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1 Introduction

Previous lecture showed the general method for learning distributions with hidden variables. In this lecture
we make this precise by describing Hidden Markov Models (HMMs). This will involve dynamic programming
and EM.

HMMs were developed for speech processing in the 1970’s but have been used for an enormous range
of other applications including vision, see the handout on watching baseball. They are usually applied to
problems defined over time – HMMs correspond to a graph structure without any closed loops – and cannot
be applied to undirected graphical models (unless they are approximated by directed graphical models).

2 Observable Markov Models

Observable Markov models have the following ingredients. A set of N distinct hidden states {s1, ..., sN}.
Denote the state at time t by qt, where qt = si means the system is in state si at time t.

There is a distribution on the sequence of states. This can be formulated generally as P (qt+1 = sj |qt =
si, qt−1 = sk, ...). In this lecture we assume a first-order Markov model so that:

P (qt+1 = sj |qt = si, qt−1 = sk, ...) = P (qt+1 = sj |qt = si). (1)

I.e., the future is independent of the past except for the proceeding time state. This is illustrated in
figure (1).

A classic example is that s1, ..., sN label a set of N vases. At time t one vase qt is visible and at time
t + 1 it is replaced by another vase qt+1 which is sampled from the distribution P (qt+1|qt). For observable
Markov models that vases are visible. For the hidden markov model, see next section, they are not observed
but instead the vases contain colored balls and we observe balls that are sampled from the vases.

A first-order Markov model is specified by the transition probabilities aij = P (qt+1 = sj |qt = si) which
obey aij ≥ 0, ∀i, j and

∑
j aij = 1, ∀j. Denote these transition probabilities by A. The model also requires

initial probabilities πi = P (q1 = si) with
∑N
i=1 πi = 1. Denoted by π.

For an observable Markov model we can directly observe the states {qt}. An observation sequence
O = Q = {q1, ..., qT }. We can directly compute the probability of this sequence to be:

P (O = Q|A, π) = P (q1)

T∏
t=2

P (qt|qt−1) = πq1aq1q2 ...aqT−1qT . (2)

We can learn the transition and initial probabilities by maximum likelihood (ML) from a set of observation
sequences {Ok : k = 1, ...,K}:

(A∗, π∗) = arg max
(A,π)

K∏
k=1

P (Ok|A, π). (3)
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Figure 1: An example of an observable Markov model

This can be directly computed to give:

π∗
i =

∑K
k=1 I(qk1 = si)

K
,

a∗ij =

∑K
k=1

∑T−1
t=1 I(qkt = si AND qkt+1 = sj)∑K
k=1

∑T−1
t=1 I(qkt = si)

. (4)

Here I(q = s) is the indicator function – I(q = s) = 1 if q = s, I(q = s) = 0 if q 6= s.

3 Hidden Markov Models

Now suppose that the states q are not directly observable. Instead for each state qt ∈ |{s1, ..., sN}) we have
an observable Ot ∈ {v1, ..., vM}. There is an observation probability bj(m) = P (Ot = vm|qt = sj) that
we observe vm if we are in state sj . (For example, the states are ”biased coin” and ”unbiased coin” the
observables are ”heads” or ”tails”. The probability of the observable being ”heads” will depend on which
coin is used).

In terms of the classic example of vases. The qt represents the vase that is visible at time t. The
observable ot is a colored ball that is selected at random from the vase (and replaced in the vase afterwards).
The distribution bj(m) represents the probability of balls of color m being in vase j (

∑
m bj(m) = 1).

A classic example is that s1, ..., sN label a set of N vases. At time t one vase qt is visible and at time
t + 1 it is replaced by another vase qt+1 which is sampled from the distribution P (qt+1|qt). For observable
Markov models that vases are visible. For the hidden markov model, see next section, they are not observed
but instead the vases contain colored balls and we observe balls that are sampled from the vases.

This gives a full model with the following elements:

1. N : Number of states S = {s1, ..., sN}

2. M : Number of observation symbols V = {v1, ..., vM}

3. State transition probabilities: A = {aij}, with aijP (qt+1 = sj |qt = si)
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Figure 2: HMMs and dynamic programming. The graph structures enables us divide the model into two
parts which can be computed independently by dynamic programming.

4. Observation probabilities: B = {bj(m)}, with bj(m) = P (Ot = vm|qt = sj)

5. Initial state probabilities: π = {πi}, with πi = P (qi = si).

There are three basic tasks that we will want HMMs to address:

1. Given a model λ = (A,B, π), evaluate the probability P (O|λ) of a sequence O = (O1, ..., OT ) (so that
we can do model selection – use log-likelihood test to estimate whether a sequence of coin tosses it
more likely to come from a fair coin or a biased coin).

2. Given a model λ and observation sequence O = (O1, ..., OT ), find the most probable states Q =
{q1, q2, ..., qT } which has the highest probability of generating O: Q∗ = arg maxQ P (Q|O, λ).

3. Given a training set of sequences X = {Ok : k = 1, ...,K} find the best values of the model parameters
λ∗ = arg maxλ P (X|λ).

Observe that we specify the distribution P (O,Q|λ) = P (O|Q,B)P (Q|A, π), where P (O|Q,B) =
∏T
t=1 P (Ot =

vm|qt = sj) =
∏T
t=1 bj(m) and P (Q|A, π) = P (q1|si)

∏T−1
t=1 P (qt+1 = sj |qt = sk) = πq1

∏T−1
t=1 aqtqt+1

.

This can also be expressed as exponential distribution with hidden variables – i.e., of the form P (O,Q|~λ) =

(1/Z[~λ]) exp{~λ · ~φ(O,Q)} where O is observed and Q is hidden. This requires an EM algorithm to solve for
~λ in order to learn the parameters ~λ from training data {Ok : k = 1, ...,K} (see last lecture). The statistics
φ(qt, qt+) for the prior model P (Q) are the indicators variables I(qkt = si AND qkt+1 = sj) (hence there are
parameters λij for 1, j = 1, ..., N . The statistics φ(qt, ot) for the likelihood term are the indicator variables
I(qt = si AND ot = vm).

The graphical structure of an HMM is illustrated in figure (2) which does not contain any closed loops
and so enables us to use dynamic programming for all three tasks.
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4 Task 1: Evaluation

We want to evaluate P (O|λ) and can express this as:

P (O|λ) =
∑
Q

P (O,Q|λ) =
∑
Q

πq1bq1(O1)aq1q2bq2(O2)bq2(O2)...aqT−1qT bqT (OT ). (5)

The problem is that Q has an exponential number of states NT . Summing over this is impractical in
general. Fortunately the form of the HMM makes this possible in polynomial time.

Define the forward variable:
αt(i) = P (O1, ...., Ot, qt = si|λ), (6)

is the probability of generating all the observations up to time t and being in state qt at time t (because of
the Markov property – this can be computed independently of the observations after t.

We compute the forward variable recursively:

α1(i) = P (O1, q1 = si|λ) = πibi(O1)

αt+1(j) = {
N∑
i=1

αt(i)aij}bj(Ot+1), (7)

which enables us to compute αT (i) is time O(N2T ).
After computing the α’s, we can compute the probability of the data by:

P (O|λ) =

N∑
i=1

αT (i). (8)

An alternative algorithm which can be used instead (and which we will need later for learning) is the
backward variable:

βt(i) = P (Ot+1, ...., OT |qt = si, λ), (9)

which can be computed recursively by:

βT (i) = 1,

βt(i) =

N∑
j=1

aijbj(Ot+1)βt+1(j). (10)

This uses the Markov property that this is independent of the observations before t. We can also compute
β1(i) in O(N2T ) times and compute P (O|λ) =

∑n
i=1 β1(i).

Hence dynamic programming (i.e., the forward and backward algorithm) evaluates the probability of the
data in polynomial time exploiting the Markov property of the model (e.g. the independence between the
conditional probabilities of the early and late observations).

5 Task 2: Estimating the Best State Sequence

Often we want to estimate the MAP estimate of the hidden states:

Q∗ = arg max
Q

P (Q|O, λ). (11)

This can be done by the Viterbi algorithm (a form of DP) as follows. Define:

δt(i) = max
q1,...,qt−1

P (q1, q2, ..., qt−1, qt = si, O1, ..., Ot|λ), (12)
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which is the probability of the highest probability path that accounts for all the first t observations and ends
in state qt = si.

We calculate δt(i) recursively by:

Initialize δ1(i) = πibi(O1), ψ1(i) = 0 (13)

Recursion δt(j) = max
i
δt−1(i)aijbj(Ot)

ψt(j) = arg max
i
δt−1(i)aij (14)

Termination p∗ = max
i
δT (i),

q∗T = arg max
i
δT (i). (15)

The best path Q∗ can be found by backtracking: q∗t = ψt+1(q∗t+1), t = T − 1, T − 2, ..., 1.
The term ψt(j) keeps track of the state that maximizes δt(j) at time t− 1.
This algorithm also has complexity O(N2T ) and so is efficient and practical.

6 Task 3: Learning Model Parameters

Let X = {Ok : k = 1, ...,K} be a set of training sequences. We want to estimate the parameters λ by
maximum likelihood:

λ∗ = arg max
λ

P (X|λ) = arg max
λ

K∏
k=1

P (Ok|λ). (16)

This is performed by the EM algorithm using DP to make the computations practical.
Define:

ζt(i, j) = P (qt = si, qt+1 = sj |O, λ)

=
αt(i)aijbj(Ot+1)βt+1(j)∑N

k=1

∑N
l=1 αt(k)aklbl(Ot+1)βt+1(l)

. (17)

Define γt(i) = P (qt = si|O, λ) to be the marginal posterior of the tth state. This can be computed in
terms of the forward and backward variables αt(i) and βt(i):

γt(i) =
P (O|qt = si, λ)P (qt = si|λ)

P (O|λ)
=

αt(i)βt(i)∑N
j=1 αt(j)βt(j)

. (18)

Then EM is performed by the Baum-Welch algorithm:
E-step: compute ζt(i, j) and γt(i) using current estimate of λ.
M-step: recalculate λ form ζt(i, j) and γt(i).
Recalculating λ gives:

a∗ij =

∑T−1
t=1 ζt(i, j)∑T−1
t=1 γt(i)

,

b∗j (m) =

∑T
t=1 γt(j)I(OT = vm)∑T

t=1 γt(j)
. (19)

This is like taking the expectation of the indicator variables I(qkt = si AND qkt+1 = sj) and I(qt =
si AND ot = vm) with respect to the current estimate of the distribution of the hidden states P (qt =
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si, qt+1 = sj |O, λ and P (ot = vm|qt = si). (The denominators are because we estimating the conditional
statistics – see previous lecture).

For multiple sequences X = {Ok : k = 1, ...,K} we have P (X|λ) =
∏K
k=1 P (Ok|λ). This modifies the

updates to:

a∗ij =

∑K
k=1

∑T1

t=1 ζt(i, j)∑K
k=1

∑T−1
t=1 γt(i)

,

b∗j (m) =

∑K
k=1

∑T
t=1 γt(j)I(OT = vm)∑K
k=1

∑T
t=1 γt(i)

. (20)

π∗
i =

∑K
k=1 γ

k
1 (i)

K
. (21)

This is the same as using the general form for EM with exponential distributions (see last lecture) and
substituting in the exponential form of the HMM. Recall that this can be expressed as:

E− Step qt+1
µ (~yµ) = P (~yµ|~xµ, ~λt),

M− step solve for ~λt+1 s.t.
∑
~y,~x

~φ(~x, ~y)P (~x, ~y|~λt+1) =
∑
µ

∑
~yµ

qt+1
µ (~yµ)~λ · ~φ(~xµ, ~yµ). (22)

Hence the M-step involves selecting the parameters ~λ so that the expected statistics of the model are
equal to the observed statistics (averaged over the training set) and with the hidden states averaged with
respect to the estimated distributions over the hidden states.
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