
Lecture 8

A.L. Yuille

February 12, 2012

1 Introduction

This lecture describes learning with hidden variables. The standard approach is the Expectation Maximiza-
tion (EM) algorithm. This involves computations which can be very difficult to do. We describe dynamic
programming which can be used to perform these computations in polynomial time. The next lecture de-
scribes hidden markov models which can be seen as a special case of this approach (although they were
developed earlier). Another example, is learning probabilistic context free grammars.

1.1 Free Energy and the Expectation Maximization (EM) algorithm

Suppose we have a parameterized distribution P (~x,~h|~λ) where ~x is observed, ~h are the hidden states, and ~λ

are the model parameters (to be learnt). Given training data {~xµ} we should sum out the hidden states ~h

to obtain P (~xµ|~λ) =
∑
~h P (~x,~h|~λ) and estimate ~λ by maximum likelihood (ML) by computing:

~λ∗ = arg max
~λ

∏
µ

P (~xµ|~λ). (1)

But usually it is impractical to compute P (~xµ|~λ) from P (~x,~h|~λ). (If we can compute P (~xµ|~λ) and express

it in exponential form then we can learn ~λ by the methods described in earlier lectures).
The standard way to learn with missing/hidden data is the EM algorithm (Dempster et al.). We will

describe this from the free energy formulation (Hinton and Neal, Hathaway) because it is more general than
the standard EM formulation.

The free energy formulation starts by introduction a new variable q(~h) which is a probability distribution

over the hidden variables – hence q(~h) ≥ 0 ∀ ~h and
∑
~h q(

~h) = 1. See figure (1).

Figure 1: The EM algorithm minimizes the free energy with respect to each variable in turn (left panel).
But it is only guaranteed to converge to a local minimum (right panel).

1

Instead we can apply the EM algorithm to minimize (local minima) a free energy:

F ({qµ}, ~λ) = − logP (~x|~λ) +
∑
~h

q(~h) log
q(~h)

P (~h|~x,~λ)
,

F ({qµ}, ~λ) =
∑
µ

∑
~hµ

qµ(~hµ) log qµ(~hµ)−
∑
µ

∑
~hµ

qµ(~hµ) logP (~xµ,~h
µ|~λ). (2)

The top equation (for one image only) add a Kullback-Leibler (KL) divergence term between q(~h) and

P (~h|~x,~λ). The KL divergence takes its minimal value of 0 where q(~h) = P (~h|~x,~λ). So the global minimum of

F ({qµ}, ~λ) corresponds to setting ~λ∗ = arg min~λ− logP (~x|~λ) and q∗(~h) = P (~h|~x,~λ∗). Hence the minimum of

F ({qµ}, ~λ) yields the maximum likelihood estimation of ~λ – see equation (1). The bottom equation differs in

two respects. Firstly it includes all the data, which requires specifying a distribution qµ(~hµ) for each image.

Secondly, we rearrange the terms using the following manipulations: (i) log q(~h)

P (~h|~x,~λ)
= log q(~h)−logP (~h|~x,~λ),

(ii) − logP (~x|~λ) = −
∑
~h q(

~h) logP (~x|~λ), and (iii) logP (~h|~x,~λ) + logP (~x|~λ) = logP (~x,~h|~λ).

NOTE that we have distributions qµ(.) for the states ~hµ of all training examples, but the parameters ~λ
are common for all examples.

The EM algorithm can be derived by doing coordinate descent on F ({qµ}, ~λ) – i.e. minimizing with
respect to each variable in alternation keeping the other variable fixed. This is guaranteed to decrease the
energy and converge to a local minima of F . It can be shown that F ({qµ}, ~λ) is convex in each variable
separately.

This gives the following two steps – which correspond to the E- and M- steps of the EM algorithm:

E− Step qt+1
µ (~hµ) = P (~hµ|~xµ, ~λt),

M− step ~λt+1 = arg min
∑
µ

∑
~hµ

qt+1
µ (~hµ) logP (~xµ, ~yµ)|~λ). (3)

These update rules take particularly simple, and insightful, forms if the distributions are exponential –
P (~x,~h|~λ) = 1

Z[~λ]
exp{~λ · ~φ(~x,~h)}. In this case, the M-step reduces to the update rule:

(1/N)
∑
µ

∑
~hµ

~φ(~xµ,~hµ) =
∑
~x,~h

~φ(~x,~h)P (~x,~h|~λ). (4)

This matches the statistics of the data (the left hand side) with the expected statistics of the model (right

hand side), except that since we cannot observe the states of the hidden variables {~hµ} instead we take

their expectations with respect to the current estimates {qµ(~hµ)} of the hidden variables. This reduces to
equation for ML if we have no hidden variables (previous lectures) if additional information is provided so

that the states of the hidden variables are known (i.e. the limit where qµ(~hµ) is peaked at the correct values
of the hidden states).

Equation (4) is (almost always) to hard to be solved directly. But, like the case without hidden variables,
it can be expressed in terms of minimizing a convex function:

~λt+1 = arg min{
∑
µ

∑
~hµ

qt+1
µ (~hµ)~λ · ~φ(~xµ,~hµ)−N logZ[~λ], (5)

which can be performed by steepest descent or CCCP. But it does require us to be able to compute the
expectations

∑
~x,~h P (~x,~h|~λ)~φ(~x,~h) and

∑
~h q(

~h)~φ(~x,~h).

The free energy formulation allows us to generalize the basic EM algorithm in two ways: (I) we can
attempt to minimize F by other algorithms which are guaranteed to decrease it (e.g., steepest descent) –

2

in other words, we can replace the E- and M- steps by any updates for qµ(.) and ~λ which decrease F (note
that the EM algorithm can be derived as discrete iterative algorithm and re-expressed as CCCP). (II) We
can restrict the class of probability distributions qµ allowed during the minimization of F (the purpose is to
simply the computations). For example, we could restrict q(.) to be a factorizable model. This relates to
mean field theory/variational methods (described earlier in the course) and has similar motivations.

Note that there are Machine Learning methods – e.g., Latent Support vector machines and multiple
instance learning – which also deal with hidden variables. These methods involve algorithms, like EM,
which estimate the hidden variables and the parameters alternatively. These methods, and relations to
the probabilistic methods described here, are discussed in a handout (Yuille and He) which will be put
up on the web page. (It is possible to re-derive the machine learning methods as computationally simpler
approximations to the probabilistic methods – but this involves introducing loss functions).

2 Computation and EM

The previous section shows that EM requires the following computations.
Firstly, the E-step requires us to compute the conditional distribution P (~h|~x,~λ) from P (~h, ~x|λ). Formally

this is given by P (~h|~x,~λ) = P (~h,~x|λ)∑
~h
P (~h,~x|λ)

. If we use exponential distributions, P (~h, ~x|λ) = 1

Z[~λ]
exp{~λ ·~φ(~x,~h)},

then this requires the ability to compute
∑
~h exp{~φ(~x,~h)}.

Secondly, the M-step requires computing: (i) the expected value of the statistics with respect to q(.):∑
~h q(

~h)~φ(~x,~h), (ii) the expectation
∑
~x,~h

~φ(~x,~h)P (~x,~h|~λ), and (iii) the minimum ~λt+1 = arg min{
∑
µ

∑
~hµ
qt+1
µ (~hµ)~λ·

~φ(~xµ,~hµ)−N logZ[~λ].
These computations are very demanding. Usually no algorithms exist which are guaranteed to perform

them in polynomial time. We have to rely on approximate algorithms such as variational methods, belief
propagation, or sampling techniques like MCMC (e.g., Gibbs sampling or Metropolis-Hastings).

The one exception is if the probability distributions can be expressed in terms of graphical models de-
fined over graphs without closed loops. In this case dynamic programming (DP) can be used to perform
these computations efficiently. DP includes a range of different methods – sometimes called Viterbi, fore-
ward/backward, Baum-Welch. Indeed DP can be thought of as a special case of the general A* class of
algorithms (e.g., see review by Coughlan and Yuille) which also includes Dijkstra’s algorithm. Note that
dynamic programming can be extended to graphs with a limited amount of closed loops by the junction
trees method (Lauritzen Spiegelhalter).

Dynamic programming makes it possible to perform these computations efficiently. All of them re-
quire the ability to either compute a sum or an expectation efficiently. We will describe how DP does
this in the next section. Also we can simply things even further by using dynamic programming to con-
vert a probability distribution defined over an undirected graph (but without closed loops) to a directed

probability distribution – e.g. from P (~x) = (1/Z) exp{
∑N
i=1 φ(xi+1, xi)} to a directed (i.e. conditional

distribution P (~x) = P (x1)
∏N
i=1 P (xi+1|xi). In this case, we can sometimes compute the expectations —∑

~h q(
~h)~φ(~x,~h),

∑
~x,~h

~φ(~x,~h)P (~x,~h|~λ) – analytically (i.e. as a function of ~λ) which makes it possible to per-

form the M-step directly by solving equation (4) (i.e. without needing to solve equation (5) by steepest
descent or GIS), which is illustrated in the next lecture by HMMs.

2.1 Dynamic Programming for Inference

If the underlying graph is a tree (i.e. it has no closed loops), dynamic programming (DP) algorithms can
be used to exploit this structure, see figure (2). The intuition behind DP can be illustrated by planning
the shortest route for a trip from Los Angeles to Boston. To determine the cost of going via Chicago, you
only need to calculate the shortest route from LA to Chicago and then, independently, from Chicago to
Boston. Decomposing the route in this way, and taking into account the linear nature of the trip, gives an
efficient algorithm with convergence rates which are polynomial in the number of nodes and hence are often

3

Figure 2: Examples of Dynamic Programming. Left panel: travelling from the west coast of the USA to the
east coast, where each state x0, ... can take a limited set of values s1, Right panel: picking the shortest
path to travel from the start to the finish.

feasible for computation. Equation (??) is one illustration for how the dynamic programming can exploit
the structure of the problem to simplify the computation.

Dynamic Programming can be used when we can express the graph as a tree structure and hence order
the nodes. But we will only describe a special class of these probability models to give the main ideas.
This distribution P (~x) is defined over variables ~x = (x0, ..., xN) where each xi can take k possible states
xi ∈ S = {s1, ..., sk}. The distribution is of form:

P (~x) =
1

Z
exp{−E(~x)}, where E(~x) =

N−1∑
t=0

φt(xt, xt+1). (6)

The max rule version of dynamic programming computes ~̂x = arg maxP (~x) = arg minE(~x). This is
performed by a forward pass followed by a backward pass. The forward pass defines a function mi(xi) which
is initialized by m1(x1) = min{si:i=1,...,k} φ(x0 = si, x1) and then computed recursively by:

mt(xt) = min
{si:i=1,...,k}

{mt−1(xt+1 = si) + φt(xt−1 = si, xt)}, (7)

We claim that the minimum value of E(~x) is obtained by:

min
~x
E(~x) = min

{si:i=1,...,k}
mN (xn = si). (8)

This is computed inO(k2N) time. This claim can be proved by induction – minxt∈Smt(xt) = minx0,...,xt−1∈S{φ1(x0, x1)+
...+ φt(xt−1, xt)}.

The backwards pass finds the optimal path (knowing the optimal cost). To find the optimal path we trace
backwards. Let N̂ = arg minsi∈SmN (xN = si). Then proceed recursively by x̂t = arg minsi∈S{mt(sxt =

si) + φt+1(xt = si, x̂t+1)} where ties are broken arbitrarily. This gives the solution~̂x = (x̂0, ..., x̂N). The
backward pass is O(Nk) so it is faster than the forward pass.

Dynamic programming can also be used to compute other properties of the distribution P (~x). These in-
clude the normalization constant Z =

∑
~x exp{−E(~x)}, the marginals Pi(xi) =

∑
~x/xi

P (~x), the conditionals

P (xt1 |xt) and P (xt|xt+1), the expectation
∑
~x P (~x)

∑N
t=0 ht(xt, xt+1). Note that the ability to compute the

conditionals means that we can translate the distribution P (~x), which is specified in exponential form, into

a directed distribution P0(x0)
∏N
t=1 P (xt|xt−1) or PN (xN)

∏N
t=1 P (xt−1|xt).

4

These computations are done by the sum rule of dynamic programming. For example, define V1(x1) =∑
si∈S exp{−φ1(x0 = si, x1)}. Then recursively compute:

Vt(xt) =
∑
si∈S

Vt−1(xt−1 = si) exp{−φt(xt−1 = si, xt)}. (9)

This enables us to compute the following quantities efficiently in O(k2N) time: (I) the normalization con-

stant Z =
∑
xn∈S VN (xN). (II) The marginal PN (xN) = VN (xN)

Z . (III) The conditionals Pt(xt|xt+1) =
Vt(xt) exp{−φt+1(xt,xt+1)}∑

xt∈S
Vt(xt) exp{−φt+1(xt,xt+1)} . (IV) The marginals Pt(xt) =

∑
~x/xt

P (~x) =
∑
xN

...
∑
xt+1

P (xt|xt+1)...P (xN−1|xN)P (xN).

This algorithm can be modified – by starting at xN+1 and working backwards – to compute π0(x0) and
the conditionals Pt(xt+1|xt).

In addition, we can compute the expectation
∑
~x P (~x)h(~x) efficiently provided h(~x) has specific forms. For

example, if h(~x) =
∑N
t=0 ht(xt), then we simply modify the DP sum rule to be V t(xt) =

∑
xt+1∈S V t+1(xt+1) exp{−φt+1(xt+1, xt)}ht(xt).

Alternatively, if h(~x) =
∑N−1
t=0 hh(xt, xt+1) then we set V t(xt) =

∑
xt+1∈S V t+1(xt+1) exp{−φt+1(xt+1, xt)}ht(xt, xt+1).

Note that computations for learning can be done more easily of the distributions are expressed in terms of
directed graphs P (~x) = P0(x0)

∏N−1
t=0 Pt(xt+1|xt). This is because we can learn the conditional distributions

P (xt+1|xt) directly – the normalization constant of these is easy to compute.
This can be used to convert an undirected graphical model (provided it is defined on a graph without

closed loops) into a conditional distribution.
What if you do not have a tree structure (i.e., you have closed loops)? There is an approach called

junction trees which shows that you can transform any probability distribution on a graph into a probability
distribution on a tree by enhancing the variables. The basic idea is triangulation (Lauritzen and Spiegel-
halter). But this, while useful, is limited because the resulting trees can be enormous if the original graphs
contain many closed loops.

3 Examples of ML learning

Consider a simple model with P (x1, x2|~λ) = 1
Z[λ] exp{~λ · ~φ(~x)}. Suppose these take states xi ∈ {s1, ..., sM}.

Then the potentials are δx1,saδx2,sb with parameters λa,b for a, b ∈ {s1, ..., sN}. Hence:

P (x1, x2) =
1

Z[λ]
exp{

M∑
a,b=1

λabδx1,saδx2,sb},

where Z[~λ] =
∑
x1,x2

exp{
M∑

a,b=1

λabδx1,saδx2,sb} =

M∑
a,b=1

exp{λab}. (10)

The ML equation (1/N)
∑N
i=1

~φ(xi1, x
i
2) =

∑
(x1,x2)

~φ(x1, x2)P (x1, x2 : ~λ). We can compute the right hand

side by taking ∂

∂~λ
logZ[~λ]. This gives ∂ logZ[~λ]

∂λab
= exp{λab}∑

cd exp{λcd} . The statistics are nab =
∑N
i=1 δx1,saδx2,sb .

This can be solved by setting λcd = log ncd ∀c, d (note there is a scaling ambiguity – ~λ 7→ ~λ+K~e, where K
is any constant and ~e = (1, ..., 1).

5

