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1 Active basis model: an algorithmic tour

The active basis model is a natural generalization of the wavelet regression model. In this section,

we first explain the background and motivation for the active basis model. Then we work through a

series of variable selection algorithms for wavelet regression, where the active basis model emerges

naturally.

1.1 From wavelet regression to active basis

1.1.1 p > n regression and variable section

Wavelets have proven to be immensely useful for signal analysis and representation [7]. Various

dictionaries of wavelets have been designed for different types of signals or function spaces [3, 13].

Two key factors underlying the successes of wavelets are the sparsity of the representation and the

efficiency of the analysis. Specifically, a signal can typically be represented by a linear superposition

of a small number of wavelet elements selected from an appropriate dictionary. The selection can

be accomplished by efficient algorithms such as matching pursuit [10] and basis pursuit [4].

From a linear regression perspective, a signal can be considered a response variable, and the

wavelet elements in the dictionary can be considered the predictor variables or regressors. The

number of elements in a dictionary can often be much greater than the dimensionality of the signal,

so this is the so-called “p > n” problem. The selection of the wavelet elements is the variable

selection problem in linear regression. The matching pursuit algorithm [10] is the forward selection

method, and the basis pursuit [4] is the lasso method [14].

1.1.2 Gabor wavelets and simple V1 cells

Interestingly, wavelet sparse coding also appears to be employed by the biological visual system

for representing natural images. By assuming the sparsity of the linear representation, Olshausen

and Field [11] were able to learn from natural images a dictionary of localized, elongate, and

oriented basis functions that resemble the Gabor wavelets. Similar wavelets were also obtained

by independent component analysis of natural images [1]. From a linear regression perspective,
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Figure 1: A collection of Gabor wavelets at different locations, orientations, and scales. Each Gabor

wavelet element is a sine or cosine wave multiplied by an elongate and oriented Gaussian function.

The wave propagates along the shorter axis of the Gaussian function.

Olshausen and Field essentially asked the following question: Given a sample of response vectors

(i.e., natural images), can we find a dictionary of predictor vectors or regressors (i.e., basis functions

or basis elements), so that each response vector can be represented as a linear combination of a

small number of regressors selected from the dictionary? Of course, for different response vectors,

different sets of regressors may be selected from the dictionary.

Figure (1) displays a collection of Gabor wavelet elements at different locations, orientations

and scales. These are sine and cosine waves multiplied by elongate and oriented Gaussian functions,

where the waves propagate along the shorter axes of the Gaussian functions. Such Gabor wavelets

have been proposed as mathematical models for the receptive fields of the simple cells of the primary

visual cortex or V1 [6].

The dictionary of all the Gabor wavelet elements can be very large, because at each pixel of

the image domain, there can be many Gabor wavelet elements at different scales and orientations.

According to Olshausen and Field [11], the biological visual system represents a natural image by a

linear superposition of a small number of Gabor wavelet elements selected from such a dictionary.

1.1.3 From generic classes to specific categories

Wavelets are designed for generic function classes or learned from generic ensembles such as natural

images, under the generic principle of sparsity. While such generality offers enormous scope for

the applicability of wavelets, sparsity alone is clearly inadequate for modeling specific patterns.

Recently, we have developed an active basis model for images of various object classes [15]. The

model is a natural consequence of seeking a common wavelet representation simultaneously for

multiple training images from the same object category.

Figure (2) illustrates the basic idea. In the first row, there are 8 images of deers. The images are

of the same size of 122 × 120 pixels. The deers appear at the same location, scale, and pose in these
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Figure 2: Active basis templates. Each Gabor wavelet element is illustrated by a bar of the same

length and at the same location and orientation as the corresponding element. The first row displays

the training images. The second row displays the templates composed of Gabor wavelet elements at

a fixed scale, where the first template is the common deformable template, and the other templates

are deformed templates for coding the corresponding images. The third row displays the templates

composed of Gabor wavelet elements at a larger scale than that in the second row. In the last row,

the template is composed of Gabor wavelets at multiple scales, where larger elements are illustrated

by bars of lighter shades. The rest of the images are reconstructed by linear superpositions of the

wavelet elements of the deformed templates.

images. For these very similar images, we want to seek a common wavelet representation, instead

of coding each image individually. Specifically, we want these images to be represented by similar

sets of wavelet elements, with similar coefficients. We can achieve this by selecting a common set

of wavelet elements, while allowing these wavelet elements to locally perturb their locations and

orientations before they are linearly combined to code each individual image. The perturbations

are introduced to account for shape deformations in the deers. The linear basis formed by such

perturbable wavelet elements is called an active basis.

This is illustrated by the second and third rows of Figure (2). In each row, the first plot displays

the common set of Gabor wavelet elements selected from a dictionary. The dictionary consists of

Gabor wavelets at all the locations and orientations, but at a fixed scale. Each Gabor wavelet

element is symbolically illustrated by a bar at the same location and orientation and with the

same length as the corresponding Gabor wavelet. So the active basis formed by the selected Gabor

wavelet elements can be interpreted as a template, as if each element is a stroke for sketching the

template. The templates in the second and third rows are learned using dictionaries of Gabor

wavelets at two different scales, with the scale of the third row about twice as large as the scale

of the second row. The number of Gabor wavelet elements of the template in the second row is

50, while the number of elements of the template in the third row is 15. Currently we treat this
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number as a tuning parameter, although they can be determined in a more principled way.

Within each of the second and third rows, and for each training image, we plot the Gabor

wavelet elements that are actually used to represent the corresponding image. These elements

are perturbed versions of the corresponding elements in the first column. So the templates in the

first column are deformable templates, and the templates in the remaining columns are deformed

templates. Thus the goal of seeking a common wavelet representation for images from the same

object category leads us to formulate the active basis, which is a deformable template for the images

from the object category.

In the last row of Figure (2), the common template is learned by selecting from a dictionary that

consists of Gabor wavelet elements at multiple scales instead of a fixed scale. In addition to Gabor

wavelet elements, we also include the center-surround difference of Gaussian wavelet elements in

the dictionary. Such isotropic wavelet elements are of large scales, and they mainly capture the

regional contrasts in the images. In the template in the last row, larger Gabor wavelet elements are

illustrated by bars of lighter shades. The difference of Gaussian elements are illustrated by circles.

The remaining images are reconstructed by such multi-scale wavelet representations, where each

image is a linear superposition of the Gabor and difference of Gaussian wavelet elements of the

corresponding deformed templates.

n = 5 n = 10 n = 20 n = 30 n = 40 n = 50

n = 1 n = 2 n = 3 n = 5 n = 10 n = 15

Figure 3: Shared sketch process for learning the active basis templates at two different scales.

The active basis can be learned by the shared sketch algorithm that we recently developed [15].

This algorithm can be considered a paralleled version of the matching pursuit algorithm [10]. It

can also be considered a modification of the projection pursuit algorithm [8]. The algorithm selects

the wavelet elements sequentially from the dictionary. Each time when an element is selected, it is

shared by all the training images in the sense that a perturbed version of this element is included

in the linear representation of each image. Figure (3) illustrates the shared sketch process for

obtaining the templates displayed in the second and third rows of Figure (2).

While selecting the wavelet elements of the active basis, we also estimate the distributions of

their coefficients from the training images. This gives us a statistical model for the images. After

learning this model, we can then use it to recognize the same type of objects in testing images. In

machine learning and computer vision literature, detecting or classifying objects using the learned
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model is often called inference. The inference algorithm is often a part of the learning algorithm.

For active basis model, both the learning and inference can be formulated as maximum likelihood

estimation problems.

1.1.4 Local maximum pooling and complex V1 cells

Besides wavelet sparse coding, another inspiration to the active basis model comes from neuro-

science. Riesenhuber and Poggio [12] observed that the complex cells of the primary visual cortex

or V1 appear to perform local maximum pooling of the responses from simple cells. From the

perspective of active basis model, this corresponds to estimating the perturbations of the wavelet

elements of the active basis template, so that the template is deformed to match the observed

image. Therefore, if we are to believe Olshausen and Field’s theory on wavelet sparse coding [11]

and Riesenhuber and Poggio’s theory on local maximum pooling, then the active basis model seems

to be a very natural logical consequence.

In the following subsections, we shall describe wavelet sparse coding, the active basis model,

and the learning and inference algorithms in detail.

1.2 An overcomplete dictionary of Gabor wavelets

The Gabor wavelets are translated, rotated, and dilated versions of the following function:

G(x1, x2) ∝ exp{−[(x1/σ1)2 + (x2/σ2)2]/2}eix1 ,

which is sine-cosine wave multiplied by a Gaussian function. The Gaussian function is elongate

along the x2-axis, with σ2 > σ1, and the sine-cosine wave propagates along the shorter x1-axis. We

truncate the function to make it locally supported on a finite rectangular domain, so that it has a

well defined length and width.

We then translate, rotate, and dilate G(x1, x2) to obtain a general form of the Gabor wavelets:

Bx1,x2,s,α(x′
1, x

′
2) = G(x̃1/s, x̃2/s)/s2,

where

x̃1 = (x′
1 − x1) cos α − (x′

2 − x2) sinα,

x̃2 = (x′
1 − x1) sinα + (x′

2 − x2) cos α.

Writing x = (x1, x2), each Bx,s,α is a localized function, where x = (x1, x2) is the central location, s

is the scale parameter, and α is the orientation. The frequency of the wave propagation in Bx,s,α is

ω = 1/s. Bx,s,α = (Bx,s,α,0, Bx,s,α,1), where Bx,s,α,0 is the even-symmetric Gabor cosine component,

and Bx,s,α,1 is the odd-symmetric Gabor sine component. We always use Gabor wavelets as pairs

of cosine and sine components. We normalize both the Gabor sine and cosine components to have
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zero mean and unit �2 norm. For each Bx,s,α, the pair Bx,s,α,0 and Bx,s,α,1 are orthogonal to each

other.

The dictionary of Gabor wavelets is

Ω = {Bx,s,α,∀(x, s, α)}.

We can discretize the orientation so that α ∈ {oπ/A, o = 0, ..., O − 1}, i.e., O equally spaced

orientations (the default value of O is 15 in our experiments). In this article, we mostly learn the

active basis template at a fixed scale s. The dictionary Ω is called “overcomplete” because the

number of wavelet elements in Ω is larger than the number of pixels in the image domain, since at

each pixel, there can be many wavelet elements tuned to different orientations and scales.

For an image I(x), with x ∈ D, where D is a set of pixels, such as a rectangular grid, we can

project it onto a Gabor wavelet Bx,s,α,η, η = 0, 1. The projection of I onto Bx,s,α,η, or the Gabor

filter response at (x, s, α), is

〈I, Bx,s,α,η〉 =
∑
x′

I(x′)Bx,s,α,η(x′).

The summation is over the finite support of Bx,s,α,η. We write 〈I, Bx,s,α〉 = (〈I, Bx,s,α,0〉, 〈I, Bx,y,s,α,1〉).
The local energy is

|〈I, Bx,s,α〉|2 = 〈I, Bx,s,α,0〉2 + 〈I, Bx,s,α,1〉2.

|〈I, Bx,s,α〉|2 is the local spectrum or the magnitude of the local wave in image I at (x, s, α).

Let

σ2
s =

1
|D|O

∑
α

∑
x∈D

|〈I, Bx,s,α〉|2,

where |D| is the number of pixels in I, and O is the total number of orientations. For each image

I, we normalize it to I ← I/σs, so that different images are comparable.

1.3 Matching pursuit algorithm

For an image I(x) where x ∈ D, we seek to represent it by

I =
n∑

i=1

ciBxi,s,αi + U, (1)

where (Bxi,s,αi , i = 1, ..., n) ⊂ Ω is a set of Gabor wavelet elements selected from the dictionary Ω,

ci is the coefficient, and U is the unexplained residual image. Recall that each Bxi,s,αi is a pair

of Gabor cosine and sine components. So Bxi,s,αi = (Bxi,s,αi,0, Bxi,s,αi,1) and ci = (ci,0, ci,1), and

ciBxi,s,αi = ci,0Bxi,s,αi,0 + ci,1Bxi,s,αi,1.

In the representation (1), n is often assumed to be small, e.g., n = 50. So the representation

(1) is called sparse representation or sparse coding. This representation translates a raw intensity
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image with a huge number of pixels into a sketch with only a small number of strokes represented

by B = (Bxi,s,αi , i = 1, ..., n). Because of the sparsity, B captures the most visually meaningful

elements in the image. The set of wavelet elements B = (Bxi,s,αi , i = 1, ..., n) can be selected

from Ω by the matching pursuit algorithm [10], which seeks to minimize ‖I − ∑n
i=1 ciBxi,s,αi‖2 by

a greedy scheme.

Algorithm 0: Matching pursuit algorithm

0 Let i ← 0. U ← I.

1 i ← i + 1. Let (xi, αi) = arg maxx,α |〈U,Bx,s,α〉|2.

2 Let ci = 〈U,Bxi,s,αi〉. Let U ← U − ciBxi,s,αi .

3 Stop if i = n, else go back to 1.

In the above algorithm, it is possible that a wavelet element is selected more than once, but

this is extremely rare for real images. As to the choice of n or the stopping criterion, we can stop

the algorithm if |ci| is below a threshold.

Readers who are familiar with the so-called “large p and small n” problem in linear regression

may have recognized that wavelet sparse coding is a special case of this problem, where I is the

response vector, and each Bx,s,α ∈ Ω is a predictor vector. The matching pursuit algorithm is

actually the forward selection procedure for variable selection.

The forward selection algorithm in general can be too greedy. But for image representation,

each Gabor wavelet element only explains away a small part of the image data, and we usually

pursue the elements at a fixed scale, so such a forward selection procedure is not very greedy.

1.4 Matching pursuit for multiple images

Let {Im, m = 1, ...,M} be a set of training images defined on a common rectangle lattice D, and

let us suppose that these images come from the same object category, where the objects appear at

the same pose, location, and scale in these images. We can model these images by a common set

of Gabor wavelet elements,

Im =
n∑

i=1

cm,iBxi,s,αi + Um, m = 1, ..., M. (2)

B = (Bxi,s,αi , i = 1, ..., n) can be considered a common template for these training images.

We can select these elements by applying the matching pursuit algorithm on these multiple

images simultaneously, which seeks to minimize
∑M

m=1 ‖I −
∑n

i=1 ciBxi,s,αi‖2 by a greedy scheme.

Algorithm 1: Matching pursuit on multiple images
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0 Initialize i ← 0. For m = 1, ..., M , initialize Um ← Im.

1 i ← i + 1. Select

(xi, αi) = arg max
x,α

M∑
m=1

|〈Um, Bx,α〉|2.

2 For m = 1, ...,M , let cm,i = 〈Um, Bxi,s,αi〉, and update Um ← Um − cm,iBxi,s,αi .

3 Stop if i = n, else go back to 1.

Algorithm 1 is similar to algorithm 0. The difference is that, in Step 1, (xi, αi) is selected by

maximizing the sum of the squared responses.

1.5 Active basis and local maximum pooling

The objects in the training images share similar shapes, but there can still be considerable variations

in their shapes. In order to account for the shape deformations, we introduce the perturbations to

the common template, and the model becomes

Im =
n∑

i=1

cm,iBxi+Δxm,i,s,αi+Δαm,i + Um, m = 1, ...,M. (3)

Again, B = (Bxi,s,αi , i = 1, ..., n) can be considered a common template for the training images, but

this time, this template is deformable. Specifically, for each image Im, the wavelet element Bxi,s,αi

is perturbed to Bxi+Δxm,i,s,αi+Δαm,i , where Δxm,i is the perturbation in location, and Δαm,i is

the perturbation in orientation. Bm = (Bxi+Δxm,i,s,αi+Δαm,i , i = 1, ..., n) can be considered the

deformed template for coding image Im. We call the basis formed by B = (Bxi,s,αi , i = 1, ..., n)

the active basis, and we call (Δxm,i, Δαm,i, i = 1, ..., n) the activities or perturbations of the basis

elements for image m.

Figure (2) illustrates three examples of active basis templates. In the second and third rows, the

templates in the first column are B = (Bxi,s,αi , i = 1, ..., n). The scale parameter s in the second

row is smaller than the s in the third row. For each row, the templates in the remain columns

are the deformed templates Bm = (Bxi+Δxm,i,s,αi+Δαm,i , i = 1, ..., n). The template in the last row

should be more precisely represented by B = (Bxi,si,αi , i = 1, ..., n), where each element has its own

si automatically selected together with (xi, αi). In this article, we focus on the situation where we

fix s (default length of the wavelet element is 17 pixels).

For the activity or perturbation of a wavelet element Bx,s,α, we assume that Δx = (Δx1, Δx2),

where Δx1 = d sinα, Δx2 = d cos α, with d ∈ [−b1, b1]. We also assume Δα ∈ [−b2, b2]. b1 and b2

are the bounds for the allowed displacements in location and orientation (default values: b1 = 6

pixels, and b2 = π/15). We define

A(α) = {(Δx = (d sinα, d cos α), Δα) : d ∈ [−b1, b1], Δα ∈ [−b2, b2]}

be the set of all possible activities for a basis element tuned to orientation α.
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We can continue to apply the matching pursuit algorithm to the multiple training images, the

only difference is that we add a local maximum pooling operation in Steps 1 and 2. The following

algorithm is a greedy procedure to minimize the least squares criterion

M∑
m=1

‖Im −
n∑

i=1

cm,iBxi+Δxm,i,s,αi+Δαm,i‖2. (4)

Algorithm 2: Matching pursuit with local maximum pooling

0 Initialize i ← 0. For m = 1, ..., M , initialize Um ← Im.

1 i ← i + 1. Select

(xi, αi) = arg max
x,α

M∑
m=1

max
(Δx,Δα)∈A(α)

|〈Um, Bx+Δx,s,α+Δα〉|2.

2 For m = 1, ...,M , retrieve

(Δxm,i, Δαm,i) = arg max
(Δx,Δα)∈A(αi)

|〈Um, Bxi+Δx,s,αi+Δα〉|2.

Let cm,i ← 〈Um, Bxi+Δxm,i,s,αi+Δαm,i〉, and update Um ← Um − cm,iBxi+Δxm,i,s,αi+Δαm,i .

3 Stop if i = n, else go back to 1.

Algorithm 2 is similar to Algorithm 1. The difference is that we add an extra local maximization

operation in Step 1: max(Δx,Δα)∈A(α) |〈Um, Bx+Δx,s,α+Δα〉|2. With (xi, αi) selected in Step 1, Step

2 retrieves the corresponding maximal (Δx,Δα) for each image.

We can rewrite Algorithm 2 by defining Rm(x, α) = 〈Um, Bx,s,α〉. Then instead of updating the

residual image Um in Step 2, we can update the responses Rm(x, α).

Algorithm 2.1: Matching pursuit with local maximum pooling

0 Initialize i ← 0. For m = 1, ..., M , initalize Rm(x, α) ← 〈Im, Bx,s,α〉 for all (x, α).

1 i ← i + 1. Select

(xi, αi) = arg max
x,α

M∑
m=1

max
(Δx,Δα)∈A(α)

|Rm(x + Δx, α + Δα)|2.

2 For m = 1, ...,M , retrieve

(Δxm,i, Δαm,i) = arg max
(Δx,Δα)∈A(αi)

|Rm(xi + Δx, αi + Δα)|2.

Let cm,i ← Rm(xi + Δxm,i, αi + Δαm,i), and update

Rm(x, α) ← Rm(x, α) − cm,i〈Bx,s,α, Bxi+Δxm,i,s,αi+Δαm,i〉.

3 Stop if i = n, else go back to 1.
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1.6 Shared sketch algorithm

Finally, we come to the shared sketch algorithm that we actually used in the experiments in this

paper. The algorithm involves two modifications to Algorithm 2.1.

Algorithm 3: Shared sketch algorithm

0 Initialize i ← 0. For m = 1, ..., M , initialize Rm(x, α) ← 〈Im, Bx,s,α〉 for all (x, α).

1 i ← i + 1. Select

(xi, αi) = arg max
x,α

M∑
m=1

max
(Δx,Δα)∈A(α)

h(|Rm(x + Δx, α + Δα)|2).

2 For m = 1, ...,M , retrieve

(Δxm,i, Δαm,i) = arg max
(Δx,Δα)∈A(αi)

|Rm(xi + Δx, αi + Δα)|2.

Let cm,i ← Rm(xi + Δxm,i, αi + Δαm,i), and update Rm(x, α) ← 0 if

corr(Bx,s,α, Bxi+Δxm,i,s,αi+Δαm,i) > 0.

3 Stop if i = n, else go back to 1.

The two modifications are:

(1) In Step 1, we change |Rm(x + Δx, α + Δα)|2 to h(|Rm(x + Δx, α + Δα)|2) where h() is a

sigmoid function, which increases from 0 to a saturation level ξ (default: ξ = 6),

h(r) = ξ

[
2

1 + e−2r/ξ
− 1

]
. (5)

Intuitively,
∑M

m=1 max(Δx,Δα)∈A(α) h(|Rm(x+Δx, α+Δα)|2) can be considered a vote from all the

images for the location and orientation (x, α), where each image contributes max(Δx,Δα)∈A(α) h(|Rm(x+

Δx, α + Δα)|2). The sigmoid transformation prevents a small number of images from contributing

very large values. As a result, the selection of (x, α) is a more “democratic” choice, and the selected

element tends to sketch the edges shared by all the training images. In the next section, we shall

formally justify the use of sigmoid transformation by a statistical model.

(2) In Step 3, we update Rm(x, α) ← 0 if Bx,s,α is not orthogonal to Bxi+Δxm,i,s,αi+Δαm,i . That

is, we enforce the orthogonality of the basis Bm = (Bxi+Δxm,i,s,αi+Δαm,i , i = 1, ..., n) for each train-

ing image m. Our experience with matching pursuit is that it usually selects elements that have little

overlap with each other. So for computational convenience, we simply enforce that the selected ele-

ments are orthogonal to each other. For two Gabor wavelets B1 and B2, we define their correlation

as corr(B1, B2) =
∑1

η1=0

∑1
η2=0 |〈B1,η1 , B2,η2〉|2, i.e., the sum of squared inner products between the

sine and cosine components of B1 and B2. In practical implementation, we allow small correlation

between selected elements, i.e., we update Rm(x, α) ← 0 if corr(Bx,s,α, Bxi+Δxm,i,s,αi+Δαm,i) > ε

(the default value of ε = .1).
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1.7 Statistical modeling of images

In this subsection, we develop a statistical model for Im. A statistical model is not only important

for justifying Algorithm 3 for learning the active basis template, it also enables us to use the learned

template to recognize the objects in testing images, because we can use the log-likelihood to score

the matching between the learned template and image data.

The statistical model is based on the decomposition Im =
∑m

i=1 cm,iBxi+Δxm,i,s,αi+Δαm,i + Um,

where Bm = (Bxi+Δxm,i,s,αi+Δαm,i , i = 1, ..., n) is orthogonal, and cm,i = 〈Im, Bxi+Δxm,i,s,αi+Δαm,i〉,
so Um lives in the subspace that is orthogonal to Bm. In order to specify a statistical model for

Im given Bm, we only need to specify the distribution of (cm,i, i = 1, ..., n) and the conditional

distribution of Um given (cm,i, i = 1, ..., n).

The least squares criterion (4) that drives Algorithm 2 implicitly assumes that Um is a white

noise distribution, and cm,i follows a diffused prior distribution. This assumption is wrong. Because

there can be occasional strong edges in the background, and a white noise Um cannot account for

strong edges. Moreover, the distribution of cm,i should be estimated from training images.

In this work, we choose to estimate the distribution of cm,i from training images by fitting an

exponential family model to the sample {cm,i,m = 1, ..., M} obtained from the training images,

and we assume that the conditional distribution of Um given (cm,i, i = 1, ..., n) is the same as

the corresponding conditional distribution in natural images. Such a conditional distribution can

account for occasional strong edges in the background, and it is the use of such a conditional

distribution of Um as well as the exponential family model for cm,i that leads to the sigmoid

transformation in Algorithm 3. Intuitively, a large response |Rm(x + Δx, α + Δα)|2 indicates that

there can be an edge at (x + Δx, α + Δα). Because an edge can also be accounted for by the

distribution of Um in natural images, a large response should not be taken at its face value for

selecting the basis elements. Instead, it should be discounted by a transformation such as h() in

Algorithm 3.

1.8 Density substitution and projection pursuit

We adopt the density substitution scheme of projection pursuit [8] to construct a statistical model.

We start from a reference distribution q(I). In this article, we assume that q(I) is the distribution

of all the natural images. We do not need to know q(I) explicitly beyond the marginal distribution

q(c) of c = 〈I, Bx,s,α〉 under q(I). Because q(I) is stationary and isotropic, q(c) is the same for

different (x, α). q(c) is a heavy tail distribution because there are edges in natural images. q(c)

can be estimated from natural images by pooling a histogram of {〈I, Bx,s,α〉,∀I,∀(x, α)} where {I}
is a sample of natural images.

Given Bm = (Bxi+Δxm,i,s,αi+Δαm,i , i = 1, ..., n), we modify the reference distribution q(Im) to

a new distribution p(Im) by changing the distributions of cm,i. Let pi(c) be the distribution of

cm,i pooled from {cm,i,m = 1, ..., M}, which are obtained from training images {Im,m = 1, ...,M}.
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Then we change the distribution of cm,i from q(c) to pi(c), for each i = 1, ..., n, while keeping the

conditional distribution of Um given (cm,i, i = 1, ..., n) unchanged. This leads us to

p(Im | Bm = (Bxi+Δxm,i,s,αi+Δαm,i , i = 1, ..., n)) = q(Im)
n∏

i=1

pi(cm,i)
q(cm,i)

, (6)

where we assume that (cm,i, i = 1, ..., n) are independent under both p(Im) and q(Im | Bm), for

orthogonal Bm. The conditional distributions of Um given (cm,i, i = 1, ..., n) under p(Im | Bm) and

q(Im) are canceled out in p(Im | Bm)/q(Im) because they are the same. The Jacobians are also the

same and are canceled out. So p(Im | Bm)/q(Im) =
∏n

i=1 pi(cm,i)/q(cm,i).

The following are three perspectives to view model (6):

(1) Classification: we may consider q(I) as representing the negative examples, and {Im} are

positive examples. We want to find the basis elements (Bxi,s,αi , i = 1, ..., n) so that the projections

cm,i = 〈Im, Bxi+Δxm,i,s,αi+Δαm,i〉 for i = 1, ..., n best distinguish the positive examples from the

negative examples.

(2) Hypothesis testing: we may consider q(I) as representing the null hypothesis, and the

observed histograms of cm,i, i = 1, ..., n are the test statistics that are used to reject the null

hypothesis.

(3) Coding: we choose to code cm,i by pi(c) instead of q(c), while continue to code Um by the

conditional distribution of Um given (cm,i, i = 1, ..., n) under q(I).

For all the three perspectives, we need to choose Bxi,s,αi so that there is big contrast between

pi(c) and q(c). The shared sketch process can be considered as sequentially flipping dimensions of

q(Im) from q(c) to pi(c) to fit the observed images. It is essentially a projection pursuit procedure,

with an additional local maximization step for estimating the activities of the basis elements.

1.9 Exponential tilting and saturation transformation

While pi(c) can be estimated from {cm,i,m = 1, ..., M} by pooling a histogram, we choose to

parametrize pi(c) with a single parameter so that it can be estimated from even a single image.

We assume pi(c) to be the following exponential family model:

p(c; λ) =
1

Z(λ)
exp{λh(r)}q(c),

where λ > 0 is the parameter. For c = (c0, c1), r = |c|2 = c2
0 + c2

1.

Z(λ) =
∫

exp{λh(r)}q(c)dc = Eq[exp{λh(r)}]

is the normalizing constant. h(r) is a monotone increasing function. We assume pi(c) = p(c; λi),

which accounts for the fact that the squared responses {|cm,i|2 = |〈Im, Bxi+Δxm,i,s,αi+Δαm,i〉|2,m =

1, ..., M} in the positive examples are in general larger than those in natural images, because

Bxi+Δxm,i,s,αi+Δαm,i tends to sketch a local edge segment in each Im. As mentioned before, q(c) is

estimated by pooling a histogram from natural images.
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We argue that h(r) should be a saturation transformation in the sense that as r → ∞, h(r)

approaches a finite number. The sigmoid transformation in (5) is such a transformation. The reason

for such a transformation is as follows. Let q(r) be the distribution of r = |c|2 = |〈I, B〉|2 under q(c)

where I ∼ q(I). We may implicitly model q(c) as a mixture of pon(r) and poff(r), where pon is the

distribution of r when B is on an edge in I, and poff is the distribution of r when B is off an edge in

I. Let q(r) = (1−ρ0)poff(r)+ρ0pon, where ρ0 is the proportion of edges in natural images. Similarly,

let pi(r) be the distribution of r = |c|2 under pi(c). We can model pi(r) = (1 − ρi)poff(r) + ρipon,

where ρi > ρ0, i.e., the proportion of edges sketched by the selected basis element is higher than the

proportion of edges in natural images. Then, as r → ∞, pi(r)/q(r) → ρi/ρ0, which is a constant.

Therefore, h(r) should saturate as r → ∞.

1.10 Maximum likelihood learning and pursuit index

Now we can justify the shared sketch algorithm as a greedy scheme for maximizing the log-

likelihood. With parametrization (7) for the statistical model (6), the log-likelihood is

M∑
m=1

n∑
i=1

log
pi(cm,i)
q(cm,i)

=
n∑

i=1

λi

M∑
m=1

h(|〈Im, Bxi+Δxm,i,s,αi+Δαm,i〉|2) − M log Z(λi). (7)

We want to estimate the locations and orientations of the elements of the active basis, (xi, αi, i =

1, ..., n), the activities of these elements, (Δxm,i,Δαm,i, i = 1, ..., n), and the weights (λi, i =

1, ..., n), by maximizing the log-likelihood (7), subject to the constraints that Bm = (Bxi+Δxm,i,s,αi+Δαm,i ,

i = 1, ..., n) is orthogonal for each m.

First, we consider the problem of estimating the weight λi given Bm and cm,i. To maximize

the log-likelihood (7) over λi, we only need to maximize

li(λi) = λi

M∑
m=1

h(|〈Im, Bxi+Δxm,i,s,αi+Δαm,i〉|2) − M log Z(λi).

By setting l′i(λi) = 0, we get the well-known form of the estimating equation for exponential family

model:

μ(λi) =
1
M

M∑
m=1

h(cm,i|2), (8)

where the mean parameter μ(λ) of the exponential family model is

μ(λ) = Eλ[h(r)] =
1

Z(λ)

∫
h(r) exp{λh(r)}q(r)dr. (9)

The estimating equation (8) can be solved easily, because μ(λ) is a one-dimensional function.

We can simply store this monotone function over a one-dimensional grid. Then we solve this

equation by looking up the stored values, with the help of nearest neighbor linear interpolation

for the values between the grid points. For each grid point of λ, μ(λ) can be computed by one-

dimensional integration. Thanks to the independence assumption, we only need to deal with such
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one-dimensional functions, which relieves us from time consuming MCMC computations such as

those in our previous work [16].

Next let us consider the problem of selecting (xi, αi) and estimating the activity (Δxm,i,Δαm,i)

for each image Im. Let λ̂i be the solution to the estimating equation (9). li(λ̂i) is monotone

in
∑M

m=1 h(|cm,i|2)/M . Therefore, we need to find (xi, αi), and (Δxm,i,Δαm,i), by maximizing∑M
m=1 h(|cm,i|2). This justifies Step 1 of Algorithm 3, where

∑M
m=1 h(|Rm(x + Δx, α + Δα)|2)

serves as the pursuit index.

1.11 SUM-MAX maps for template matching

After learning the active basis model, in particular, the basis elements B = (Bxi,s,αi , i = 1, ..., n)

and the weights (λi, i = 1, ..., n), we can use the learned model to find the object in a testing image

I. The testing image may not be defined on the same lattice as the training images. For example,

the testing image may be larger than the training images. We assume that there is one object in

the testing image, but we do not know the location of the object in the testing image. In order

to detect the object, we scan the template over the testing image, and at each location x, we can

deform the template and match it to the image patch around x. This gives us a log-likelihood

score at each location x. Then we can find the maximum likelihood location x̂ that achieves the

maximum of the log-likelihood score among all the x. After computing x̂, we can then retrieve the

activities of the elements of the active basis template centered at x̂.

Algorithm 4: Object detection by template matching

1 For every x, compute

l(x) =
n∑

i=1

[
λi max

(Δx,Δα)∈A(αi)
h(|〈I, Bx+xi+Δx,s,αi+Δα〉|2) − log Z(λi)

]
.

2 Select x̂ = arg maxx,y l(x). For i = 1, ..., n, retrieve

(Δxi, Δαi) = arg max
(Δx,Δα)∈A(αi)

|〈I, Bx̂+xi+Δx,s,αi+Δα〉|2.

3 Return the location x̂, and the deformed template (Bx̂+xi+Δxi,s,αi+Δαi
, i = 1, ..., n).

Step 1 of the above algorithm can be realized by a computational architecture called sum-max

maps.

Algorithm 4.1: sum-max maps

1 For all (x, α), compute SUM1(x, α) = h(|〈I, Bx,s,αi〉|2).

2 For all (x, α), compute MAX1(x, α) = max(Δx,Δα)∈A(α) SUM1(x, α).
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3 For all x, compute SUM2(x) =
∑n

i=1[λiMAX1(x + xi, s, αi) − log Z(λi)].

SUM2(x) is l(x) in Algorithm 4.

The local maximization operation in Step 2 of Algorithm 4.1 has been hypothesized as the

function of the complex cells of the primary visual cortex [12]. In the context of the active basis

model, this operation can be justified as the maximum likelihood estimation of the activities. The

shared sketch learning algorithm can also be written in terms of sum-max maps.

Algorithm 4 with the Step 1 implemented by algorithm 4.1 can be considered a simplified special

case of dynamic programming [2]. It is also related to belief propagation for fitting deformable tem-

plates [5], although it is much simpler than the latter, thanks to the simple independent structure

of the model.

The activities (Δxm,i, Δαm,i, i = 1, ..., n) should be treated as latent variables in the active basis

model. However, in both learning and inference algorithms, we treat them as unknown parameters,

and we maximize over them instead of integrating them out. According to Little and Rubin [9],

maximizing the complete-data likelihood over the latent variables may not lead to valid inference

in general. However, in natural images, there is little noise, and the uncertainty in the activities is

often very small. So maximizing over the latent variables can be considered a good approximation

to integrating out the latent variables.
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