Statistical cues for Domain Specific Image Segmentation
with Performance Analysis. Proc. CVPR’2000.

Scott Konishi A.L. Yuille

Smith-Kettlewell Eye Research Institute
2318 Fillmore Street
San Francisco, CA 94115

Abstract

This paper investigates the use of colour and texture cues for segmentation of images within two
specified domains. The first is the Sowerby dataset, which contains one hundred colour photographs
of country roads in England that have been interactively segmented and classified into six classes
— edge, vegetation, air, road, building, and other. The second domain is a set of thirty five
images, taken in San Francisco, which have been interactively segmented into similar classes. In
each domain we learn the joint probability distributions of filter responses, based on colour and
texture, for each class. These distributions are then used for classification. We restrict ourselves
to a limited number of filters in order to ensure that the learnt filter responses do not overfit the
training data (our region classes are chosen so as to ensure that there is enough data to avoid
overfitting). We do performance analysis on the two datasets by evaluating the false positive
and false negative error rates for the classification. This shows that the learnt models achieve
high accuracy in classifying individual pizels into those classes for which the filter responses are
approzimately spatially homogeneous (i.e. road, vegetation, and air but not edge and building). A
more sensitive performance measure, the Chernoff information, is calculated in order to quantify
how well the cues for edge and building are doing. This demonstrates that statistical knowledge of
the domain is a powerful tool for segmentation.
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1 Introduction

Although there has been recent progress in general purpose image segmentation, for example
[2], [10], [12], it remains an extremely difficult problem. In this paper we examine the effectiveness
of segmentation using domain specific cues which are learnt from image databases. The basic idea
is that most images can be grouped into domains. Within these domains the statistical properties
of images are likely to be very similar, and such knowledge has been exploited for the segmentation
of aerial images. Will the same approach work for images of city and country scenes photographed
from ground level? How effective are such cues for the segmentation of such images?

The goal of this paper is to learn simple filter cues for segmentation, based on texture and
colour, within two image domains (one containing 100 images, the second containing 35). We then
evaluate the performance of the cues for these databases. This part of our work is in the spirit of
performance analysis [1].

Our first image domain is the Sowerby image database which consists of one hundred preseg-
mented images of road scenes in the English countryside. The second image domain are street
scenes in San Francisco. In both domains, we applied a set of filters which were sensitive to colour,
texture, and edges. We looked at the empirical joint probability distributions of these filter re-
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sponses at multiple scales. Then we constructed a probabilistic model for the domain using these
empirical distributions and prior knowledge about the typical number of each class per image.
We can then apply Bayesian classification for each set of filters and evaluate their performance on
these datasets.

We are careful to avoid the dangers of overfitting when estimating the joint probability distri-
butions. Due to the so-called “curse of dimensionality” the amount of data required to learn joint
distributions increases exponentially with the dimension of the distribution. This means that we
can only use a limited number of filters and also our classes must be restricted to those for which
there is sufficient training data.

Our experiments show that, with suitable choice of filters, the Bayesian classification scheme is
successful. We measure this in two ways: (i) the false positive and false negative classification rates
into the six classes (evaluated over the entire dataset), and (ii) the Chernoff information between
the probability distributions for each class, which gives a measure of the asymptotic error rate of
classification. For classes for which the filters statistics are approximately homogeneous spatially
— e.g. road, air, and vegetation — the classification rates are very accurate using either texture or
colour, or their combination. The Chernoff information is a more sensitive measure which is used
to evaluate how well the filters do on the more difficult classes (i.e. edge and building).

We stress that our classifications are based on local filter properties only and hence is fast. We
do not use any knowledge about the likely shape of region boundaries or even that neighbouring
pizels are likely to belong to the same image class. Such knowledge, even in the simplest forms of
regional grouping by a boundary smoothing constraint such as snakes — see [12], would definitely
improve the quality of the segmentation. The goal of this paper, however, is to demonstrate how
much information is available in local filter cues only.

2 Background

There has, of course, been extensive work on image segmentation using colour, texture, and
other cues — see [2], [10], [12] and references therein. Much of this work is orthogonal to the goals
of our paper as it does not attempt to learn segmentation cues within a domain. Our work can
complement approaches of this type by providing prior models for the image properties of regions.

There has been previous work on using colour cues to detect structures such as roads. A
successful example was demonstrated by Crisman for road tracking [4]. Her work, however, con-
tinually estimated colour models for roads interactively and did not attempt to do statistics of
road, or non-road, properties over a large dataset. Other work on the use of colour cues for rec-
ognizing specific objects includes Swain and Ballard [11]. In addition, there have been successful
models of texture obtained using the Minimax Entropy learning theory [13]. These works, how-
ever, have not explored the use of domain specific statistical knowledge for segmentation. A recent
learning method [8] is very different from our approach and make use of reinforcement learning
with high-level feedback.

Our recent work studied the effectiveness of different edge cues for segmenting the Sowerby
dataset [6]. This study measured the Chernoff information provided by specific edge cues and
demonstrated that the effectiveness of these cues was approximately constant over the entire
database. The work in this paper is based on a similar methodology but is more general. Instead
of two classes — edge versus non-edge — there are six. Moreover, in addition to Chernoff information
we also evaluate the false positive and false negative rates of classification.

3 Statistical Basics

This section provides the statistical basis of our approach. It describes how, for any set of filters,
we can obtain an empirical joint probability distribution for their responses to the six classes. From
these learned distributions we apply Bayesian probability theory to determine which class a filter
response is likely to be a member of. This is evaluated in terms of the false positives and false
negatives for each class (expressed in terms of a confusion matrix).
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Figure 1: Four typical images from the Sowerby dataset. These images contain a variety of urban
and rural scenes.

In addition, we use a more sensitive measure to address the related question of which class a
set of samples is most likely to be in. This is evaluated using the Chernoff information, which
determines the asymptotic error rates, see [3].

3.1 Determining empirical probability distributions.

Any class cue (or combination of cues) is represented by a filter ¢(.), which can be evaluated

at each position in the image. ¢(.) can be a linear, or non-linear filter, and can have a scalar

or vector valued output. For example, one choice is the scalar valued filter 6()‘ for which

o(I(z)) = ‘6[ (z)‘ Another possibility is to combine edge filters at different spatial scales to

give a vector valued output ¢(I(z)) = (‘60(9&, o1) * I(m)‘ ) ‘ﬁG(m; 09) * I(m)‘), where G(z;0) is a
Gaussian with standard deviation o, and * denotes convolution. Yet another choice is to apply
filters to the different colour bands of the image. We will develop the basic theory at an abstract
level so that it can apply directly to all these cases.

Having chosen a filter ¢(.) we have to quantize its response values. This involves selecting a
finite set of possible responses {y; : 7 = 1,...,J}. The effectiveness of the filter will depend on
this quantization scheme so care must be taken to determine that the quantization is robust and
close to optimal, see section (5). The filter is run over the image and its empirical statistics (his-
tograms) are evaluated for the operator’s responses to the six different classes. These histograms
are then normalized to give six conditional distributions P(y;|c), where a denotes the six classes
{edge, vegetation, air, road, building, other}.

For example, for the filter ¢(.) = )ﬁ‘ we would anticipate that the probability distribution for

P(y;la = air) is strongly peaked near y; = 0 (i.e. the sky tends to have small image gradients),
while the peak of P(yj|ac = edge) occurs at larger values of y (i.e. the image gradient is likely to
be large at edges of objects).

It is important to ensure that we have enough training data so that we do not overlearn the
data, see [9]. This restricts us to using a limited number of filters (because the amount of data
required grows exponentially with the number of filters used in our joint histograms). We stress
that use standard procedures to ensure this such as learning the distributions on half the dataset
and evaluating them on the other half.

We must also determine prior probability distributions {P(«)} for the six classes. These
are estimated by the empirical number of image pixels in each class computed over the entire
dataset. From these two types of distributions (conditional and priors) we construct the Bayesian
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decision rule: label a pixel z as lying in class a*(z), where a*(z) = arg,_ max P(y;(z)|e) P(«).
Classifications, confusion matrices, and false positive and false negative error rates for this rule will
be given in section (6) for a set of different filters. In addition, we will consider the classification
when we set the prior class probabilities to be uniform, and hence classify the pixels by the
maximum likelihood estimator a*(z) = arg, max P(y;(z)|«) (this may be a useful strategy when
some classes are very rare and hence the “data driven prior” biases strongly against them).
3.2 Asymptotic Error Rates

We may also want to determine whether a set of samples is more likely to be in one class or
another (i.e. all members of this set are assumed to be in a single class). This issue is important
if we intend to group a set of pixels using spatial information. It is a more sensitive measure than
the false positive and false negative classification rates. It is useful for those region classes for
which the false positive and false negative rates are poor.

The optimal test for determining whether a set of samples § = y1, ¥, ..., ynv comes from classes
a or (3 is given by the log-likelihood test (see the maximum likelihood-Pearson lemma [3]). It can be
shown [3] that, for sufficiently large N, the expected error rate of this test decreases exponentially
by e NC(PWle).PWIA) where C(P(y|a), P(y|B)) is the Chernoff Information [3] between class o
and 3 defined by C(P(yl|a), P(y|3)) = —ming<r<1 log{>_, P(yla)*P(y|8)*~*}.

Thus to determine the asymptotic error rates, as well as the individual pixel error rates, we
compute the Chernoff information between different classes (as functions of the choice of filters).

4 The Filters

We concentrated on combinations of four basic filters. These are the intensity itself (for colour
segmentation), the gradient, the Nitzberg edge detector [7], and the Laplacian of a Gaussian.
These filters are examined in both the intensity and colour regimes and at a variety of different
scales. Multiscale is performed by varying the parameters ¢ of the Gaussian convolutions and
combining single scale responses into a vector filter. (In the approach followed in this paper,
the optimal combination arises naturally, subject to the quantization procedure we use.) It is
straightforward to couple different filters to obtain a vector valued filter and to determine the
additional information conveyed by combinations of elementary filters.

Our results showed that the most effective filters were the intensity (i.e. colour) and the
Nitzberg operator [7]. Colour is, not surprisingly, a very effective cue for distinguishing between
different regions. The Nitzberg operator was originally designed as a corner detector and it turns
out to be an effective operator for distinguishing between regions of different textures. More pre-
cisely, the Nitzberg operator involves computing the matrix N(z; o) = G(z; o)« {VI(2)H{VI(z)}T
where 7' denotes transpose. The output is the two-dimensional vector consisting of both eigenval-
ues (A1(x;0), A2(x;0)).

The gradient and Laplacian of Gaussian filters were less effective. They might be more effective
if sufficient data were available to enable us to train them at a larger number of different scales.
Similarly, we lacked sufficient data to reliably train filterbanks of Gabor filters (see technical report
for details).

5 Stability

An important practical issue of our approach is to develop an appropriate quantization for the
distributions. There is a trade-off involved. If the number of quantization bins is too small, then
the results we obtain will be crude. By contrast, if we have too many quantization bins, then the
resulting probability distributions (and measures derived from them such as Chernoff information)
may overfit the data. At a more abstract level, we are faced with the danger of overfitting the
data, which is a common problem inherent to all learning procedures [9]. (As a practical concern,
the bigger the number of bins the larger the amount of computations required and the greater the
memory requirements).

After experimentation and theoretical analysis (see technical report) we settled on an adaptive
quantization scheme. It became clear that most of the reliable information could be extracted
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Figure 2: Colour at combined scales 2 and 4: Confusion plot with data driven prior. The top
row shows the probabilities, P(a*|a), of the classification a* when the true class is a. I.e. the
top leftmost panel shows P(a*|edge) for a* being {edge, vegetation, air, road, building, other}.
Observe that the classifications of veg, air, road are over 90%. The bottom row shows P(«a|a*)
with similar conventions. Observe that if a pixel is classified as vegetation then it has an over 80%
chance of really being vegetation.

using only 6 adaptive bins for each dimension of the filter (we emphasize that this adaptation was
performed over the entire dataset and not for each individual image). This enabled us to perform
statistics on up to 6 coupled filters — which requires 6° quantized bins.

6 Results on the Sowerby Database
6.1 Classification and Confusion Matrices

We demonstrate the confusion matrix and the false positive and false negative rates. This
confusion matrix, like our other statistics, is calculated over the entire database of 100 images. Not
surprisingly, the best classes are road, air and vegetation. We see that colour by itself, see figure (2),
is successful except for edge detection and such non-homogeneous classes as buildings (see section
6.3 for discussion), see figure (2) (colour is able to detect edges by combining filter responses at
multiple scales — recall, for example, that the Laplacian of a Gaussian can be approximated by the
difference of two Gaussians at different scales). Texture is perhaps surprisingly successful using
only the Nitzberg operator to measure it, see figure (3). Moreover, texture (using Nitzberg) is
significantly more effective than colour for detecting edges.

When colour and texture are combined with the data driven prior, see figure (4), we get the
best results. Observe what happens if we use the uniform prior, see figure (5). This is better at
finding buildings but worse at everything else. It also finds more true edges in the image but also
has more false positives.

6.2 Chernoff Measures

To calibrate the Chernoff measures, we calculated them for the Geman and Jedynak road
tracking application [5] (from the plots in their paper). This gave a Chernoff of 0.22 nats, which
was perfectly adequate for their task of tracking roads in aerial images. In our dataset, see
figure (6,7,8), observe that we attain Chernoffs which are higher by almost an order of magnitude.
This suggests that classifying a set of pixels into classes will be highly successful. Observe, again,
that colour is relatively ineffective at detecting edges.

6.3 Classification Errors

On the whole, the Bayesian classification using joint texture and colour statistics is remarkably
successful, particularly considering we are using no spatial grouping at all. However, we did detect
some systematic biases.
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Figure 3: Texture at multi-scale using Nitzberg detectors: Confusion plot with data driven prior.
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Figure 4: Colour and Texture: Confusion plot with data driven prior. Same conventions as
previous figure.
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Firstly, the second most frequent error occurred for edges. This is hardly surprising since edges
are notoriously hard to detect reliably. Moreover, most of the errors consisted of confusing edges
with vegetation (and vice versa). This is to be expected because one characteristic of vegetation is
a high density of small scale edges. Overall, the classification rates and the Chernoff information
for edges are good and suggest that a limited amount of spatial grouping will be sufficient to
detect most of them, see also [6]. We observe also that edge-corners were often misclassified as
vegetation. This is also not surprising because texture regions like vegetation will also have a high
density of corners. Again, we expect that spatial grouping will be required to distinguish between
corners due to vegetation and those due to edges.

It does well on wegetation. There is some confusion with edges and corners, see previous
paragraph. Also vegetation at a distance tends to get smoothed out and turns blue-grey. This
affects its texture and colour properties and can cause it to be misclassified as road. Some texture
on buildings can get misclassified as vegetation.

Aiir is the most easily classified class. Smooth bright objects, as in buildings and water on the
road are sometimes seen as air. Very smooth road areas (more obvious with equal prior!) are
sometimes seen as air. Dark thunderclouds are sometimes seen as road.

Road can also be reliably classified (with data driven prior). But roads in the far distance,
where they are very smooth, can be classified as air. The most common error is that buildings
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Figure 5: Colour and Texture: Confusion Plot with uniform prior. Same conventions as previous
figure.
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Figure 6: Colour at combined scales 2 and 4 : Chernoff Information in nats. For example, leftmost
panel shows C'(P(y|edge), P(y|a)) for a = {edge, vegetation, air, road, building, other}. Note that
C(P(yledge), P(yledge)) = 0.

with flat surfaces are often seen as roads, see figure (9) (about 1/2 — unless the building prior is
boosted).

Building is not a good class. A subclass — like stonework — seems to be a better class since they
have homogeneous regular texture which differs from the less-structured texture in wvegetation.
Buildings come in many styles and should be split into subclasses. Moreover, some specifically
building-like features — such as straight-lines and right-angles — can not be easily detected by the
filters we are applying. Our filters are local and only well suited for extracting homogeneous image
properties.

The Other class is also poorly defined. It should ideally be split up into subclasses such as
cars. At present, cars are partially classified as other. Parts like the windshield and bright smooth
areas are classified as air. Areas near tail-lights, license plate, with high density of corners are
often labelled vegetation. Noticeably, long straight thin objects — such as thin towers and, very
occasionally, road curb boundaries — are labelled other.

7 Results on the San Francisco Database

The results for the San Francisco database are broadly similar. We investigated the classes
road, air, vegetation, car, building, and other. We applied similar filters to those used for the
Sowerby database.

As before, we calculated the confusion plots with the data driven priors and uniform priors. It
should be stressed that for this dataset the data driven priors can be misleading. This is because
the images are not fully segmented and the statistics for each class are obtained by samples which
are interactively obtained. This means that the default class, other, contains many pixels which
might best be assigned to other classes and hence its data driven prior is far larger than it should
be. Moreover, certain classes such as vegetation are only sparsely represented in the images and
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Figure 7: Texture with Nitzberg at scale 2: Chernoff Information. Same convention as previous
figure.
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Figure 8: Colour combined with texture: Chernoff Information. Same convention as previous
figure.

hence their data driven priors bias against them. This effect can be seen in figures (11,12); it
seems that the uniform prior yields better results. Overall, the confusion plots show that the cues
are very effective, yielding roughly similar success rates as the Sowerby dataset. The cues are most
effective for the road, air, and vegetation classes. There is a slight decline due perhaps to the lack
of an “edge class”.

We show some typical San Francisco images in figure (13) with their segmentations, using the
uniform prior, in figure (14).

8 Summary and Conclusions

Overall, we were surprised at how effective simple features could be in both domains. Using
simple colour and texture filters we were able to get high classification rates into three of the
six main classes (road, air, and vegetation). The classification is very fast because it is done
by a simple loop through the image. This suggests that domain specific statistics are powerful
for segmentation even without requiring spatial grouping. These domain statistics complement
existing segmentation techniques and, when augmented by spatial grouping, should yield highly
effective segmentations.

We have started comparing the statistics of the six classes between the two domains. Our
preliminary results show some broad similarities but also some significant differences. Certain
texture features, for example, seem to be surprisingly similar between the domains. On the other
hand, not surprisingly, the air in the San Francisco database has different colours than the air in
the Sowerby images (blue versus grey). In figure (15) we train on half the dataset and evaluate
on the other half to ensure that we are not overfitting the data.

Finally, we encourage the development of similar segmented databases which can be used for
statistical performance analysis of visual algorithms [1].
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Figure 9: Observe (upper panel) that the buildings can be interpreted as roads when the data
driven prior is used. If the prior for buildings is increased so as to equal that of road, then buildings
are located more effectively (lower panel). (Stone walls, as in the right of the figure, are classified
as “building”.)See key, at top, for greyscale labelling conventions.
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Figure 14: Examples of segmentation of the San Francisco images in the previous figure using the
uniform prior. See key, at top, for greyscale labelling conventions.
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Figure 15: Checking for overfitting on Sowerby. The top two panels show the confusion plots
trained and evaluated over the entire dataset. The middle two and bottom two panels show the
confusion matrices where the conditional distributions are learnt on half the dataset (randomly

chosen) and evaluated on the other half. Colour and texture filters used.



