
Lecture 6

A.L. Yuille

February 5, 2012

Introduction

This lecture first describes exponential distributions and their relation to sufficient statistics and the maxi-
mum entropy principle. Secondly, we describe maximum likelihood for estimating the model parameters and
show that for exponential distributions this is a convex minimization problem which corresponds to finding
the parameter values such that the expected value of the statistics is equal to their observed values. Thirdly,
we describe algorithms for performing maximum likelihood learning. Fourthly, we illustrate this for models
using image statistics and show that MRF models can be learnt from image statistics. Fifthly, we describe
how to use model selection to search through a set of different models which use different statistics.

1 Exponential Distributions

Almost all distributions (e.g. Gaussian, Poisson, etc.,) can be expressed as exponential models of form:

P (~x|~λ) =
1

Z[~λ]
exp{~λ · ~φ(~x)}, (1)

where ~φ(~x) denotes the statistics and ~λ the parameters. The normalization term Z[~λ] =
∑
~x exp{~λ · ~φ(~x)}

(replace
∑

by
∫

if ~x is continuous valued).

For example, the Gaussian distribution in one-dimensions has statistics ~φ(x) = (x, x2). This gives a

distribution P (x|~λ) = 1

Z[~λ]
exp{λ1x+λ2x

2}. This relates to the usual formulation 1√
2πσ

exp{−(x−µ)2/(2σ2)}

by the relations λ1 = µ/σ2, λ2 = −(1/2)σ2, and Z[~λ] =
√

2πσ exp{µ2/(2σ2)}.
The ~φ(~x) are the sufficient statistics. They are all you know about the data. If you have data (~x1, ..., ~xn),

then you only store samples (1/n)
∑n
i=1

~φ(~xi) – (e.g. for a Gaussian (1/n)(
∑n
i=1 xi,

∑n
i=1 x

2
i)).

Another way to obtain exponential distributions is by using the maximum entropy principle (Jaynes).
Recall that the entropy of a distribution P (~x) is H(P) = −

∑
~x P (~x) logP (~x) (for discrete distributions)

or
∫
d~xP (~x) logP (~x) (the differential entropy for continuous distributions). By Shannon’s definition, the

entropy is the amount of information you obtain from a sample ~x from the distribution. In the discrete case,
the distribution with maximum entropy is the uniform distribution P (~x) = 1/N , where N is the number of
possible states ~x. Hence a considerable amount of information is obtained from a sample (because we do not
know in advance what the sample will be). By contrast, the distribution with minimum entropy is of form
P (~x0) = 1 for one value ~x0 and P (~x) = 0 for ~x 6= ~x0. It has entropy 0 since no information is obtained by
sampling from P (~x) because we know the result must be ~x0.

The maximum entropy principle proposes that you select the distribution P (~x) whose expected statistics∑
~x P (~x) take a fixed value ~ψ. This selects the distribution P (~x) that maximizes:

−
∑
~x

P (~x) logP (~x) + µ{
∑
~x

P (~x)~φ(~x)− 1}+ ~λ · {
∑
~x

P (~x)~φ(~x)− ~ψ}. (2)

1

Here µ and ~λ are lagrange multipliers used to impose the normalization and expected statistics constraints.
This can be maximized to yield:

P (~x) =
1

Z[~λ]
exp{~λ · ~φ(~x)}, (3)

where the parameter ~λ is chosen so that
∑
~x P (~x)~φ(~x) = ~ψ.

2 Maximum Likelihood

Suppose we have a set of independent, identically, distributed (i.i.d.) data D = (~x1, ..., ~xn). Maximum

likelihood estimates the parameters ~λ by maximizing the probability of the data:

P (D|~λ) =

n∏
i=1

P (~xi|~λ). (4)

This can be re-expressed as estimating ~λ by

~λ∗ = arg min
~λ

n∑
i=1

logP (~xi|~λ). (5)

Note: the standard maximum likelihood (ML) derivation assumes that the data is really generated by

the distribution P (~x|~λ) for some value of ~λ. But there is no guarantee that the data is really generated by
this model. Instead we can derive the distribution of the data PD(~x) = 1

n

∑n
i=1 δ(~x− ~xi). Then the ML can

be derived to minimize the Kullback-Leibler divergence
∑
~x PD(~x) log PD(~x)

P (~x|~λ)
between the data distribution

PD(.) and the model P (., .). This justifies ML as a way to find the best approximation of the data of form

P (~x|~λ). Amari’s information geometry gives a nice extension of these ideas.
The ML condition for exponential distribution reduces to minimizing the function:

F (~λ) = −
n∑
i=1

~λ · ~φ(~x) + n logZ[~λ]. (6)

This is a convex function of ~λ (because the Hessian ∂2

∂~λ2
logZ[~λ] is positive semi-definite – as can be

shown using the Cauchy-Schwartz inequality).

The first derivative of logZ[~λ] is the expected value of the statistics ~φ(.):

∂

∂~λ
logZ[~λ] =

∑
~x

~φ(~x)P (~x|~λ), . (7)

Hence the minimum of F (~λ) occurs at the value of ~λ such that the expected statistics of the model are equal
to the statistics of the data:

∑
~x

~φ(~x)P (~x|~λ) =
1

n

n∑
i=1

~φ(~xi). (8)

where we replace
∑
~x by

∫
d~x if ~x is a continuous variable.

For many well-known distributions – like Gaussian and Poisson – the solution ~λ∗ can be computed
analytically. This is because the expected statistics of the models can be computed analytically (i.e. we can
compute the summation/integration of the terms on the left hand side of equation (??)). For example, for

a one-dimensional Gaussian with ~φ(x) = (x, x2) we compute
∫
dx~φ(x)P (x|µ, σ) = (µ, µ2 + σ2). Equating

this with the data statistics 1/n(
∑n
i=1 xi,

∑n
i=1 x

2
i) yields the standard estimates µ̂ = 1/n

∑n
i=1 xi and

σ̂2 = 1/n
∑n
i=1(xi − µ̂)2.

2

But for other distributions, and in particular, Markov Random Fields (MRFs), it is impossible to compute
the expectation of the statistics analytically and hence we cannot solve equation (8) directly. Instead we
need learning algorithms which we will describe in the next section.

3 Algorithms for Learning by Maximum Likelihood

The solution to ML is obtained by minimizing the convex function F (~λ). We describe two algorithms for
doing this. Unfortunately both algorithms require an inner loop which computes the expectation of the
statistics ~φ(~x) which can be problematic. We summarize the data statistics by ~ψ = 1

n

∑n
i=1

~φ(~xi).

First, we can perform steepest descent on F (~λ), using equation (7) to compute the derivative of F (.).
This gives update equations:

~λt+1 = ~λt −∆{
∑
~x

~φ(~x)P (~x|~λt)− ~ψ}. (9)

Secondly, we can generalized iterative scaling (GIS), to obtain discrete iterative update equations (these
can be re-derived from CCCP) which give update equations:

~λt+1 = ~λt − log
∑
~x

~φ(~x)P (~x|~λt) + log ~ψ. (10)

Here we use the convention that the logarithm of a vector is the vector of the logarithm of the components
– i.e. log ~ψ = (logψ1, ..., logψm) where ~ψ = (ψ1, ..., ψm).

The update equations for steepest descent and GIS are very similar. Both update the parameters ~λ
by terms which depend on the difference between the data statistics ~ψ and the current model estimates∑
~x
~φ(~x)P (~x|~λt) and will converge to solutions of the ML equations in equation (8). The main difference is

that GIS uses logarithms and does not require selecting a step size ∆.
But the difficulties of both algorithms – equations (9,10) – is that they require computing the expectation

of the statistics –
∑
~x
~φ(~x)P (~x|~λt). This cannot be done analytically (except for special cases like Gaussians)

and requires an inner loop to compute it. But, even more seriously, for many distributions there are no known
algorithms which can compute the expectation in polynomial time. This relates to the difficulty of doing
inference for Markov Random Field (MRF) models – see previous lecture. Similarly, we can use approximate
methods – variational/mean field theory, MCMC, belief propagation – to compute approximations to the
expectations. If the probability models can be expressed in terms of distributions on graphs without closed
loops then we can use dynamic programming to perform this (as will be discussed in later lectures).

These results show that there are close relations between learning and inference. By inference we mean
estimating ~x∗ = arg max~x P (~x|~λ) = arg max~x ~λ · ~x (note: other authors use the word ”inference” in a more
general sense). Learning requires using the updates rules for steepest descent or GIS together with the inner

loop which computes
∑
~x
~φ(~x)P (~x|~λ). Hence in both cases we either have to sum/integrate or maximize

quantities which are functions of ~x. (Note: say that some machine learning algorithms reduce to doing
maximization and not summation).

4 Learning MRFs: Weak Membranes and Image Derivative Statis-
tics

Now we give an example by applying Maximum Likelihood to learn probability models of images. This
requires selecting image statistics for the model (the next section discusses we can select between different
statistics and how to combine them).

What statistics to use for images? First consider a real simple model that compute the histograms of
the intensities of each pixels. This gives statistics h(~x; z) = 1

n

∑n
i=1 δ(xi − z) for an image ~x = (x1, ..., xn).

This relates to the notation in our chapter by setting ~h(~x) to be a 256-dimensional vector with components

3

h(~x; z), where z takes values in {0, 1, ..., 255} (i.e. the set of possible intensity values). This corresponds to
an exponential distribution:

P (~x|~λ) = (1/Z(~λ)) exp{~λ · ~h(~x)}, P (~x|~λ) = (1/Z(~λ)) exp{
255∑
z=0

λ(z)
1

n

n∑
i=1

δ(xi − z)}, P (~x|~λ) = (1/Z(~λ)) exp{
n∑
i=1

(1/n)λ(xi)},

P (~x|~λ) =

n∏
i=1

P (xi|~λ) with P (xi|~λ) =
1

Zi(~λ)
exp{(1/n)λ(xi)} with Zi(~λ) =

255∑
xi=0

exp{(1/n)λ(xi)}. (11)

Note that the form of the statistics – histograms of the intensities for the image – leads to a probability
distribution which is factorized so that the intensity at each pixel is generated independently.

We train the model on a set of images {~xµ : µ ∈ Λ}. We compute the data statistics to be ĥ(z) =
(1/|Λ|)

∑
µ∈Λ h(~xµ, z). Then ML estimation reduces to solving the equivalent equations:

∑
~x

P (~x|~λ)h(~x(z) = ĥ(z) ∀ z, P (xi) = ĥ(xi). (12)

For these statistics the ML problem reduces to using a factorized probability model P (~x) =
∏n
i=1 P (xi)

and learning the components p(xi) directly from the data statistics. But this is an unrepresentative case.
Moreover, the histograms of image intensities differs a lot between different images, so there are not likely
to yield a good model for images.

Now, instead let us consider the statistics of the image differences – Ii− Ij where i and j are neighboring
pixels. These correspond to the statistics of the first order derivatives of the images (after discretization).
It has been shown (references) that these statistics of the derivatives are remarkably similar between images
and hence are capturing information about the nature of images.

We do this in one-dimensions to simplify the analysis. In this case the histograms of first-order deriva-
tives/differences are represented as follows:

h(~x; z) =
1

n

n∑
i=1

δxi+1−xi,z, (13)

where δa,b is the delta function (i.e., δa,b = 1, if a = b and δa,b = 0, if a 6= b). (Note: this represents every
possible value for the difference from −255 to 255 – in practice we use a smaller number of coarse bins).

The distribution is given by:

P (~x|λ) =
1

Z[λ]
exp{

∑
z

λ(z)h(~x; z)},

=
1

Z[λ]
exp{

∑
z

n∑
i=1

(1/n)λ(z)δxi+1−xi,z},

=
1

Z[λ]
exp{(1/n)

n∑
i=1

λ(xi+1 − xi)}. (14)

This derivative shows that the choice of statistics – the histogram of the first order derivatives/differences
– leads to a Markov Random Field distribution. The size of the neighborhood for the statistics determines
the neighborhood for the MRF. See graph figures. Observe that using the histogram of the statistics of the
second order derivative d2/dx2 would give a model with interactions to pairs of neighbors. Hence the graph
representation of the distribution is determined by the statistics.

To determine the value of the potentials ~λ(.) we have to observe the statistics of the training image

dataset h(z) and solve for ~λ∗ so that
∑
~x h(~x; z)P (~x|~λ∗) = h(z). This cannot be done analytically (unlike

4

Figure 1: Left Panel: the typically histogram observed for derivative filters. Right panel: the corresponding
potential obtained by maximum likelihood learning.

the previous example). Instead we must follow the procedure defined in the previous section. This requires
taking expectations of the statistics – in this simple example we can use dynamic programming to exploit
the one-dimensional structure and compute the expectations in polynomial time. If we extend the model to
a two-dimensional image then we can use MCMC or some of the approximate algorithms (Zhu and Mumford
used MCMC to perform this.).

What values of ~λ do we expect to get? Note that the statistics of the image derivatives show that images
are locally smooth (have low derivatives) but can have large discontinuities. These, of course, are the same
reasons used to justify the weak smoothness models (Mumford and Shah, Rudin, Osher, and Fatemi, Geman
and Geman, Blake and Zisserman). Hence we expect that learning will yield a type of weak smoothness
model.

This is what the learning gives. It outputs a potential function ~λ (with a sign change) which takes small
values if |Ii − Ii+1| is small and which reaches an asymptotic limit for larger |Ii − Ii+1|. This is consistent
with a model like Mumford-Shah (also Geman and Geman/ Blake and Zisserman) which attempts to smooth
small fluctuations in the image gradient but which puts in breaks/edges if the edge gradient becomes too
large. See figure (1).

Small point: advanced topic. For this example, there is a simple approximate (Coughlan and Yuille)
which can be used to determine an analytic form for the potentials λ(.) in terms of the observed statistics
h(.). This approximation requires that the distribution of derivative filters at different pixels in the image
are independent, when the distribution of the image is independent random noise (per pixel). This is only
an approximation (because even for random noise images there is some dependence of the derivatives at

neighboring pixels in the image). Assuming this approximation, it can be shown that λ(z) = log h(z)
a(z) where

a(z) is the histogram of the derivative filter responses on random noise images.
At first sight, this argument seems to validate the weak membrane model by showing that it corresponds

to the statistics of natural images. But this assumes that we only care about the first order derivative
statistics of images. Several authors have shown that the statistics of higher order derivatives on images also
have similar histograms which are also similar from image to image (Lee and Mumford, Green). Hence the
weak membrane model is ignoring these higher order statistics and so is far too local a model.

5 Selecting Features: Sparsity and Model Selection

Note: not covered in lectures due to time constraints.
What if we do not know the features φ(x)? One strategy is to specify a dictionary of features {~φa(.) :

a ∈ A} and assign parameters {~λa} to all of them:

P (~x|{~λa}) =
1

Z[{~λa}]
exp{

∑
a

~λa · ~φa(~x)}. (15)

We can put a sparsity prior on the parameters P ({~λa}) = 1
Z exp{−K

∑
a |~λa|}.

5

Then we perform Maximum a Posteriori (MAP) estimation – estimate {~λa} from P ({~λa}|D) ∝ P (D|{~λa})
where D = {~xµ} is the training data. The sparsity prior will encourage many of the ~λa to be zero. This
means that the many of the features will not be used. Hence sparsity allows us to select which features to
use as well as to weight (i.e. assign non-zero ~λa) to those that we do select. (A similar strategy relates to
the AdaBoost learning algorithm, as we will discuss in a later lecture).

But this strategy becomes extremely computationally demanding if the number of features in the dic-
tionary is large. An alternative related strategy is more greedy (Della Pietra et al, Zhu et al) and involves
selecting features to use in order. This requires some knowledge of model selection.

Consider two models: P1(~x|~λ1) = 1

Z[~λ1]
exp{~λ1 · ~φ1(~x)} and P2(~x|~λ2) = 1

Z[~λ2]
exp{~λ2 · ~φ2(~x)}.

For each model we can estimate the best values of the parameters~̂λ1 ,̂~λ2 by performing ML estimation
from the data D = {~xµ}. We can then compute P1(D|̂~λ1) and P2(D|̂~λ2) – recall that these relate to the
entropies of these models (previous lectures).

One form of model selection is to select the model for which Pi(D|̂~λi) is largest – i.e. which has highest
probability of generating the data, or equivalently, which has lowest entropy for the data (and hence describes
it better). This method may need to be augmented by a penalty term in case one model has more parameters
than the other (e.g., criteria like AIC and BIC). Arguable a letter method of model selection to to put

priors P1(~λ1), P2(~λ2) on the ~λ parameters and then compare P1(D) =
∑
~λ1
P1(~λ1)P1(D|̂~λ1) with P2(D) =∑

~λ2
P2(~λ2)P2(D|̂~λ2). It can be shown (see Mackay) that this automatically gives an ”Occam factor” which

automatically corrects for the complexity of the models. The intuition is that the probability of all datasets
must sum to one for each model – i.e.

∑
D P1(D) = 1. Hence if a model has many free parameters (hence has

high complexity) it can fit many datasets and some must assign some probability to each of them, thereby
preventing it from assigning a high probability to any particular dataset. But a model with a smaller number
of parameters will typically only have good fits to a smaller number of datasets, and hence can assign higher
probabilities to them. Hence this form of model selection favors models which are specific to the dataset.
(Note: the complexity of the model is complex – it doesn’t simply correspond to the number of free parameters

of the model, e.g., the dimension of the vector ~λ1). In practice, however, summing/integrating over the model

parameters ~λ is often impractical– in some case, it can be approximated using methods like Laplace, which
gives a factor for penalizing the model.

Using model selection we can select between a large number of models each of which uses a single
features from the dictionary. This gives a model with statistic ~φa1(~x) with parameter ~λa1(~x). Next we

grow the model by adding an extra feature ~φi(~x)) – giving a new class of models of form P (~x|~λa1, ~λi) =

1/Z[~λa1, ~λi] exp{~λa1 · ~φa1(~x) +~λi · ~φi(~x)}. For each i we estimate the best value of the parameter ~λi (keeping

the first set ~λa1 fixed). We perform model selection to select the best feature as before. We proceed to add
new features in this greedy manner.

This form of feature pursuit was first developed by Delle Pietra et al. for non-vision applications. Zhu,
Wu, and Mumford applied it to vision and called it minimax entropy. This uses the maximum entropy
principle to obtain exponential models from the statistics. It uses the minimal entropy principle to perform

model selection (recall that the probability of the data P (D|~̂λ) relates to the entropy of the distribution –
selecting the model with highest probability of generating the data is equivalent to selecting the model with
lowest entropy).

6

