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1 Introduction

This lecture describes the Lambertian model – this is the most basic model for generating images. It is a
simple model and is often a good first order approximation. Other models are significantly more complicated
and difficult to deal with. Risking an oversimplification – either use a Lambertian model or a statistical
model or give up (for computer vision – other models are very useful for computer graphics).

2 The Lambertian Model

The linear Lambertian model is
I(~x) = a(~x)~n(~x) · ~s, (1)

where I(~x) is the image, a(~x) is the albedo, ~n(~x) is the surface normal, ~s is the light source (|~s| is the
magnitude – the illumination strength – and ~s/|~s| is the light source direction.

This model is sometimes called the cosine rule because the image depends on the cosine between the
surface normal and the light source direction.

The model is linear in the light source – i.e., I(~x) = a(~x)~n(~x) · ~s1 + I(~x) = a(~x)~n(~x) · ~s2 = I(~x) =
a(~x)~n(~x) · (~s1 + ~s2).

Importantly, the image I(~x) does not depend directly on the viewpoint (changing the viewpoint corre-

sponds to spatial warping of the intensity I(~x) 7→ I(~φ(~x)) where ~φ(~x) is a spatial warping function). This
is unlike a specular object, like a mirror, where the image is a function of the viewpoint, the light source
direction and the orientation of the mirror.

There is a well-known perceptual ambiguity – it is impossible to distinguish between a convex object lit
from above and a concave object lit from below. Humans have a tendency to perceive objects to be convex.
Dramatically, an inverted face mask appears to be a real face. This is despite having additional depth cues
such as binocular stereo or structure from motion. We will discuss this and other ambiguities later in this
lecture.

This linear model must be modified to account for shadows. There are two types of shadows: (i) attached
shadows, and (ii) cast shadows. We can deal with attached shadows by modifying the equation to be:

I(~x) =
∑

µ

min{a(~x)~n(~x) · ~sµ, 0}. (2)

This is no longer linear in the light source directions. This makes analyzing the model much more difficult.
Cast shadows can be modeled also – see figure (5).

Here is an example which illustrates the importance of cast and attached shadows. Consider the a point
at the top of a mountain and a point at the bottom of a mineshaft. Both points have the same surface
normal and albedo, so a Lambertain model will predict the same intensity for each (ignoring shadows). But
typically the intensity at the top of the mountain will be much brighter than the point at the bottom of the
mineshaft. The reason is that the point at the bottom of the mineshaft will be occluded from most of the
light sources – i.e. only a light source that points directly down the mine will illuminate it. By contrast, the
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Figure 1: Examples of faces under different lighting conditions.

In recent years, two extreme strategies have been followed to deal with illumination variation.
By far the most common is to build representations based on images features [20, 4], such as inten-
sity edges or corners, which are belieeved to be somewhat insensitive, or invariant, to illumination
changes. The idea being that object recognition and image understanding can then be performed
using these “illumination invariant” representations as input. This approach has two significant
drawbacks. First, when illumination variations are large, edges, and indeed all image features, are
sensitive to the lighting conditions. Second, and perhaps more important, representations based
on edges and corners are sparse and, consequently, throw out a large fraction of useful information.

A different strategy is to use what is often termed an image-based representation or an appear-
ance model. This differs from the feature-based strategy mentioned above in that their represen-
tation is, in a least-squared sense, faithful to the original image [22, 24, 26, 14, 12, 32, 40]. (Such
models have also been suggested by psychophysicists, see for example [34, 37].) An influential
examples is the SLAM system [22] which simultaneously models variations due to pose and illumi-
nation by projecting the training images down into low-dimensional subspaces. Systems like these
have demonstrated the power of appearance-based methods for certain visual tasks both in ease
of implementation and in accuracy. These systems, however, confound the different factors (such
as illumination, pose, albedo and geometry) which generate images in a non-transparent way. If
the albedo of the viewed object was changed slightly, for example by drawing a red triangle on it,
then the whole appearance model would need to be learnt from scratch. Moreover, in principle,
appearance based models require that the object is seen under all possible viewing conditions and
hence an enormous amount of training data is needed.

We argue that it is preferable to have a more transparent model which explicitly takes into
account all the factors which generate the image. This approach requires isolating each factor
in turn and modeling it with as simple a representation as possible. This can be thought of as
a generative model. A big potential advantage of this approach is that from a small number of
training images, one can model the object under all possible combinations of lighting and pose.
For example, it has been shown [2] that the illumination cone of a convex Lambertian object
can be reconstructed from as few as three images taking into account shadow effects which are
notoriously hard to model. Thus, the representations generalize to novel conditions (requiring less
learning data), see [2] for examples of images genereated in such a way. In addition, they can
generalize to objects which have not been seen before but which are members of a known object
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Figure 6: Top left is helmet under ambient lighting conditions. Top center is reconstruction from
projection onto the first five eigenvectors. Note the specularities have been eliminated. Top right is
the difference between original image and reconstruction. (Differences less than zero have been set
to zero because the specularities are, by definition, positive.) The specularities are easily isolated.
Bottom row shows the same effect for an image from the dense data set.

where D is a diagonal matrix whose diagonal elements are λ
1/2
1 , λ

1/2
2 , λ

1/2
3 .

We can now state the following theorems:
Theorem 1. If the light sources in the dataset are such that

∑
µ si(µ)sj(µ) = δij , where δij

is the Kronecker delta, then Hayakawa’s rotation matrix should be set equal to the identity if, and
only if, the albedos and shapes in the data set satisfy

∑
x bi(x)bj(x) = 0, i 6= j.

Theorem 2. The first three eigenvectors ei(x) : i = 1, 2, 3 point along the axes of the cartesian
coordinate system if, and only if, both

∑
x bi(x)bj(x) = 0, i 6= j and

∑
µ si(µ)sj(µ) = 0, i 6= j.

Both theorems show that interesting results occur if the input data is symmetric. More pre-
cisely, it corresponds to assuming that the off-diagonal terms of

∑
p bi(x)bj(x) and

∑
µ si(µ)sj(µ)

vanish. This will be true if, for example, the light source directions sample the viewing hemisphere
evenly and the object is an ellipsoid viewed head-on and with constant albedo. The off-diagonal
terms will also be expected to vanish if the i and j components of the dataset are statistically inde-
pendent (for then, by ergodicity,

∑
x bi(x)bj(x) 7→< bibj > and

∑
µ si(µ)sj(µ) 7→< sisj >). How-

ever, there will be many datasets for which these assumptions will be violated. Thus Hayakawa’s
assumptions and the orthogonal lighting conjecture will typically not be true.

The proofs of the theorems are long and involved. For reasons of space, we only give the broad
outlines of the proofs here and refer the reader to the Appendix for more details.

Proof of Theorem 1.
∑

µ si(µ)sj(µ) = δij implies that
∑

µ I(x, µ)I(x′, µ) =
∑

i bi(x)bi(x
′).

This implies that PT P = D2, where D was defined above. Hayakawa’s assumption involves
setting P = D, but there are many other possible solutions of form P = RP where R is any

rotation matrix. Observe, that if R = I then bi(x) = λ
1/2
i ei(x), ∀ i,x and so

∑
x bi(x)bj(x) = 0

for i 6= j. Conversely, suppose that
∑

x bi(x)bj(x) = µiδij , ∀ i, j for some values {µi}. Then this
implies that PPT = D1, where D1 is diagonal with diagonal elements {µi}. This is inconsistent
with PT P = D2, unless P is diagonal.

Observe, in this proof, that there is a close connection between Hayakawa’s assumption and
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Figure 1: Exampleimages: Faces and Helmet (specular)

point on the top of the mountain will be illuminated from many directions and hence will usually be much
brighter.

2.1 Other lighting models.

There are a range of other lighting models that have been used. These are particularly good for computer
graphics where the goal is to generate an image knowing the positions and shapes of the objects and the
positions of the light sources. Computer vision addresses the harder inverse problem of determining the
objects and light sources from the image. Lambertian models are comparatively easier to invert – mainly
because they are linear (if we ignore shadows) and the lighting is independent of the viewpoint direction. It
is far harder to do this for the non-Lambertian models. Examples: (I) Radiosity Models. (II) Bidirectional
Lighting Functions (BRDF’s). (III) Specularity models.

2.2 Shape from Shading:

Humans have the ability to estimate the shape of an object from the image intensity – or shading pattern.
There has been a lot of work on estimating shape from shading. But this is a severely ill-posed problem.
Current methods make strong assumptions – e.g. constant albedo, known light source. These assumptions
are typically not valid in many real world images. Classic shape from shading models assume that the
light source directions are known and typically assume that the surface is locally smooth (Horn). More
sophisticated methods were developed by Oliensis.

Statistical shape from shading (ref: Potetz and Lee) proceeds by learning the statistical relations between
image intensity and depth/shape. This is learnt from a dataset obtained by using a laser-range finder and a
camera. Their results suggest that Lambertian models rarely apply in natural images.

3 Experimental Analysis of Lambertian Models

The linear Lambertian model (i.e. ignoring shadows) implies that the image of an object lies in a three-

dimensional space (Sha-ashua). This implies that the image can be modeled as I(~x) =
∑3
i=1 αiei(~x). Such

a model can help for recognizing objects and for tracking an object when the lighting varies.
The linear model can be investigated empirically by taking photographs of an object from different

lighting conditions, see figure (1). To get a set of images {Iµ(~x)}. We can then compute the correlation matrix

K(~x, ~x′) = 1
N

∑N
µ=1 I

µ(~x)Iµ(~x′). Then calculate the eigenvectors and eigenvalues
∑
~x′ K(~x, ~x′)e(~x′) = λe(~x).
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Figure 5: Plots of the mean goodness of fit vs the number of eigenvectors for training (top left) and
test (top right) sets of several different objects. All models were constructed using a sparse data
set. Examples images of the ball, helmet, fire-extinguisher,parrot,spectrometer, and voltmeter are
shown below,

human perception – small specularities would give little contribution to the goodness of fit but
might be visually salient.

In figure (5) we give graphs showing the mean goodness of fits for a variety of objects where
the mean is with respect to either training or test data sets. The bases used were constructed
from the sparse samples only. These graphs show clearly that, even for highly specular objects,
the mean goodness rises very rapidly with the first three or four eigenvalues and improvements in
performance begins to taper off at the fifth eigenvectors.

Table (1) shows the cumulative variances for different objects. Observe that even for highly
specular objects such as the helmet, see figure (6), the variance only rises a little slower if the
dense data set is used instead of the sparse set. The quality of the principal eigenvectors, however,
does improve when the dense set is used. Not surprisingly (see [5, 7] for more details) the principal
eigenvectors for the sparse dataset are influenced heavily by the precise location of the specularities
in the sparse training set. When the dense dataset is used then the specularities average out and
they appear not to influence the principal eigenvectors. This means that when images are projected
the specularities are removed and appear nicely as residuals, see figure (6).
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Eigen- ball parrot phone face helmet helmet helmet fire function infrared
vector ext generator detector

sparse dense dense sparse sparse dense dense dense dense dense
(right) (both) (right) (right) (right) (right) (both) (right) (right) (right)

#1 0.482 0.428 0.679 0.537 0.320 0.340 0.388 0.536 0.806 0.624
#2 0.844 0.697 0.832 0.752 0.569 0.540 0.474 0.687 0.879 0.805
#3 0.944 0.763 0.882 0.902 0.651 0.628 0.581 0.765 0.922 0.885
#4 0.965 0.815 0.920 0.921 0.728 0.746 0.655 0.816 0.936 0.915
#5 0.979 0.847 0.941 0.935 0.798 0.772 0.722 0.852 0.948 0.927
#6 0.989 0.872 0.952 0.945 0.845 0.794 0.750 0.882 0.956 0.939
#7 0.991 0.885 0.963 0.953 0.881 0.816 0.795 0.901 0.962 0.948
#8 0.993 0.897 0.968 0.958 0.905 0.833 0.811 0.913 0.968 0.954
#9 0.995 0.907 0.972 0.963 0.924 0.848 0.824 0.925 0.972 0.960
#10 0.996 0.917 0.975 0.966 0.943 0.861 0.837 0.933 0.975 0.965

Table 1: The variance (cumulative) accounted for by each eigenvector for several different objects,
both for sparse and dense training sets.

2.4 Mathematical Analysis of the SVD approach

What can mathematical analysis tell us about the SVD method? As we will show, it is possible to
theoretically analyze the eigenvectors that result from SVD provided we assume that the object
has a pure Lambertian reflectance function with no shadows. In other words, we assume that the
data is indeed generated by the model with which we analyze it. Of course, this is an ideal world
assumption and so the theoretical results will start to degrade as shadows become significant.

We specifically investigate two issues arising earlier this section. The first concerns Hayakawa’s
assumption that a specific rotation ambiguity in SVD can be resolved by setting the rotation to
be the identity. The second involves the orthogonal lighting conjecture – that the first three
eigenvectors point along the axes of the cartesian coordinate system. We will show that these
claims are closely related and depend on the symmetry of the dataset.

Let us assume that the data is generated by a true Lambertian surface. In other words, that
the input image set {I(x, µ)} can be expressed as:

I(x, µ) =

3∑

i=1

bi(x)si(µ), (12)

where {bi(x)} and {si(µ)} are the true albedo, shape and lighting.
We can reformulate equation (4) in coordinate terms as:

bi(x) =
3∑

j=1

Pijej(x) ∀ i,x,

si(µ) =

3∑

j=1

Qijfj(µ), ∀ i, µ, (13)

where the e and f obey the eigenvectors equations:
∑

µ′
{
∑

x

I(x, µ)I(x, µ′)}fi(µ
′) = λifi(µ), ∀ i, µ

∑

x′

{
∑

x

I(x, µ)I(x′, µ)}ei(x
′) = λiei(x), ∀ i,x, (14)

and the matrices P and Q are constrained to satisfy:

PT Q = D, (15)
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Figure 2: Eigengraph and Eigentable
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The following methodology was used to construct the lighting models for each object. Seventy
images were taken of each object under different lighting conditions. The dominant lighting in
each image was from a small area source (floodlight) at a distance of about six feet. (See [14] for
details.) This light could be moved along the surface of a sphere whose center was the object and
whose North Pole was directly above the object. The light was moved along the sphere’s lines of
latitude and longitude in 15 degree intervals such that the lighting direction varied over the entire
right front side of the object. These images formed the dense training set. The sparse training set
was a subset of 20 images from the dense set. The lighting for the images of the sparse set varied
in 30 degree intervals.

Two eigenimage models were constructed for each object by calculating the eigenvalues and
eigenvectors of the autocorrelation matrix on the sparse and the dense data sets. (Tests were also
run with the mean images subtracted but little change was noticed). Additional images of the
objects were taken under ambient lighting conditions. These images were used to evaluate the
models’ ability to reconstruct novel images which were not in the training sets. In addition, when
the sparse data alone was used, the remaining images of the dense set were used to test the sparse
model.

The eigenvectors are of form shown in figure (4). The first three eigenvectors appear to cor-
respond to the face illuminated from three orthogonal lighting conditions. The first three eigen-
vectors of many objects shared this property so we informally named it the orthogonal lighting
conjecture. Mathematical analysis, see subsection (2.4) and the Appendix, suggests that this
conjecture depends on the symmetry of the object being viewed and will not hold in general.

Figure 4: The eigenvectors calculated from the sparse set for the human face. Note that the
images were only lit from the right so the eigenvectors are not perfectly symmetric. Observe also
that the first three eigenvectors appear to be images of the face illuminated from three orthogonal
lighting conditions in agreement with the orthogonal lighting conjecture.

The quality of the eigenimage models was measured by using a goodness of fit criterion. This
is a measure of the difference between the image and its projection onto the space of eigenimages.
More precisely, for an object o we construct the eigenvectors eo

i (x) of the autocorrelation matrix
indexed by i = 1, ..., n. For a specific image Io(x) of the object we construct its projection Io

p(x)
to be:

Io
p(x) =

n∑

i=1

{
∑

z∈Ω

Io(z)eo
i (z)}eo

i (x). (10)

We then measured the quality of the projection of the specific image by the goodness of fit
function:

ε(o, Io) = 1 −
∣∣|Io(x) − Io

p(x)
∣∣ |2

||Io(x)| |2 , (11)

where the norm ||I(x)| |2 =
∑

x∈Ω{I(x)}2. Observe that the goodness of fit ranges from one (if
the image and its projection are identical) to zero (if the image is infinitely different from its
projection). We emphasize that this goodness of fit criterion does not necessarily account for

8

Figure 3: Left Five panels: First five Eigenfaces. Right four panels from left to right: (i) original image, (ii)
reconstruction using first three eigenvectors, (iii) reconstruction using first five eigenvectors, (iv) residual –
the difference between the first and third panel. Observe that the errors are in ”variable” parts of the image
– e.g., strands of hair, shadows near the eyes and under the nose.

This analysis shows that the first five eigenvectors typically contain 90 percent of the energy (sum of all

the eigenvalues), see figure (2). This plots
∑n
i=1 λi/(

∑N
i=1 λi) as a function of n where N is the total number

of eigenvalues.
The eigenvalues correspond (roughly) to images of the object lit from different directions, see figure (3).

We can project the original image onto the eigenbasis to determines its best reconstruction and see which
parts of the image are not described by the model, see figure (3).

Analysis by Basri and Jacobs and by Hanrahan and Ramamoothi gives a better fit to the data and
explains why five components are needed for convex objects illuminated from light sources in the front.

4 Singular Value Decomposition (SVD)

To test the Lambertian model more for realistic objects we can try to estimate the albedo and shape from a
set of images of the same object taken under different lighting conditions. We first make a change of notation

and set ~b(~x) = a(~x)~n(~x) (we recover a(~x) = |~b(~x)| and ~n(~x) =
~b(~x)
a(~x) ).

We can formulate this by a Gibbs distribution P (~b|I) = (1/Z) exp{−E[~b]}, where:

E[~b] =

N∑

µ=1

∑

~x

(Iµ(~x)−~b(~x) · ~sµ)2. (3)

This can be solved (up to an ambiguity described later) by linear algebra. Change notation so that

J = {Jpµ} is an M × N matrix (replacing ~x by p). Similarly replace ~b(~x) by a matrix B = {Bpi} and

S = {Siµ} (i = 1, 2, 3 labels the component of the vectors ~b and ~s). Then the goal is to minimize the energy
function:

E[B,S] =
∑

up

{Jµp −
3∑

i=1

BpiSiµ}2. (4)

The solution is obtained by decomposing J using SVD:

J = UDV T , s.t. UUT = I, V V T = I, D diagonal. (5)
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Note that JJT = UDV TV DUT = UD2UT and JTJ = V D2V T . It follows that the columns of U and
V are the eigenvectors of JJT and JTJ respectively with eigenvalues being the diagonal elements of D2 (D
is diagonal so D2 is also).

Let ek(p) : k = 1, 2, 3 and fk(µ) : k = 1, 2, 3 be the first three columns of U and V respectively. Then the
solutions are given by:

Bpi =

3∑

k=1

Pikek(p), Siµ =

3∑

k=1

Qikfk(µ),

3∑

k=1

PkiQkj = Diiδij i = 1, 2, 3. (6)

This result depends only on the first three elements of the diagonal matrix D. If we substitute this result
back into the energy we obtain the result

∑N
i=4D

2
ii. Hence this sum helps validate whether the images really

do lie on a three-dimensional bilinear space. If they do, then
∑N
i=4D

2
ii = 0.

The solution given by equation (6) only estimates the variables – lighting, albedo and surface normal
up to an ambiguity. This is because the matrices P and Q are only specified up to an arbitrary invertible
matrix A – we can send P 7→ ATP and Q 7→ A−1Q and PTQ 7→ PTAA−1Q = PTQ.

This ambiguity has nothing to do with the SVD approach. Instead it is inherent in the lambertian lighting
model, even if we model shadows, as we will now describe.

5 Ambiguity in Lambertian Models

We now describe an invariant inherent in the Lambertian lighting model. This invariance occurs even if we
include both cast and attached shadows. It relates, as we will discuss, to the ambiguity of viewing objects
from different viewpoints.

Formulate the imaging equation as:

I(~x) =
∑

µ

max{~b(~x) · ~sµ, 0}. (7)

Observe that ~b · ~sµ is invariant to the transformation ~b 7→ AT~b, ~sµ 7→ A−1~sµ (where A is any invertible

matrix). This suggests that we can only estimate ~b(~x) up to the group of transformations A which are
invertible. But there is a constraint which reduces the ambiguity because the surface normal ~n = (n1, n2, n3)
must satisfy the surface consistency constraint. Any surface must obey the – apparently trivial – constraint
that if you travel in a closed loop on the surface you end up with the same height that you started with
(FIGURE!!). In differential form, this corresponds to the integrability condition:

∂

∂x

n2
n3

=
∂

∂y

n1
n3
. (8)

This can be obtained by the following argument. Represent the surface as (x, y, z(x, y)). By taking
derivatives wrt x and y, we see that the vectors (1, 0, zx) and (0, 1, zy) must be tangent to the surface
(zx, zy are the derivatives wrt x and y respectively). Hence the surface normal ~n can be obtained as the
(normalized) cross product: ~n = 1

(1+z2x+z
2
y)

1/2 (−zx,−zy, 1). It follows that n1/n3 = −zx and n2/n3 = −zy
and the integrability condition follows from the identity zxy = zyx.

The integrability condition is not consistent with the subgroup of invertible linear transformations. But
it is consistent with a subgroup of three-dimensional linear transformations given by:

b1(x) 7→ λb1(x) + αb3(x)

b2(x) 7→ λb2(x) + βb3(x)

b3(x) 7→ τb3(x) (9)

To get better understanding, it can be shown that this corresponds to a transformation on the surface
of form:
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(a) (b)

Figure 4: Left Panel: the correct reconstruction of a face. Right panel: a GBR transformation of a face.

z(x, y) 7→ λz(x, y) + µx+ νy. (10)

Here the first term λz(x, y) is a bas relief transformation and is known to sculptures (to save material
by making sculptures with small changes in z(x, y)) and to Koenderink (see later). The other two terms
correspond to adding a plane. The whole effect is called the Generalized Bas Relief ambiguity, see figure (4).
It can be shown that cast shadows are also invariant to this transformation, see figure (5. (DETAILS).

This analysis has been extended to perspective projection (Belhumeur and Kriegman).

6 Resolving the Ambiguity

Shape from shading methods typically assume that the albedo is constant and the light source is known.
This is often sufficient to yield a unique solution (see Oliensis).

Other ways make strong assumptions about the geometry of the object being viewed. For example, Atick
developed a shape from shading method for faces which made use of a prior on the surface shade of faces –
eigenheads, doing principal component analysis on three-dimensional depth maps of faces.

Other ways to resolve these ambiguities are to make assumptions about the light source directions or the
albedo properties (for example, that albedo is piecewise smooth).

It is known that humans do not always estimate shape from shading correctly. Make-up can alter the
albedo of a face and makes its shape appear different – for example, by enhancing cheek bones. More
rigourous studies have been performed (Bulthoff, Koenderink, others) which show that there are biases in
the perception of shape. In particular, Koenderink shows biases similar to the bas relief ambiguity (which
relates to his theoretical studies on shape ambiguity).

7 Geometric and Lighting Invariances

First consider geometry alone.
Suppose we have a set of points {~ri} in three-dimensional space. If we transform then by an affine

transformation ~ri 7→ A~ri + ~a (where A is an invertible matrix and ~a is a vector). Then their orthographic
projection onto any two-dimension image plane is transformed by a two-dimensional affine transformation.

An affine transformation is a good approximation to the nonlinear perspective transformation (sometimes
called weak perspective). This is only valid for a limited range of the parameters of the affine transform, but
we ignore this for now.

Now consider the geometry and the lighting. This leads to the KGBR tranformation where the shape of
the object is transformed by an affine transformation and the albedo of the object is changed similarly.

It can then be shown that for two objects related by a KGBR we can always find corresponding viewpoints
and lighting so that the objects look identical. (Where orthographic projections related by two-dimensional
affine transformations are considered to be identical).

The GBR transformation is obtained as a special case of KGBR. Where we make the additional require-
ments that the two object must appear to be the same for the same viewpoint (but different lighting for
each object).
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Fig. 1. Left panel: convex versus concave ambiguity. A con-
vex object lit from above looks like a convex object lit from below.
Right panel: the bas-relief ambiguity. The perception of shape
is relatively insensitive to a linear scaling in the viewing direc-
tion.

OF COPY

Fig. 2. Cube viewed from direction (0.51, 0.63, 0.58) (far-left
panel) and the same cube undergoing affine transformations (re-
maining panels) seen from the same viewpoint.

Figure 5: KGBR1

PY [A-Fig. 3. If the lighting conditions are unknown, then it is impos-
sible to distinguish between two objects related by a GBR
transform.5 For any image of the first object, under one illumi-
nation condition, we can always find a corresponding illumina-
tion condition that makes the second object appear identical (i.e.,
we can generate an identical image). We show two objects un-
der three different, but corresponding, lighting conditions.
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sider viewpoint projection and prove that there is a joint
viewpoint–lighting ambiguity on the images of objects.
In Section 4 we derive the GBR as a special case of the
KGBR and give a general decomposition of the KGBR in
terms of elementary transformations. In Section 5 we
give examples of the KGBR. In Section 6 we describe the
implications of the KGBR for structure from motion and
structure from viewpoint.

2. KGBR ON SURFACES OF OBJECTS
In this section, we define the KGBR transform on the sur-
face and albedo of objects together with the corresponding
transform on the lighting. For objects with Lambertian
reflectance functions, the image intensity at a fixed point
on the surface is independent of the direction of the
viewer. This feature enables us to study the shading and
shadows as if they were painted onto the surface. In Sec-
tion 3 we will see what this implies about the projection of
the object to different viewpoints.

Let the object have surface position r 5 r(u, v), sur-
face normal n(u, v), and albedo a(u, v) as functions of
intrinsic coordinates (u, v) defined on the surface; see
Fig. 4. We assume m light-source vectors $s1 ,..., sm%.

Definition 1. A KGBR transform K transforms
$r(u, v),n(u, v),a(u, v),s1 ,..., sm ,v% to $r̂(u, v),
n̂(u, v),â(u, v), ŝ1 ,..., ŝm ,v̂%, where

r̂~u, v ! 5 Kr~u, v !, n̂~u, v ! 5
K21,Tn~u, v !

uK21,Tn~u, v !u
,

(1)

â~u, v ! 5 a~u, v !uK(
j51

M

SjuuK21,Tn~u, v !u, (2)

ŝi 5
1

uK(
j51

m

Sju

Ksi • i 5 1 ,..., m. (3)

The matrix K of the KGBR can take any form. It gives
an affine transformation on the three-dimensional surface
that can involve squashing, skewing, or rotating the sur-
face (or any combination of these operations). The form
of n̂(u, v) in Eq. (2) is derived directly from the transfor-
mation on the surface shape r(u, v) [recall that n̂(u, v)
must be orthogonal to the surface tangent vectors
r̂u(u, v) and r̂v(u, v) that transform by the KGBR]. The
normalization factor uK( j51

m sju for transforming the light
sources [see Eq. (2)] is chosen to ensure that the total
lighting S j51

m ŝj has unit magnitude.
The definition of the KGBR transform is motivated by

the following result.
Theorem 1. If two objects and their lighting are re-

lated by a KGBR, then their shading and shadows are
preserved as functions of the surface coordinates (u, v).
The shading is given by a Lambertian model I(u, v)
5 S j51

m max$a(u, v)n(u, v) • sj,0% with cast shadows re-
moved; see Fig. 5.

Proof. From Eqs. (1)–(3), we obtain

Fig. 1. Left panel: convex versus concave ambiguity. A con-
vex object lit from above looks like a convex object lit from below.
Right panel: the bas-relief ambiguity. The perception of shape
is relatively insensitive to a linear scaling in the viewing direc-
tion.

Fig. 2. Cube viewed from direction (0.51, 0.63, 0.58) (far-left
panel) and the same cube undergoing affine transformations (re-
maining panels) seen from the same viewpoint.

Fig. 3. If the lighting conditions are unknown, then it is impos-
sible to distinguish between two objects related by a GBR
transform.5 For any image of the first object, under one illumi-
nation condition, we can always find a corresponding illumina-
tion condition that makes the second object appear identical (i.e.,
we can generate an identical image). We show two objects un-
der three different, but corresponding, lighting conditions.

Fig. 4. We define intrinsic coordinates (u, v) on the surface of
the object.

Fig. 5. The cast shadow boundaries, and hence the cast shad-
ows, are preserved by the KGBR. Similar results were shown
for the GBR.5
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Figure 6: KGBR2
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SVD can also be applied to estimating the three-dimensional shape (Kontsevich and Kontsevich, Tomasi
and Kanade).
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