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MOTIVATION

Observation:
e Neural architectures for 3D point clouds exhibit a large variety

e Diverse set of concepts in architecture names: PointNet, Vox-
elNet, PointPillars, Range Sparse Net, ...

e This level of variety is not observed in say 2D images
Sources of Variety:

2D images 3D point clouds
Views perspective perspective, unordered set, top-
down, ...
Sparsity  dense dense, sparse
Layers conv2d mlp, conv2d, sparse conv2d,
sparse conv3d, ...
Our Goal:

¢ A unified framework that can interpret and organize the va-
riety of neural architecture designs

e Materialize this framework into an architecture search space,

which unlocks and enables a principled Neural Architecture
Search for 3D

e Demonstrate improved performance as well as interesting
lessons about neural architectures for 3D

UNIFY NEURAL ARCHITECTURES FOR 3D

Philosophy
o Despite the variety on the surface, the underlying principle
is surprisingly congruent: finding some neighborhood of the 3D
points and then aggregating information within.
— “neighborhood” =

x Euclidean ball (PointNet++)
+ 3D neighborhood from Cartesian (z, y, z) (VoxelNet)
+ 2D neighborhood from Cartesian (z, y) (PointPillars)
+ 2D neighborhood from pixel index (7, j) (LaserNet)

- "aggregation” = some form of convolution / pooling

e Different data views can transform between each other back
and forth. However, once the data view is determined, it re-
stricts the type of layers that can be applied.

Key Concepts

o Views and formats (6): Point, Pillar, Pillar (sparse), Voxel
(sparse), Perspective, Perspective (sparse)

e Transforms (6 = 36): From one view-format combination to
another

o Layers: Depending on the view-format combination

e Stages: Each one = sequential pair of possible transforms and
their associated layers. Entire backbone = S stages.

Waymo LLC

LIDARNAS FRAMEWORK / SEARCH SPACE
The LidarNAS Framework
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(a) Multi-View Fusion (b) Sparse Point-Voxel

SEARCH NEURAL ARCHITECTURES FOR 3D

From Framework to Search Space

e Transforms
— No pillar to voxel. From voxel, only to pillar.

— 31 / 36: still high coverage

e Layers
— Point: multiple layers of dense-normalization-ReL.U

— 2D dense: U-Net with residual blocks (conv2d)
— 2D sparse: U-Net with residual blocks (sparse conv2d)
— 3D sparse: U-Net with residual blocks (sparse conv3d)
e Stages: S =3
Search Algorithm: Regularized Evolution
Why evolutionary NAS, not weight-sharing NAS?
e Evolutionary NAS arguably makes the least approximations

o Weight-sharing NAS is too GPU memory intensive for 3D
tasks, which already had a small batch size (< 10) per GPU

First randomly select a stage, then randomly apply one of the fol-
lowing six mutation choices to this stage:

e Add a view: if the stage does not have all four views, then
randomly add a view not yet present

e Remove a view: if the stage has more than one view, then
randomly remove an existing view

e Switch the view: if the stage has exactly one view, then switch
the view to another

o Adjust the pillar / voxel size: multiply by either 0.8 or 1.2
o Adjust the number of channels: multiply by either 0.8 or 1.2

o Adjust the layer progression: increase or decrease the number
of dense-normalization-ReLU repeats / U-Net scales

The first four focus on “transtorm”; the last two focus on “layer”.

Vehicle L1 AP Pedestrian L1 AP
model frame | 3D BEV latency | 3D BEV latency

LaserNet H2.1 71.2 64.3 63.4 70.0 64.3

PointPillars 63.3 82.5 49.0 68.9  76.0 49.0
PV-RCNN 70.3  83.0 - . - -

Pillar-based 1 69.8 87.1 66.7 72.5  78.5 66.7

PV-RCNN 2 77.5 - 300 78.9 - 300
RCD 1 69.0 82.1 - - - -
MVE++ 1 74.6 87.0 : 78.0 83.3 :
CenterPoint 2 76.7 - - 79.0 - -
PPC 65.2 &0.8 - 75.5 82.2 -
RangeDet 72.9 - - 75.9 - -
PointPillars-like 67.6 85.3 : : : :
LidarNASNet-P 73.2 88.2 - - - -

RSN 1 75.2  87.7 46.5 771  81.7 21.0

LidarNASNet-R 1 75.6 88.6 49.3 774 82.0 22.6

Comparison of Warm Start and Evolved Architectures
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Lessons from Sampled Architectures
e Search space is non-trivial and challenging (bottom left figure)

e Mutating “transforms” results in larger performance changes
than mutating “layers” only

o Later stages matter more; top-down views (voxel and pillar)
influence detection AP positively, while perspective view neg-
atively (bottom right figure)

e Sparse # fast: More sparse branches result in smaller latency
if pillar view, but larger latency if perspective view
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