

LidarNAS: Unifying and Searching Neural Architectures for 3D Point Clouds

Chenxi Liu Zhaoqi Leng Pei Sun Shuyang Cheng Charles R. Qi Yin Zhou Mingxing Tan Dragomir Anguelov Waymo LLC

MOTIVATION

Observation:

- Neural architectures for 3D point clouds exhibit a large variety
- Diverse set of concepts in architecture names: PointNet, VoxelNet, PointPillars, Range Sparse Net, ...
- This level of variety is not observed in say 2D images

Sources of Variety:

	2D images	3D point clouds		
Views	perspective	perspective, unordere down,		
Sparsity Layers	dense conv2d	dense, sparse mlp, conv2d, sparse sparse conv3d,		

Our Goal:

- A **unified framework** that can interpret and organize the variety of neural architecture designs
- Materialize this framework into an architecture search space, which unlocks and enables a principled Neural Architecture Search for 3D
- Demonstrate **improved performance** as well as **interesting lessons** about neural architectures for 3D

UNIFY NEURAL ARCHITECTURES FOR 3D

Philosophy

- Despite the variety on the surface, the underlying principle is surprisingly congruent: finding *some neighborhood* of the 3D points and then *aggregating information* within.
 - "neighborhood" =
 - * Euclidean ball (PointNet++)
 - * 3D neighborhood from Cartesian (x, y, z) (VoxelNet)
 - * 2D neighborhood from Cartesian (x, y) (PointPillars)
 - * 2D neighborhood from pixel index (i, j) (LaserNet)
 - "aggregation" = some form of convolution / pooling
- Different data views can transform between each other back and forth. However, once the data view is determined, it *restricts* the type of layers that can be applied.

Key Concepts

- Views and formats (6): Point, Pillar, Pillar (sparse), Voxel (sparse), Perspective, Perspective (sparse)
- Transforms ($6^2 = 36$): From one view-format combination to another
- *Layers*: Depending on the view-format combination
- *Stages*: Each one = sequential pair of possible transforms and their associated layers. Entire backbone = S stages.

ed set, top-

se conv2d,

From Framework to Search Space

- Transforms
 - No pillar to voxel. From voxel, only to pillar.
 - 31 / 36: still high coverage
- Layers
 - Point: multiple layers of dense-normalization-ReLU
 - 2D dense: U-Net with residual blocks (conv2d)
 - 2D sparse: U-Net with residual blocks (sparse conv2d)
 - 3D sparse: U-Net with residual blocks (sparse conv3d)
- Stages: S = 3

Search Algorithm: Regularized Evolution Why evolutionary NAS, not weight-sharing NAS?

- Evolutionary NAS arguably makes the least approximations • Weight-sharing NAS is too GPU memory intensive for 3D tasks, which already had a small batch size (< 10) per GPU First randomly select a stage, then randomly apply one of the fol-

lowing six mutation choices to this stage:

- Add a view: if the stage does not have all four views, then randomly add a view not yet present
- Remove a view: if the stage has more than one view, then randomly remove an existing view
- Switch the view: if the stage has exactly one view, then switch the view to another
- Adjust the pillar / voxel size: multiply by either 0.8 or 1.2 • Adjust the number of channels: multiply by either 0.8 or 1.2 • Adjust the layer progression: increase or decrease the number of dense-normalization-ReLU repeats / U-Net scales The first four focus on "transform"; the last two focus on "layer".

EXPERIMENTAL RESULTS

mproved Detection on Waymo Open Dataset							
		Vehicle L1 AP			Pedestrian L1 AP		
model	frame	3D	BEV	latency	3D	BEV	latency
LaserNet		52.1	71.2	64.3	63.4	70.0	64.3
PointPillars		63.3	82.5	49.0	68.9	76.0	49.0
PV-RCNN		70.3	83.0	-	-	_	-
Pillar-based	1	69.8	87.1	66.7	72.5	78.5	66.7
PV-RCNN	2	77.5	_	300	78.9	_	300
RCD	1	69.0	82.1	-	-	_	-
MVF++	1	74.6	87.6	-	78.0	83.3	-
CenterPoint	2	76.7	_	_	79.0	_	_
PPC		65.2	80.8	-	75.5	82.2	-
RangeDet	1	72.9	_	-	75.9	-	_
PointPillars-like	1	67.6	85.3	-	-	-	-
LidarNASNet-P	1	73.2	88.2	-	-	-	-
RSN	1	75.2	87.7	46.5	77.1	81.7	21.0
LidarNASNet-R	1	75.6	88.6	49.3	77.4	82.0	22.6

\bigcirc	\bigcirc \bigcirc	\bigcirc \bigcirc		\bigcirc	\bigcirc \bigcirc	\bigcirc \bigcirc	
0	\bigcirc \bigcirc	\bigcirc \bigcirc			2D U-N	et O	
		\bigcirc \bigcirc	× × × ×	\bigcirc	\bigcirc \bigcirc	\circ	× × × ×
\bigcirc		2D U-N	let	\bigcirc	\bigcirc \bigcirc	2D U	-Net
(a) PointPillars-like				(b) LidarNA	SNet-P	
\bigcirc	\bigcirc \bigcirc	Sparse 3D	Conv	\bigcirc	\bigcirc \bigcirc	Sparse 3I	D Conv
2D U-I	Net	\circ		→ () 2D U	I-Net	\circ	

\bigcirc	\bigcirc \bigcirc		Sparse 3D Conv	
)	2D U-Net	\circ		••••
\bigcirc	0	MLP		x
\bigcirc	\bigcirc \bigcirc	\bigcirc		

(c) Range Sparse Net

Lessons from Sampled Architectures

- than mutating "layers" only
- atively (bottom right figure)

Comparison of Warm Start and Evolved Architectures

(d) LidarNASNet-R

x x y

• Search space is non-trivial and challenging (bottom left figure) • Mutating "transforms" results in larger performance changes

• Later stages matter more; top-down views (voxel and pillar) influence detection AP positively, while perspective view neg-

• Sparse \neq fast: More sparse branches result in smaller latency if pillar view, but larger latency if perspective view