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Problem Description:

e Despite high benchmark performance, we still be-
lieve humans are superior in many machine learning
masks

e The current testing strategy is overly optimistic
e The model evaluations focus on average case and are

typically fixed in size.
Our Goal:

e Adversarial Examiner: to dynamically select the next
testing sample based on testing history

— Worst case instead of average case

— Dynamic test set based on test history instead ot
fixed test set

EVALUATION PROTOCOL

Standard Loss Function for Classification:
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Evaluation Metric for Adversarial Examiner:
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Algorithm 1: Adversarial Examiner Procedure

Input: N samples z; ~ Q and their true labels y(z;);
Maximum number of examination steps 7’;
Loss function L; Model f; Function g; Space
S.

for: =1to N do

1

2 Initialize examiner with S

3 fort=1to 7' do

1 st = examiner.generate ()
3 li = L(f(9(zi, 57)), y (i)

6 examiner.update (s}, [})

1=1 "1

1
7 return Eoyminer = N Z

Evaluating a model’s ability to recognize a lamp instance
in ShapeNet:
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Identifying Model Weakness with Adversarial Examiner
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REINFORCEMENT LEARNING AS AE

Definitions:
e Space S: Cartesian product of C factors S = U! x ¥ x
e X \IJC

e The candidate s!: composed of zp(l% b zp(%;’ b
where w(ci n € pe

e The probability of generating s!:
C
P(s;) = | P@G v ™)
c=1

Implementation Details:

e A LSTM is used to parameterize conditional probabil-
ities
e Reward Signal Ris L(f(g(zi,s?)),y(z:))
o Optimize the weights 0 using policy gradient:
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BAYESIAN OPTIMIZATION AS AE

Definitions:
e Gaussian Process (GP) is
L(F(g(zi,5)), y(2:))
e The candidate si: point proposed by the acquisition
functiona : S — R™

used to maximize

Implementation Details:

e By the end of examination, the candidates {s! € S}/_;
are points that induce the most up-to-date posterior
multivariate Gaussian distribution on §.

e For each iteration ¢t = 1,2,...,7, we select the next
candidate by:
t __
s, = arg max a(s)
seS

VARIOUS COMPARISONS

RL Examiner and BO Examiner are Complementary:

e Discrete vs. Continuous

¢ Maintaining Sampling Distribution on § vs. Maintain-
ing Function Valueon &

o Longer Iteration Regime vs. Shorter Iteration Regime

Adversarial Examiner and Adversarial Attacks:

1 N

I attack ~ -

- max L(f(zi +0:),y(x;))
e Underlying Form (z) vs. Surface Form (x)
e Start with Entire Space vs. “Canonical” Starting Point

e Non-differentiable Settings vs. Differentiable Settings

Y

EXPERIMENTS & RESULTS

Evaluation Model Details
e ResNet34 and AlexNet training: 12 factors, 10 images

per 3D object

e RL(LSTM): 9 continuous factors discretized to 100
choices

e BO(GP): 2 random examples, Gaussian Process upper
confidence bound (UCB)

Evaluating Model Performance with AE:
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(a) RL Examiner on AlexNet (b) RL Examiner on ResNet34
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(c) BO Examiner on AlexNet (d) BO Examiner on ResNet34
Examining Models Trained with Less Data:

m = 10 m =295 m = 2 m =1
RL | 63.81% | 57.43% | 35.05% | 18.92%
BO | 49.79% | 43.06% | 22.19% | 10.92%

Evaluating Model with Artificial Weaknesses and Order
Change:
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Conclusion

e We advocate for a new testing paradigm for machine
learning models, where more emphasis is placed on
the worst case instead of reporting the average case
performance.

e We hope to extend to other domains (e.g. language)
and see more ubiquitous usage of our general adver-
sarial examination framework.



