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Abstract

We develop a Bayesian sequential model for category legrnithe sequential
model updates two category parameters, the mean and thee@rover time. We
define conjugate temporal priors to enable closed form isplsitto be obtained.
This model can be easily extended to supervised and unsapénearning in-
volving multiple categories. To model the spacing effea,imtroduce a generic
prior in the temporal updating stage to capture a learniefgpence, namely, less
change for repetition and more change for variation. Fjnalé show how this ap-
proach can be generalized to efficiently perform model sieleto decide whether
observations are from one or multiple categories.

1 Introduction

Inductive learning the process by which a new concept ogoayds acquired through observation
of exemplars - poses a fundamental theoretical problemdgnitive science. When exemplars are
encountered sequentially, as is typical in everyday learrthen learning is influenced in systematic
ways by presentation order. One pervasive phenomenon ispeing effect, manifested in the
finding that given a fixed amount of total study time with a givem, learning is facilitated when
presentations of the item are spread across a longer tisr@ahtather than massed into a continuous
study period. In category learning, for example, exemptdirsvo categories can be spaced by
presenting them in an interleaved manner (e4g.3; A B A3 B3), or massed by presenting them
in consecutive blocks (e.g41 A» A3 B1 B2 B3). Kornell & Bjork [1] show that when tested later on
classification of novel category members, spaced presemigelds superior performance relative
to massed presentation. Similar spacing effects have baamed in studies of item learning [2]
and motor learning [3]. Moreover, spacing effects are fonadonly in human learning, but also in
various types of learning in other species, including rats Aplysia [4][5].

In the present paper we will focus on spacing effects in threeod of sequential category learning.
Standard statistical methods based on summary informat@mnable to deal with order effects,
including the performance difference between spaced arsbedaconditions. From a computa-
tional perspective, a sequential learning model is neealednistruct category representations from
training examples and dynamically update parameters aktihepresentations from trial to trial.
Bayesian sequential models have been successfully agplistbdel causal learning and animal
conditioning [6] [7]. In the context of category learninfwe assume that the representation for
each category can be specified by a Gaussian distributiorevthe mean. and the variance? are
both random variables [8], then the learning model must aiompute the posterior distribution
of the parameters for each category given all the obsenatiofrom trial 1 to trial t, P(u, o2 |x¢).



However, given that both the mean and the variance of a catege random variables, standard
Kalman filtering [9] is not directly applicable in this cadace it assumes a known variance, which
is not warranted in the current application.

In this paper, we extend traditional Kalman filtering in artteupdate two category parameters, the
mean and the variance, over time in the context of categamieg. We define conjugate tempo-
ral priors to enable closed form solutions to be obtainedhis learning model with two unknown
parameters. We will illustrate how the learning model carasily extended to learning situations
involving multiple categories either with supervisiore(j.learners are informed of category mem-
bership for each training observation) or without supéovigi.e., category membership of each
training observation is not provided to learners). Suimpgly, we can also derive closed form so-
lutions in the latter case. This reduces the need for empipparticle filters as an approximation
to exact inference, commonly used in the case of unsuperiesening [10]. To model the spacing
effect, we introduce a generic prior in the temporal updpsitage. Finally, we will show how this
approach can be generalized to efficiently perform modeksiein.

The organization of the present paper is as follows. In 8acti we introduce the Bayesian se-
guential learning framework in the context of categoryhéag, and discuss the conjugacy property
of the model. Section 3 and 4 demonstrate how to develop gisedrand unsupervised learning
models, which can be compared with human performance. We gigaeral conclusions in section

5.

2 Bayesian sequential model

We adopt the framework of Bayesian sequential learning fgtined Bayes-Kalman, a probabilistic
model in which learning is assumed to be a Markov processumittbserved states. The exemplars
in training are directly observable, but the representatiof categories are hidden and unobserv-
able. In this paper, we assume that categories can be rafgdses Gaussian distributions with two
unknown parameters, means and variances. These two unlgarammeters need to be learned from
a limited number of exemplars (e.qg., less than ten exenjplars

We now state the general framework and give the update ruldh&simplest situation where the
training data is generated by a single category specifiedhbyanm and precision — the precision

is the inverse of the variance and is used to simplify thelalgeOur model assumes that the mean
can change over time and is denotediby, wheret is the time step. The model is specified by the
prior distributionP (mq, ), the likelihood functionP(xz|m., r) for generating the observations, and
the temporal priol(m.1|m;) specifying howm, can vary over time. Note that the precisiois
estimated over time, which differs from standard Kalmaetfiittg where it is assumed to be known.

Bayes-Kalman [11] gives iterative equations to deterntieegiosterio (m, r| X ) after a sequence
of observationsXr = {z1, ..., z; }. The update equations are divided into two stages, predieatid
correction:

Plmpsr, v X)) = / dma P(mas1|ma) Pme, 1| X0), (1)

P(zi1|mirr, 7)) P(migr, r| X)
P(ze41]Xy)

)

P(mit1, 7| Xey1) = P(mygr, 7|ze1, Xi) =

Intuitively, the Bayes-Kalman firgiredicts the distributionP (m.1,7|X:) and then uses this as a
prior to correct for the new observatiom;; and determine the new posteriBfm;11, 7| X¢t1)-
Note that the temporal pridP(m;+1|m;) implies that the model automatically pays most attention
to recent data and does not memorize the data, thus exlgisgimsitivity to the data ordering.

2.1 Conjugatepriors

The distributionsP (mg, r), P(x|m¢, r), P(m.+1|m;) are chosen to be conjugate, so that the distri-
bution P(m, r| X;) takes the same functional form B$m,, ). As shown in the following section,
this reduces the Bayes-Kalman equations to closed formtepdkes for the parameters of the dis-



tributions. The distributions are specified in terms of Gaarand Gaussian distributions:

g(r:a,fB) = %r“‘l exp{—0r}, r > 0. Gamma. 3)
Gz : p,p) = {%} exp{—p/2(x — p1)?}. Gaussian. 4)

We specify the prioP(my, r) as the product of a Gaussi&{mg|r) and a Gamma(r):
P(molr) = G(mo : p, 77), P(r)=g(r:a,p), ()

where u, 7, «r, 8 are the parameters of the distribution. For simplicity, vedl this a Gamma-
Gaussian distribution with parameters, 7, a, (.

The likelihood function and temporal prior are both Gaussia
P(xilmy,r) = G(xr 2 my, (1),  P(megi|me) = G(mygr : my,yr), (6)
where(, v are constants.

The conjugacy of the distributions ensures that the pastdistributionP(m., r| X;) will also be
a Gamma-Gaussian distribution with parametersy, o,, 3;, where the update rules for these pa-
rameters are specified in the next section.

2.2 Updaterulesfor the model parameters

The update rules for the model parameters follow from stisig the distributions into the Bayes-
Kalman equations 1, 2. We sketch how these update rules tamet assuming thak (m, r| X;)
is a Gamma-Gaussian with parametessr, oy, (3¢, which is true fort = 0 using equations (5,6).

The form of the prediction equation and the temporal pri@e gquations (1,6), ensures that
P(myy1,7|X;) is also a Gamma-Gaussian distribution with parameters!, o, 3;, where

p Tty
T, = . 7
ity 0
The correction equation and the likelihood function, seeuagigns (2,6), ensure that
P(myi41,7|Xe41) is also Gamma-Gaussian with parameijers;, 7¢4+1, @41, St+1 given by:

Crf (w1 — pe)®
iy = ap +1/2, Biy1 = Bt + =
2(C+1)

(w1 + 7
Lhe+1 :W7 Te4+1 :C—|—7‘é”. (8)
Intuitively, the prediction only reduces the precisiomobut makes no change to its mean or to the
distribution overr. By contrast, the new observation alters the meam ¢moving it closer to the
new observation;. 1), and also increases its precision, which sharpens thebdison onr.

2.3 Model evidence

We also need to compute the probability of the observatigneeceX,; from the model (which will
be used later for model selection). This can be expressedsieely as:

p(Xt) = p(we| Xi—1)p(2-1| Xt —2)...p(21). ()]

This computation is also simplified because we use conjudjatebutions. The terms in equa-
tion (9) can be expressed &x,11|X;) = [ dmyp1drP(zis1|metr, r)P(meyq, 7| X,) and these
integrals can be calculated analytically yielding:

. _ (T . ~(ent1/2) L (1 (g0 B0 (e +1/2)
PlovalX) = {0+ g o - )’} (e S N B



3 Supervised category learning

Although the learning model is presented for one categomam easily be extended to learning
multiple categories with known category membership foinirey data (i.e., under supervision). In
this section, we will first describe an experiment with twdeggries to show how the category
representations change over time; then we will simulatmlag with six categories and compare
predictions with human data in psychological experiments.

3.1 Two-category learning with supervision

We first conduct a synthetic experiment with two categorieden supervision. We generate six
training observations from one of two one-dimensional Geusdistributions (representing cate-
gories A and B, respectively) with meafps0.4, 0.4] and standard deviation of 0.4. Two training
conditions are included, a massed condition with the dataemtation order of AAABBB and a

spaced condition with the order of ABABAB.

To model the acquisition of category representations duraining, we employ the Bayesian learn-
ing model as described in the previous section. In the ctiorestage of each trial, the model
updates the parameters corresponding to the categoryribwditiqged the observation based on the
supervision (i.e., known category membership), followeagiation (8).

In the prediction stage, however, different values of a fireatlel parametey are introduced to
incorporate a generic prior that controls how much the leaimwilling to update category repre-
sentations from one trial to the next. The basic hypothasikat learners will have greater con-
fidence in knowledge of a category presented on triklan of a category absent on trial As a
consequence, the learner will be willing to accept more gban a category representation if the
observation on the previous trial was drawn from a diffecatégory. This generic prior does share
some conceptual similarity with a model developed by Kagdét al,[?], which assumes that the
moment-moment variance of the states is higher for fastedcales (p. 779).

More specifically, if the observation on triais from the first category, in the prediction phase we
will update ther, parameters for the two categorieg,, 72, as:

1 2
Tt 7Y Tt™Yd
1 — - Vs , t2 — X it , (11)
T+ Vs T+ Yd
in which~s > ~4. In the simulation, we usegl, = 50 and~y = .5
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Figure 1: Posterior distributions of meaR$m.|X;) and precisiong’(r;|X;) updated on training
trials in two-category supervised learning. Blue linesi¢gate category parameters in the first cat-
egory; and red lines indicate parameters in the secondaatedhe top panel shows the results
for the massed condition (i.e., AAABBB), and the bottom gdai®ws the results for the spaced
condition (i.e., ABABAB). Please see in colour. We show tligributions only on even trials to
save space. See section 3.1.

Figure (1) shows the change of posterior distributions eftthio unknown category parameters,
meansP(m.|X;) and precisiong>(r;|X;), over training trials. Figure (2) shows the category rep-
resentation in the form of the posterior distribution Bfz|X;). In the massed condition (i.e.,



AAABBB), the variance of the first category decreases oveffitist three trials, and then increases
over the second three trials because the observationsoanelie second category. The increase of
category variance reflects the forgetting that occurs ifew abservations are provided for a partic-
ular category after a long interval. This type of forgettadags not occur in the spaced condition, as
the interleaved presentation order ABABAB ensured thah eategory recurs after a short interval.

Based upon the learned category representations, we cgrute@mccuracy (the ability to discrim-
inate between the two learnt distributions) using the pasteistributions of the two categories.
After 100 simulations, the average accuracy in the massedition is 0.78, which is lower than the
0.84 accuracy in the spaced condition. Thus our model istalgeedict the spacing effect found in
two-category supervised learning.
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Figure 2: Posterior distribution of each categdPyx;|X;), updated on training trials in the two-
category supervised learning. Same conventions as in fi{@lr&ee section 3.1.

3.2 Modeling the spacing effect in six-category learning

Kornell and Bjork [1] asked human subjects to study six pag# by six different artists, with a
given artists paintings presented consecutively (masseutterleaved with other artists paintings
(spaced). In the training phase, subjects were informedwaitist created each training painting.
The same 36 paintings were studied in the training phasewttdifferent presentation orders
in the massed and spaced conditions. In the subsequentteset,psix new paintings (one from
each artist) were presented and subjects had to identifghadrtist painted each of a series of new
paintings. Four test blocks were tested with random displaker for artists. In each test block,
participants were given feedback after making an identiicaesponse. Paintings presented in one
test block thus served as training examples for the subsétgst block. Human results are shown
in figure (4). Human subjects showed significantly bettergesformance after spaced than massed
training. Given that feedback was provided and one pairftimg each artist appeared in one test
block, it is not surprising that test performance increaaemss test blocks and the spacing effect
decreased with more test blocks.

To simulate the data, we generated training and test datagioone-dimensional Gaussian distri-
butions with means-2, —1.2,—0.4, 0.4, 1.2, 2] and standard deviation of 0.4. Figure (3) shows the
learned category representations in terms of posteritnitdliions. Depending on the presentation
order of training data (massed or spaced), the learnedhdistms differ in terms of means and vari-
ances for each category. To compare with human performapoeted by Kornell and Bjork, the
model estimates accuracy in terms of discrimination betvtikee two categories based upon learned
distributions. Figure (4) shows average accuracy from Xd®@@lations. The result plot illustrates
that the model predictions match human performance well.

4 Unsupervised category learning

Both humans and animals can learn without supervision. ¥amele, in the animal conditioning
literature, various studies have shown that exposing timauditin blocks (equivalent to a massed
condition) is less effective in producing generalizati@g][ Balleine et. al. [4] found that with rats,
preexposure to two stimuli A and B (massed or spaced) detesrthe degree to which backward
blocking is subsequently obtained — backward blocking ccduhe preexposure is spaced but not
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Figure 3: Posterior distribution of each categayx:| X;), updated on training trials in the six-
category supervised learning. Same conventions as in fi{@lur&ee section 3.2.
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Figure 4: Human performance (left) and model predictioght)i. Proportion correct as a function
of presentation training conditions (massed and spacetijest block. See section 3.2.

if it is massed. They conclude that in the massed preexpdbaereats are unable to distinguish
two separate categories for A and B, and therefore treat #'emembers of a single category. By
contrast, they conclude that rats can distinguish the oategyA and B in the spaced preexposure.

In this section, we generalize the sequential category od@supervised learning, when the cate-
gory membership of each training example is not providedseovers. We first derive the extension
of the sequential model to this case (surprisingly, showiegan obtain all results in closed form).
Then we determine whether massed and spaced stimuli (adl@iraet. al.'s experiment [4]) are
most likely to have been generated by a single category owbycategories. We also assess the
importance of supervision in training by comparing perfanoe after unsupervised learning with
that after supervised learning.

We consider a model with two hidden categories. Each cagegar be represented as a Gaussian
distribution with a mean and precision', ' andm?, 2. The likelihood function assumes that the

data is generated by either category with equal probajpdihce the category membership is not

provided,

1 1
P(zim*, v, m?, r?) = 5P(x|m1,7‘1) + §P(x|m2,r2), (12)
with P(z|m',r') = G(x : m*',¢{rt), P(zim?,7?) = Gz : m?,¢r?). (13)
We specify prior distributions and temporal priors as befor
P(my,r') = G(mg : pt, mrt), P(m3,r*) = G(m3 : pu?,mr?) (14)
P(mt1+1|mt1) = G(mt1+1 : mtlv’W”l)a P(mt2+1|m?) = G(mt2+1 : mt27’77”2)- (15)

The joint posterior distributiorP?(m}, r*, m? 2| X,) after observations(; can be formally ob-
tained by applying the Bayes-Kalman update rules to the ghgtribution —i.e., replacén,, r) by
(m},rt,m2?,r?) in equations (1,2)). But this update is more complicatecibse we do not know
whether the new observatian should be assigned to category 1 or category 2. Instead wetbav
sum over all the possible assignments of the observatiothetoategories which giveX possible
assignments at time This can be performed efficiently in a recursive manner.A,edenote the set

of possible assignments at timevhere each assignment is a strifag, ..., a;) of binary variables



of lengtht, where(1, ..., 1) is the assignment where all the observations are assigredeqgory 1,
(2,1, ..., 1) assigns the first observation to category 2 and the remaiodategory 1, and so on.

By substituting equations (12,14,15) into Bayes-Kalmarcasm obtain an iterative update equation
for P(m},rt,m?,r?|X;). Attime t we represent:

P(m%,rl,mf,rﬂXt) == Z P(mlvr|&i
(a1,...,at) €A

)P(m rla(al....af))P(al""’a”Xt)v

15--+50¢

(16)

wherea, . denotes the values of the paramet@rs: («, 3, u, 7) for categoryi (i € {1,2})

for observation sequence, ..., a;) and P(aq, ... at) is the probability of assignmefi, ..., at).
At t — 0 there is no observation sequence al?(dno,r ,m3, r?|X,) = P(m!,r|at)P(m?,r|a?%)
which corresponds td, containing a single element WhICh has probability one.

The prediction stage updates theomponent of¥(ay, ..., a;) by:

vi(ag) T (ay, .., az)
vi(as) + THay, ..., ar)

(a1, ...,a) — a7)

We definey’(a;) as larger ifi = a; and smaller ifi # a,, as specified in equation (11) to incorporate
the generic prior described in section 3.1.

The correction stage at time+ 1 introduces another observation, which must be assigneukto t
two categories. This gives a new sét,; of 2!*! assignments of fornfas, ..., a;+1) and a new
posterior:

P(myyq,rt,miy 3 X)) = > P(mb,rldy, o )PM? 7|, 4 ) P(ars s ar]| Xega),
(a1,...,at4+1)EAL+1
(18)
where we compute(, . forie {1,2} by:
» CTlanan) @1 = Blay 0
Oél Oé + 1/2 6 ﬁl + 15--5Q¢ i 15--5Q¢
(a1,..,at41) — (a ..... ,at) (a1,...,at41) — M(a,...,as) i )
1 +1 1, 1 +1 1 2(C+7‘(a17_“’at))
; CTe41 + Tay.oa) Mo ) ; ;
/’L(a,l,...,n,t+1) = g ¥ 71_1 - ’ T(al,...,n,t+1 = C + T(a,l,....,n,t)a (19)
(at,...,at)
and we comput®(aq, ..., at1+1) by:
P(xt+1|o¢ a a )P(al, cony CLt)
P(al, ...,at+1|Xt+1) = ( L t) (20)

Z(al,...,at) Pz |o¢(;ri..’at))P(a1, nay)

where
P($f+1|04(a1 (lt)) = /dmat+1 d’(’at+1 ]D(]}H_G,|'rn(llt+1)7 Tat+1)P(m(at+1)7 rat+1 |0_£(a1,...,at))
(21)
The model selection can, as before, be expressétagX;_1)P(xi—1|X¢)....P(x1), where
Pleen|Xe) = Y Plowaldl? ) Pla1, .. ap). (22)

(a,...,ar) €A

We can now address the problem posed by Balleine et. al&xposure experiments [4] — why
do rats identify a single category for the massed stimulittvot categories for the spaced stimuli?



We treat this as a model selection problem. We compare thieree for the sequential model
with one category, see equations (9,10), versus the evddentche model with two categories, see
equations (9,22), for the two cases AAABBB (massed) and ABBHspaced).

We use the same data as described in section (3.1) but withowitding category membership for
any of the training data. The left plot in figure (5) shows thsult obtained by comparing model
evidence for the one-category model with model evidenceéHertwo-category model. A greater
ratio value indicates greater support for the one-categocegunt. As shown in figure (5), the model
decides that all training observations are from one cateigothe massed condition, but from two
different categories in the spaced condition (using zetb@sdecision threshold). These predictions
agree with with Balleine et. al.'s findings.
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Figure 5: Model selection and accuracy results. Left, medkdction results as a function of pre-
sentation training conditions (massed and spaced). Agreatio indicates more support for the
one-category account. Error bars indicate the standaod fam 100 simulations. See section 4.2.

Right, comparison of supervised and unsupervised leainiteyms of accuraC)é See section 4.3.
To assess the influence of supervision on learning, we campanformance between supervised

learning (described in section (3.1)) with unsupervisedrag (described in this section). To make
the comparison, we assume that learners are provided vetbatme training data and are informed
that the data are from two different categories, either Witbwn category membership (supervised)
or unknown category membership (unsupervised) for eaafiniggobservation. Accuracy measured
by discrimination between the two categories is comparedémight plot of figure (5). The model
predicts higher accuracy given supervised than unsugehlésarning. Furthermore, the model pre-
dicts a spacing effect for both types of learning, althougheffect is reduced with unsupervised
learning.

5 Conclusions

In this paper, we develop a Bayesian sequential model fegoay learning by updating category
representations over time based on two category param#termean and the variance. Analytic
updating rules are obtained by defining conjugate tempaoiaitgpto enable closed form solutions.
A generic prior in the temporal updating stage is introduceshodel the spacing effect. Parameter
estimation and model selection can be performed on the basjsdating rules. The current work
extends standard Kalman filtering, and is able to predichiag phenomenathat have been observed
for humans and other animals.

In addition to explaining the spacing effect, our model jrexthat subjects will become less certain
about their knowledge of learned categories as time passeshe increase in category variance in
Figure 2. But our model is not standard Kalman filter (sineertfteasurement variance is unknown),
so we do not predict exponential decay. Instead, as shownuation 10, our model predicts the
pattern of power-law forgetting that is fairly universalioman memory [14]

For small number of observations, our model is extremelgiefiit because we can derive analytic
solutions. For example, the analytic solutions for unsuiged learning requires only 0.2 seconds
for six observations while numerical integration takes JliButes. However, our model will scale
exponentially with the number of observations in unsupaEdilearning. Future work is to include
a pruning strategy to keep the complexity practical.
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