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Abstract

We develop a Bayesian sequential model for category learning. The sequential
model updates two category parameters, the mean and the variance, over time. We
define conjugate temporal priors to enable closed form solutions to be obtained.
This model can be easily extended to supervised and unsupervised learning in-
volving multiple categories. To model the spacing effect, we introduce a generic
prior in the temporal updating stage to capture a learning preference, namely, less
change for repetition and more change for variation. Finally, we show how this ap-
proach can be generalized to efficiently perform model selection to decide whether
observations are from one or multiple categories.

1 Introduction

Inductive learning the process by which a new concept or category is acquired through observation
of exemplars - poses a fundamental theoretical problem for cognitive science. When exemplars are
encountered sequentially, as is typical in everyday learning, then learning is influenced in systematic
ways by presentation order. One pervasive phenomenon is thespacing effect, manifested in the
finding that given a fixed amount of total study time with a given item, learning is facilitated when
presentations of the item are spread across a longer time interval rather than massed into a continuous
study period. In category learning, for example, exemplarsof two categories can be spaced by
presenting them in an interleaved manner (e.g.,A1B1A2B2A3B3), or massed by presenting them
in consecutive blocks (e.g.,A1A2A3B1B2B3). Kornell & Bjork [1] show that when tested later on
classification of novel category members, spaced presentation yields superior performance relative
to massed presentation. Similar spacing effects have been obtained in studies of item learning [2]
and motor learning [3]. Moreover, spacing effects are foundnot only in human learning, but also in
various types of learning in other species, including rats and Aplysia [4][5].

In the present paper we will focus on spacing effects in the context of sequential category learning.
Standard statistical methods based on summary informationare unable to deal with order effects,
including the performance difference between spaced and massed conditions. From a computa-
tional perspective, a sequential learning model is needed to construct category representations from
training examples and dynamically update parameters of these representations from trial to trial.
Bayesian sequential models have been successfully appliedto model causal learning and animal
conditioning [6] [7]. In the context of category learning, if we assume that the representation for
each category can be specified by a Gaussian distribution where the meanµ and the varianceσ2 are
both random variables [8], then the learning model must aim to compute the posterior distribution
of the parameters for each category given all the observationsxt from trial 1 to trial t,P (µ, σ2|xt).
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However, given that both the mean and the variance of a category are random variables, standard
Kalman filtering [9] is not directly applicable in this case since it assumes a known variance, which
is not warranted in the current application.

In this paper, we extend traditional Kalman filtering in order to update two category parameters, the
mean and the variance, over time in the context of category learning. We define conjugate tempo-
ral priors to enable closed form solutions to be obtained in this learning model with two unknown
parameters. We will illustrate how the learning model can beeasily extended to learning situations
involving multiple categories either with supervision (i.e., learners are informed of category mem-
bership for each training observation) or without supervision (i.e., category membership of each
training observation is not provided to learners). Surprisingly, we can also derive closed form so-
lutions in the latter case. This reduces the need for employing particle filters as an approximation
to exact inference, commonly used in the case of unsupervised learning [10]. To model the spacing
effect, we introduce a generic prior in the temporal updating stage. Finally, we will show how this
approach can be generalized to efficiently perform model selection.

The organization of the present paper is as follows. In Section 2 we introduce the Bayesian se-
quential learning framework in the context of category learning, and discuss the conjugacy property
of the model. Section 3 and 4 demonstrate how to develop supervised and unsupervised learning
models, which can be compared with human performance. We draw general conclusions in section
5.

2 Bayesian sequential model

We adopt the framework of Bayesian sequential learning [11], termed Bayes-Kalman, a probabilistic
model in which learning is assumed to be a Markov process withunobserved states. The exemplars
in training are directly observable, but the representations of categories are hidden and unobserv-
able. In this paper, we assume that categories can be represented as Gaussian distributions with two
unknown parameters, means and variances. These two unknownparameters need to be learned from
a limited number of exemplars (e.g., less than ten exemplars).

We now state the general framework and give the update rule for the simplest situation where the
training data is generated by a single category specified by ameanm and precisionr – the precision
is the inverse of the variance and is used to simplify the algebra. Our model assumes that the mean
can change over time and is denoted bymt, wheret is the time step. The model is specified by the
prior distributionP (m0, r), the likelihood functionP (x|mt, r) for generating the observations, and
the temporal priorP (mt+1|mt) specifying howmt can vary over time. Note that the precisionr is
estimated over time, which differs from standard Kalman filtering where it is assumed to be known.

Bayes-Kalman [11] gives iterative equations to determine the posteriorP (mt, r|Xt) after a sequence
of observationsXT = {x1, ..., xt}. The update equations are divided into two stages, prediction and
correction:

P (mt+1, r|Xt) =

∫

∞

−∞

dmtP (mt+1|mt)P (mt, r|Xt), (1)

P (mt+1, r|Xt+1) = P (mt+1, r|xt+1, Xt) =
P (xt+1|mt+1, r)P (mt+1, r|Xt)

P (xt+1|Xt)
. (2)

Intuitively, the Bayes-Kalman firstpredicts the distributionP (mt+1, r|Xt) and then uses this as a
prior to correct for the new observationxt+1 and determine the new posteriorP (mt+1, r|Xt+1).
Note that the temporal priorP (mt+1|mt) implies that the model automatically pays most attention
to recent data and does not memorize the data, thus exhibiting sensitivity to the data ordering.

2.1 Conjugate priors

The distributionsP (m0, r), P (x|mt, r), P (mt+1|mt) are chosen to be conjugate, so that the distri-
butionP (mt, r|Xt) takes the same functional form asP (m0, r). As shown in the following section,
this reduces the Bayes-Kalman equations to closed form update rules for the parameters of the dis-
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tributions. The distributions are specified in terms of Gamma and Gaussian distributions:

g(r : α, β) =
βα

Γ(α)
rα−1 exp{−βr}, r ≥ 0. Gamma. (3)

G(x : µ, ρ) = {
ρ

2π
} exp{−ρ/2(x− µ)2}. Gaussian. (4)

We specify the priorP (m0, r) as the product of a GaussianP (m0|r) and a GammaP (r):

P (m0|r) = G(m0 : µ, τr), P (r) = g(r : α, β), (5)

whereµ, τ, α, β are the parameters of the distribution. For simplicity, we call this a Gamma-
Gaussian distribution with parametersµ, τ, α, β.

The likelihood function and temporal prior are both Gaussians:

P (xt|mt, r) = G(xt : mt, ζr), P (mt+1|mt) = G(mt+1 : mt, γr), (6)

whereζ, γ are constants.

The conjugacy of the distributions ensures that the posterior distributionP (mt, r|Xt) will also be
a Gamma-Gaussian distribution with parametersµt, τt, αt, βt, where the update rules for these pa-
rameters are specified in the next section.

2.2 Update rules for the model parameters

The update rules for the model parameters follow from substituting the distributions into the Bayes-
Kalman equations 1, 2. We sketch how these update rules are obtained assuming thatP (mt, r|Xt)
is a Gamma-Gaussian with parametersµt, τt, αt, βt, which is true fort = 0 using equations (5,6).

The form of the prediction equation and the temporal prior, see equations (1,6), ensures that
P (mt+1, r|Xt) is also a Gamma-Gaussian distribution with parametersµt, τ

p
t , αt, βt, where

τp
t =

τtγ

τt + γ
. (7)

The correction equation and the likelihood function, see equations (2,6), ensure that
P (mt+1, r|Xt+1) is also Gamma-Gaussian with parametersµt+1, τt+1, αt+1, βt+1 given by:

αt+1 = αt + 1/2, βt+1 = βt +
ζτp

t (xt+1 − µt)
2

2(ζ + τp
t )

,

µt+1 =
ζxt+1 + τp

t µt

ζ + τp
t

, τt+1 = ζ + τp
t . (8)

Intuitively, the prediction only reduces the precision ofm but makes no change to its mean or to the
distribution overr. By contrast, the new observation alters the mean ofm (moving it closer to the
new observationxt+1), and also increases its precision, which sharpens the distribution onr.

2.3 Model evidence

We also need to compute the probability of the observation sequenceXt from the model (which will
be used later for model selection). This can be expressed recursively as:

p(Xt) = p(xt|Xt−1)p(xt−1|Xt−2)...p(x1). (9)

This computation is also simplified because we use conjugatedistributions. The terms in equa-
tion (9) can be expressed asP (xt+1|Xt) =

∫

dmt+1drP (xt+1|mt+1, r)P (mt+1, r|Xt) and these
integrals can be calculated analytically yielding:

P (xt+1|Xt) =
{

βt +
ζτt

2(ζ + τt)
(x − µt)

2
}−(αt+1/2)

{
1

2π

ζτt

ζ + τt
}1/2 βαt

t Γ(αt + 1/2)

Γ(αt)
. (10)
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3 Supervised category learning

Although the learning model is presented for one category, it can easily be extended to learning
multiple categories with known category membership for training data (i.e., under supervision). In
this section, we will first describe an experiment with two categories to show how the category
representations change over time; then we will simulate learning with six categories and compare
predictions with human data in psychological experiments.

3.1 Two-category learning with supervision

We first conduct a synthetic experiment with two categories under supervision. We generate six
training observations from one of two one-dimensional Gaussian distributions (representing cate-
gories A and B, respectively) with means[−0.4, 0.4] and standard deviation of 0.4. Two training
conditions are included, a massed condition with the data presentation order of AAABBB and a
spaced condition with the order of ABABAB.

To model the acquisition of category representations during training, we employ the Bayesian learn-
ing model as described in the previous section. In the correction stage of each trial, the model
updates the parameters corresponding to the category that produced the observation based on the
supervision (i.e., known category membership), followingequation (8).

In the prediction stage, however, different values of a fixedmodel parameterγ are introduced to
incorporate a generic prior that controls how much the learner is willing to update category repre-
sentations from one trial to the next. The basic hypothesis is that learners will have greater con-
fidence in knowledge of a category presented on trialt than of a category absent on trialt. As a
consequence, the learner will be willing to accept more change in a category representation if the
observation on the previous trial was drawn from a differentcategory. This generic prior does share
some conceptual similarity with a model developed by Kording et. al,[?], which assumes that the
moment-moment variance of the states is higher for faster timescales (p. 779).

More specifically, if the observation on trialt is from the first category, in the prediction phase we
will update theτt parameters for the two categories,τt

1, τt
2, as:

τt
1 7→

τt
1γs

τt
1 + γs

, τt
2 7→

τt
2γd

τt
2 + γd

, (11)

in whichγs > γd. In the simulation, we usedγs = 50 andγd = .5
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Figure 1: Posterior distributions of meansP (mt|Xt) and precisionsP (rt|Xt) updated on training
trials in two-category supervised learning. Blue lines indicate category parameters in the first cat-
egory; and red lines indicate parameters in the second category. The top panel shows the results
for the massed condition (i.e., AAABBB), and the bottom panel shows the results for the spaced
condition (i.e., ABABAB). Please see in colour. We show the distributions only on even trials to
save space. See section 3.1.

Figure (1) shows the change of posterior distributions of the two unknown category parameters,
meansP (mt|Xt) and precisionsP (rt|Xt), over training trials. Figure (2) shows the category rep-
resentation in the form of the posterior distribution ofP (xt|Xt). In the massed condition (i.e.,
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AAABBB), the variance of the first category decreases over the first three trials, and then increases
over the second three trials because the observations are from the second category. The increase of
category variance reflects the forgetting that occurs if no new observations are provided for a partic-
ular category after a long interval. This type of forgettingdoes not occur in the spaced condition, as
the interleaved presentation order ABABAB ensured that each category recurs after a short interval.

Based upon the learned category representations, we can compute accuracy (the ability to discrim-
inate between the two learnt distributions) using the posterior distributions of the two categories.
After 100 simulations, the average accuracy in the massed condition is 0.78, which is lower than the
0.84 accuracy in the spaced condition. Thus our model is ableto predict the spacing effect found in
two-category supervised learning.
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Figure 2: Posterior distribution of each category,P (xt|Xt), updated on training trials in the two-
category supervised learning. Same conventions as in figure(1). See section 3.1.

3.2 Modeling the spacing effect in six-category learning

Kornell and Bjork [1] asked human subjects to study six paintings by six different artists, with a
given artists paintings presented consecutively (massed)or interleaved with other artists paintings
(spaced). In the training phase, subjects were informed which artist created each training painting.
The same 36 paintings were studied in the training phase, butwith different presentation orders
in the massed and spaced conditions. In the subsequent test phase, six new paintings (one from
each artist) were presented and subjects had to identify which artist painted each of a series of new
paintings. Four test blocks were tested with random displayorder for artists. In each test block,
participants were given feedback after making an identification response. Paintings presented in one
test block thus served as training examples for the subsequent test block. Human results are shown
in figure (4). Human subjects showed significantly better test performance after spaced than massed
training. Given that feedback was provided and one paintingfrom each artist appeared in one test
block, it is not surprising that test performance increasedacross test blocks and the spacing effect
decreased with more test blocks.

To simulate the data, we generated training and test data from six one-dimensional Gaussian distri-
butions with means[−2,−1.2,−0.4, 0.4, 1.2, 2] and standard deviation of 0.4. Figure (3) shows the
learned category representations in terms of posterior distributions. Depending on the presentation
order of training data (massed or spaced), the learned distributions differ in terms of means and vari-
ances for each category. To compare with human performance reported by Kornell and Bjork, the
model estimates accuracy in terms of discrimination between the two categories based upon learned
distributions. Figure (4) shows average accuracy from 1000simulations. The result plot illustrates
that the model predictions match human performance well.

4 Unsupervised category learning

Both humans and animals can learn without supervision. For example, in the animal conditioning
literature, various studies have shown that exposing two stimuli in blocks (equivalent to a massed
condition) is less effective in producing generalization [12]. Balleine et. al. [4] found that with rats,
preexposure to two stimuli A and B (massed or spaced) determines the degree to which backward
blocking is subsequently obtained – backward blocking occurs if the preexposure is spaced but not
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Figure 3: Posterior distribution of each category,P (xt|Xt), updated on training trials in the six-
category supervised learning. Same conventions as in figure(1). See section 3.2.
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Figure 4: Human performance (left) and model prediction (right). Proportion correct as a function
of presentation training conditions (massed and spaced) and test block. See section 3.2.

if it is massed. They conclude that in the massed preexposurethe rats are unable to distinguish
two separate categories for A and B, and therefore treat themas members of a single category. By
contrast, they conclude that rats can distinguish the categories A and B in the spaced preexposure.

In this section, we generalize the sequential category model to unsupervised learning, when the cate-
gory membership of each training example is not provided to observers. We first derive the extension
of the sequential model to this case (surprisingly, showingwe can obtain all results in closed form).
Then we determine whether massed and spaced stimuli (as in Balleine et. al.’s experiment [4]) are
most likely to have been generated by a single category or by two categories. We also assess the
importance of supervision in training by comparing performance after unsupervised learning with
that after supervised learning.

We consider a model with two hidden categories. Each category can be represented as a Gaussian
distribution with a mean and precisionm1, r1 andm2, r2. The likelihood function assumes that the
data is generated by either category with equal probability, since the category membership is not
provided,

P (x|m1, r1, m2, r2) =
1

2
P (x|m1, r1) +

1

2
P (x|m2, r2), (12)

with P (x|m1, r1) = G(x : m1, ζr1), P (x|m2, r2) = G(x : m2, ζr2). (13)

We specify prior distributions and temporal priors as before:

P (m1
0, r

1) = G(m1
0 : µ1, τr1), P (m2

0, r
2) = G(m2

0 : µ2, τr2) (14)

P (m1
t+1|m

1
t ) = G(m1

t+1 : m1
t , γr1), P (m2

t+1|m
2
t ) = G(m2

t+1 : m2
t , γr2). (15)

The joint posterior distributionP (m1
t , r

1, m2
t , r

2|Xt) after observationsXt can be formally ob-
tained by applying the Bayes-Kalman update rules to the joint distribution – i.e., replace(mt, r) by
(m1

t , r
1, m2

t , r
2) in equations (1,2)). But this update is more complicated because we do not know

whether the new observationxt should be assigned to category 1 or category 2. Instead we have to
sum over all the possible assignments of the observations tothe categories which gives2t possible
assignments at timet. This can be performed efficiently in a recursive manner. LetAt denote the set
of possible assignments at timet where each assignment is a string(a1, ..., at) of binary variables
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of lengtht, where(1, ..., 1) is the assignment where all the observations are assigned tocategory 1,
(2, 1, ..., 1) assigns the first observation to category 2 and the remainderto category 1, and so on.

By substituting equations (12,14,15) into Bayes-Kalman wecan obtain an iterative update equation
for P (m1

t , r
1, m2

t , r
2|Xt). At time t we represent:

P (m1
t , r

1, m2
t , r

2|Xt) =
∑

(a1,...,at)∈At

P (m1, r|~α1
a1,...,at

)P (m2, r|~α2
(a1,...,at)

)P (a1, ..., at|Xt),

(16)

whereαi
(a1,...,at)

denotes the values of the parameters~α = (α, β, µ, τ) for categoryi (i ∈ {1, 2})
for observation sequence(a1, ..., at) andP (a1, ..., at) is the probability of assignment(a1, ..., at).
At t = 0 there is no observation sequence andP (m1

0, r
1, m2

0, r
2|Xt) = P (m1, r|~α1)P (m2, r|~α2)

which corresponds toA0 containing a single element which has probability one.

The prediction stage updates theτ component of~αi(a1, ..., at) by:

τ i(a1, ..., at) 7→
γi(at)τ

i(a1, ..., at)

γi(at) + τ i(a1, ..., at)
. (17)

We defineγi(at) as larger ifi = at and smaller ifi 6= at, as specified in equation (11) to incorporate
the generic prior described in section 3.1.

The correction stage at timet + 1 introduces another observation, which must be assigned to the
two categories. This gives a new setAt+1 of 2t+1 assignments of form(a1, ..., at+1) and a new
posterior:

P (m1
t+1, r

1, m2
t+1, r

2|Xt+1) =
∑

(a1,...,at+1)∈At+1

P (m1, r|~α1
a1,...,at+1

)P (m2, r|~α2
(a1,...,at+1)

)P (a1, ..., at+1|Xt+1),

(18)

where we compute~αi
(a1,...,at+1)

for i ∈ {1, 2} by:

αi
(a1,...,at+1)

= αi
(a1,...,at)

+ 1/2, β1
(a1,...,at+1)

= β1
(a1,...,at)

+
ζτ i

(a1,...,at)
(xt+1 − µ1

(a1,...,at)
)2

2(ζ + τ i
(a1,...,at)

)
,

µi
(a1,...,at+1)

=
ζxt+1 + τ i

(a1,...,at)
µi

(a1,...,at)

ζ + τ1
(a1,...,at)

, τ i
(a1,...,at+1

= ζ + τ i
(a1,....,at)

, (19)

and we computeP (a1, ..., at+1) by:

P (a1, ..., at+1|Xt+1) =
P (xt+1|~α

at+1

(a1,...,at)
)P (a1, ..., at)

∑

(a1,...,at)
P (xt+1|~α

at+1

(a1,...,at)
)P (a1, ..., at)

, (20)

where

P (xt+1|~α
at+1

(a1,...,at)
) =

∫

dmat+1drat+1P (xt+a|m
(at+1), rat+1)P (m(at+1), rat+1 |~α(a1,...,at))

(21)

The model selection can, as before, be expressed asP (xt|Xt−1)P (xt−1|Xt)....P (x1), where

P (xt+1|Xt) =
∑

(a1,...,at)∈At

P (xt+1|~α
at+1

(a1,...,at)
)P (a1, ..., at). (22)

We can now address the problem posed by Balleine et. al.’s preexposure experiments [4] – why
do rats identify a single category for the massed stimuli buttwo categories for the spaced stimuli?
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We treat this as a model selection problem. We compare the evidence for the sequential model
with one category, see equations (9,10), versus the evidence for the model with two categories, see
equations (9,22), for the two cases AAABBB (massed) and ABABAB (spaced).

We use the same data as described in section (3.1) but withoutproviding category membership for
any of the training data. The left plot in figure (5) shows the result obtained by comparing model
evidence for the one-category model with model evidence forthe two-category model. A greater
ratio value indicates greater support for the one-categoryaccount. As shown in figure (5), the model
decides that all training observations are from one category in the massed condition, but from two
different categories in the spaced condition (using zero asthe decision threshold). These predictions
agree with with Balleine et. al.’s findings.
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Figure 5: Model selection and accuracy results. Left, modelselection results as a function of pre-
sentation training conditions (massed and spaced). A greater ratio indicates more support for the
one-category account. Error bars indicate the standard error from 100 simulations. See section 4.2.
Right, comparison of supervised and unsupervised learningin terms of accuracy. See section 4.3.
To assess the influence of supervision on learning, we compare performance between supervised
learning (described in section (3.1)) with unsupervised learning (described in this section). To make
the comparison, we assume that learners are provided with the same training data and are informed
that the data are from two different categories, either withknown category membership (supervised)
or unknown category membership (unsupervised) for each training observation. Accuracy measured
by discrimination between the two categories is compared inthe right plot of figure (5). The model
predicts higher accuracy given supervised than unsupervised learning. Furthermore, the model pre-
dicts a spacing effect for both types of learning, although the effect is reduced with unsupervised
learning.

5 Conclusions

In this paper, we develop a Bayesian sequential model for category learning by updating category
representations over time based on two category parameters, the mean and the variance. Analytic
updating rules are obtained by defining conjugate temporal priors to enable closed form solutions.
A generic prior in the temporal updating stage is introducedto model the spacing effect. Parameter
estimation and model selection can be performed on the basisof updating rules. The current work
extends standard Kalman filtering, and is able to predict learning phenomena that have been observed
for humans and other animals.

In addition to explaining the spacing effect, our model predicts that subjects will become less certain
about their knowledge of learned categories as time passes,see the increase in category variance in
Figure 2. But our model is not standard Kalman filter (since the measurement variance is unknown),
so we do not predict exponential decay. Instead, as shown in Equation 10, our model predicts the
pattern of power-law forgetting that is fairly universal inhuman memory [14]

For small number of observations, our model is extremely efficient because we can derive analytic
solutions. For example, the analytic solutions for unsupervised learning requires only 0.2 seconds
for six observations while numerical integration takes 18 minutes. However, our model will scale
exponentially with the number of observations in unsupervised learning. Future work is to include
a pruning strategy to keep the complexity practical.
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