are the intensities at pixels ¢,j and z;, 2, are their spatial positions.
Hence the affinity is high between neighboring pixels which have similar intensity values (small z; — z; and
small |I; — I;|) and the affinity is small between pixels which are far apart (large x; — «;|) or which have
very different intensity values (large |I; — I;|). If this affinity is used, the spectral clustering will segment the
data into subregions within which the intensity values changes slowly with position.
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2 Basic Concepts

Let G = (V,E) be an undirected graph with nodes V = vy, vg,...,v,. The graph has weighted edges
wi; = wj; > 0 which are called affinities and are measures of similarity between nodes. Large w;; means
strong affinities, or bonds, between node 7 and node j.

The degree of a vertex v; is defined as: d; = 2?21 wi;j. The degree matrix of the graph is defined by
D= dz’ag{dl, d2, veny dn}

For two subsets A, B (which do not need to be disjoint) of V', w(A, B) is defined by:

w(A, B) = ZieA,jeB Wij



The size of a subset A C V has two definitions.

|A| = number of vertices in A (unweighted volume)

vol(A) = Zdi (weighted volumn)
i€A

2.1 Examples of affinities

1 if(i,j) €eFE
Wij = .
0 otherwise.

Shi and Malik’s definition of w;; is given by:

_lr=r0® _llmimzgll?
2

T Xxe i it |\ - L] <r (2)

Wi5 = e

0 otherwise.

where r, 0,01 are parameters.

3 The Graph Laplacian Matrix (ref. Chung, Spectral graph the-
ory, AMS-1997)

This section defines graph Laplacians on the graphs. In the special case where the affinities w;; takes values
{0,1} then the connected components of the graph can be found from the eigenvectors with zero eigenvalues.
This enables us to segment the graph into its connected components by linear algebra. If we allow the w;; to
take continuous values, as will happen for computer vision applications, then we can estimate a segmentation
of the data by using the eigenvectors of the Laplacian with sufficiently small eigenvalues. There are several
different Laplacians (normalized and unnormalized) which will give different segmentations.

3.1 Unnormalized graph Laplacians

Given an undirected, weighted graph G = (V, E), its Laplacian matrix is defined to be
L:=D-W (3)

where D = diag(d;) and W = (w;;)nxn with n = |V|. Note that L does not depend on w;; (which cancels
between D and W).

Why do we call this matrix the “Laplacian”? From Figure 1, we see that it is similar to the standard
discretization for the Laplacian differential operator —V?u = —(uys + uy,) in the special case where w;; = 1
for nearest neighbor pixels and w;; = 0 otherwise:

Here are some useful properties of L which will be useful for spectral clustering:

L fTLf= %ZZ;‘:1 wij(fi — f;)?,Vf € R

2. L is a symmetric positive semi-definite matrix (this follows from 1).

3. The smallest eigenvalue is 0, the corresponding eigenvector is the vector 1 = (1,1, ...,1).

4. L has n non-negative eigenvalues. 0 = A1 < Ao <+ < A < A1 < < Ay

5. 0 =X =X = =X < A1 < -+ < Ay, then G has k-connected components Ay,..., Ay
(V = Ule A;). The eigenspace of eigenvalue 0 is spanned by the indicator vectors 14,,...,14, of

these components.



Figure 1: A simple graph and its corresponding Laplacian

Figure 2: A simple graph G with two connected components

Here is a simple example of Property 5. The graph G = (V, E) in Fig 2 has two connected components,
Ay and Ay. W = {w;;} of G is defined in Equation (6).

1 e; el
wi; = o (4)
0 otherwise.

Let L = D—W and calculate the eigenvalues and eigenvectors of L. It follows that the first two eigenvalues

A1, A2 are 0, and the corresponding eigenvectors (u; and wug) correspond to the connected components A;
and As.

Al == {'l)l,UQ,Ug,U4,U5,'U6}
Ay = {U7,0871)97U10,U11,U12}
U] = (1, 1,1,1,1,1,0,0,0,0,0, 0)
Uy = (O, 0,0,0,0,0,1,1,1,1,1, 1)

Note that the eigenvalues are degenerate and so that eigenvectors will be of form cosfu; + sinfus and

sinfuy — cosBug where 6 is any value. An additional algorithm is needed to find u; and uy as described in
the next section.



3.2 Normalized graph Laplacians

There are two matrices which are called normalized graph Laplacians in the literature. Both matrices are
closely related to each other and are defined by:

Leym = D™'V2LD~1/2 = [ - D='2WD? (Ng, Jordan, Weiss, 2002) (5)
Lyw: =D 'L=1—-D"'W. (Shi, Malik, 2000) (6)

The normalized Laplacian matrix satisfy the following properties:

,u) is an eigenpair of L,,, if and only if (A\,w = D1/2u) is an eigenpair of Lgyn,.

(A
(A, u) is an eigenpair of L, if and only if A and u solve the generalized eigen-problem Lu = ADu.
(0

> w

,1) is an eigenpair of L,.,, and (0, D'/?1) is an eigenpair of Lgym.

5. Lgym and L,,, are positive semi-definite and have n non-negative eigenvalues 0 = A; < --- < Ay,

6. HO=X = =X < A1 < -+ < Ay, then G has k-connected components Ay,..., Ax. And the
eigenspace of eigenvalue A = 0 is spanned by the 14,,...,14, for Ly, and D21 4,,..., D214, for
Laym.

4 Spectral Clustering Algorithms
Input: Affinity matrix S € R”*", and number of clusters to construct k.
1. Compute the unnormalization Laplacian L = D — W.

2. Compute the first k eigenvectors uq,...,ux of L.
or Solve the general eigenvalue problem, i.e. Lu = ADu, to get uy, ..., ug (for L,.,).
or Compute the first k eigenvectors uy, ..., ug of Lgym = D™Y2LD ™12 (for Lgy,,).

3. Let
U = [ug,...,u) € R™F (7)
yi
— Co |y eR? (8)
Y

that is, y; is the vector corresponding to the i-th row of U.
4. Cluster the k-dimension points (y;)i=1,..» using e.g. k-means, into clusters Ci, ..., Ck.

Output: Clusters A, ..., Ay, with A; = {jly; € C;}.

Main point: In the new representation y;, clustering is much easier. For example, suppose n = 5 and there
are two connected components — nodes 1,2,3 and nodes 4,5. Then the zero eigenvectors will be of form
(cosB, cosh, cosb, sinb, sinf) and (—sinb, —sind, —sinb, cosd, cost), where 6 is an angle (this is because we
know the zero eigenvectors must lie in the subspace spanned by (1,1,1,0,0) and (0,0,0,1,1), because of
property 6 of the laplacian, and the eigenvectors must be orthogonal). Then if we set k = 2 we find that
the clusters are (cos, —sinf) and (sin#, cosf). Then the first three points are associated to the first cluster
(i.e. the first connected component) and the last two points are associated to the second cluster (second
connected component).
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Figure 3: Random walk

5 The Graph cut point of view

We define several global measures of segmentation. These will be associated to different laplacians. They
typically assume that there will be high affinity within subregions A; and low affinities between subregions.

k
1 _
cut(Av,-.., Ak) = 5 ; W(A;, A;) (9)
k - k _
; 1~ W(Ai, A cut(A;, A;
Ratiocut(Ay, ..., Ag) == 3 Z % = Z # (10)
=1 | 1‘ i=1 | 7«|
k - k _
1 W(A;, A;) cut(A;, A;)
Nceut(A;, ..., Ag) == = = 11
cut(Ai, ..., Ar) = 3 ; vol(4;) ; vol(A;) (11)

These have the following relations to the three laplacians. Ratiocut ~ unnormalized spectral clustering
Normalized cut ~ normalized spectral clustering of Shi & Malik.

6 Random walks point of view

Note: advanced topic.

A random walk on a graph is a stochastic process which randomly jumps from vertex to vertex. The
transition probability of jumping in one step from vertex v; to vertex v; is proportional to the edge weight
w;; and is given by p;; := w;;/d;, as shown in Figure 3. The transition matrix P = (p;;)i j=1,..n of the
random walk is thus defined by

P=D"'W. (12)

If the graph is connected and non-bipartite, then the random walk always possesses a unique stationary
distribution 7 = (71, ..., m,)’, with m; = d; /vol(V).

Obviously, we have the relationship between L,,, and P, as L., = I — P. As a consequence, (A, u) is an
eigenpair of L, if and only if (1 — A\, ) is an eigenpair of P, and the smallest eigenvectors of L, are the
largest eigenvectors of P.

We obtain the following conclusion: Let G be connected and non-bipartite. Assume that we run the
random walk (X;);en starting with X in the stationary distribution . For disjoint subsets A, B C V,



denote by P(B|A) := P(X; € B|Xy € A). Then:
Ncut(A, A) = P(A|A) + P(A|A). (13)

A second connection between random walks and graph Laplacians can be made via the commute distance on
the graph. The commute distance(also called resistance distance) ¢;; between two vertices v; and v; is the
expected time it takes the random walk to travel from vertex v; to vertex v; and back. As opposed to the
shortest path distance on a graph, the commute distance between two vertices decreases if there are many
different short ways to get from vertex v; to vertex v;. So instead of just looking for the one shortest path,
the commute distance looks at the set of short paths. (Ref. L.Grady, Random walks for image segmentation,
PAMI-06).

We obtain the following conclusion: Let G = (V, E) a connected, undirected graph. Denote by c¢;; the
commute distance between vertex v; and vertex v;, and by Lt = (l;rj)i,jzl,...,n the generalized inverse of L.
Then we have:

cij = vol(V)(If; — 21, +11,) = vol(V')(e; — €)' Lt (e — ¢;). (14)

This conclusion leads to an important consequence. It shows that ,/¢;; can be considered as a Euclidean
distance function on the vertices of the graph. This means that we can construct an embedding which maps
the vertices v; of the graph on points z; € R™ such that the Euclidean distances between the points z; coincide
with the commute distances on the graph.

7 Berkeley Edge Detector

In this section we describe the Berkeley edge detector which has two stages. The first stage is local and
couples multi-scale local brightness, color, and texture cues. The second stage is global and uses spectral

clustering. This is based on the paper “Contour Detection and Hierarchical Image Segmentation”?.

7.1 Building Blocks

The basic ideas of the contour detector is that the intensity properties are different on the two sides of an
edge. To detect an edge at (z,y) at orientation 6 we split a circular neighborhood of radius o centered at
(z,y) into two semi-circles, then we compute the histograms g and h of the filter responses (see below) in
the semi-circles, and then compute a measure of difference by the y? distance:

K. = 5 30 W HOR (19

Figure 4 shows an example.

The features used are texture and CIE Lab colorspace (brightness, color a and color b). For texture
channel, first the image is converted to grayscale and convolved with 8 x 2 Gabor filters. Each pixel is
associated with a 17-dimensional vector of responses. These vectors are then clustered using K-means and
each pixel is assigned to the closest cluster center. The histograms for texture channel is the frequency of
the occurrence of each clusters. For color channel, each color component is quantized into 25 and three
histograms are computed.

7.2 Multiscale Cue Combiniation

In order to detect fine as well as coarse structures, gradients at three scales are considered [0/2, o, 20] for
each of the brightness, color, and texture channels. Figure 5 shows an example of the oriented gradients

Thttp://www.cs.berkeley.edu/~malik/papers/arbelaezMFM-pami2010. pdf



Upper Half-Disc Histogram

Lower Half-Disc Histogram

Figure 4: Oriented gradient of histograms. Given an intensity image, consider a circular disc centered
at each pixel and split by a diameter at angle 8. We compute histograms of intensity values in each half-disc
and output the x? distance between them as the gradient magnitude. The blue and red distributions shown
in the middle panel are the histograms of the pixel brightness values in the blue and red regions, respectively,
in the left image. The right panel shows an example result for a disc of radius 5 pixels at orientation 8 = .
Note that the left panel displays a larger disc (radius 50 pixels) for illustrative purposes.

obtained for each channel. For the brightness channel, we use ¢ = 5 pixels, while for color and texture we
use 0 = 10 pixels. We then linearly combine these local cues into a single multiscale oriented signal:

mpb(xayag) = Zzai,sGi,o(i,s) (x,y,@) (16)

where s indexes scales, i indexes feature channels and G ,(; ) (2,y,0) measures the histogram difference
in channel ¢ between two halves of a disc of radius o(i, s) centered at (z,y) and divided by a diameter at
angle 6. The parameters o; ; weight the relative contribution of each gradient signal. Taking the maximum
response over orientations yields a measure of boundary strength at each pixel:

mPb(z,y) = mea:)c{me(ac7 y,0)} (17)

7.3 Globalization

As input to the spectral clustering stage, a sparse symmetric affinity matrix W is constructed using the
maximal value of mPb along a line connecting two pixels. All pixels ¢ and j within a fixed radius r are
connected with affinity:
Wy = exp (- max{m P} o (18)
PELj
where ij is the line segment connecting ¢ and j and p is a constant.

In order to introduce global information, we define D;; = > i Wij and solve for the generalized eigenvec-
tors {vg,...,v,} for (D — W)v = ADv, where 0 = Ao < Ay < ... < \,. Figure 6 displays an example with
four eigenvectors.

The eigenvectors themselves carry contour information. Treating each eigenvector v, as an image, we
convolve with Gaussian directional derivative filters at multiple orientations €, obtaining oriented signals
Vg (x,y). Taking derivatives in this manner ignores the smooth variations that previously lead to errors
(middle right in Figure 6). The information from different eigenvectors is then combined to provide the



Channel

Figure 5: Multiscale Pb. Left Column, Top to Bottom: The brightness and color a and b channels
of Lab color space, and the texton channel computed using image-specific textons, followed by the input
image. Rows: Next to each channel, we display the oriented gradient of histograms (as outlined in Figure 4)
for # = 0 and 6 = 7/2 (horizontal and vertical), and the maximum response over eight orientations in [0, )
(right column). Beside the original image, we display? the combination of oriented gradients across all four
channels and across three scales. The lower right panel (outlined in red) shows mPb, the final output of the
multiscale contour detector.
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Figure 6: Spectral Pb. Left: Image. Middle Left: The thinned non-max suppressed multiscale Pb signal
defines a sparse affinity matrix connecting pixels within a fixed radius. Pixels ¢ and j have a low affinity
as a strong boundary separates them, whereas ¢ and k have high affinity. Middle: First four generalized
eigenvectors resulting from spectral clustering. Middle Right: Partitioning the image by running K-means
clustering on the eigenvectors erroneously breaks smooth regions. Right: Instead, we compute gradients of
the eigenvectors, transforming them back into a contour signal.

Figure 7: Eigenvectors carry contour information. Left: Image and maximum response of spectral Pb over
orientations, sPb(x,y) = maxgsPb(x,y,0). Right Top: First four generalized eigenvectors, v1, ..., v4, used
in creating sPb. Right Bottom: Maximum gradient response over orientations, maxgVeuvi(x,y), for each
eigenvector.



“spectral” component of the boundary detector:

n

SPbr.5.0) = 32 —=IToue(ay) (19)

k=1

Figures 6 and 7 present examples of the eigenvectors, their directional derivatives, and the resulting sPb
signal.

Note that this differs from how the eigenvectors vy are used in the standard spectral clustering algorithm,
described in the earlier sections, which uses a threshold to determine which eigenvalues to use and then uses
their eigenvectors as indicator functions to determine the segmented regions. In practice, finding a good
threshold is difficult. Instead observe that if the vy act as indicator functions for the regions then their
gradients will be large at the edges (e.g., the indicator function takes value 1 in one region and is 0 is all the
others). To avoid picking a threshold then instead they sum the gradients of the eigenvectors and weight
them inversely by the square root of the eigenvalue, so that small eigenvalues contribute most.

Our final globalized probability of boundary is then written as a weighted sum of local and spectral
signals:

ng(.’l?, Y, 9) = Z Z ﬂi,SGi,U(i,S) (37, Y, 9) +- SPb(J), Y, 9) (20)
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