Identification of Model Weakness with Adversarial Examiner

Michelle Shu, Chenxi Liu, Weichao Qiu, Alan Yuille
Johns Hopkins University

Motivation

- Problem Description:
 - Despite high benchmark performance, we still believe humans are superior in many machine learning masks.
 - The current testing strategy is overly optimistic.
 - The model evaluations focus on average case and are typically fixed in size.

- Our Goal:
 - Adversarial Examiner: to dynamically select the next testing sample based on testing history.
 - Worst case instead of average case.
 - Dynamic test set based on test history instead of fixed test set.

Evaluation Protocol

- Standard Loss Function for Classification:
 \[E = E_{x \sim P} [L(f(x), y(x))] \approx \frac{1}{N} \sum_{i=1}^{N} L(f(x_i), y(x_i)) \]

- Evaluation Metric for Adversarial Examiner:
 \[E_{\text{examiner}} = E_{z \sim Q} \max_{s \in S} L(f(g(z, s)), y(z)) \]
 \[\approx \frac{1}{N} \sum_{i=1}^{N} \max_{s \in S} L(f(g(z_i, s_i)), y(z_i)) \]

Algorithm 1: Adversarial Examiner Procedure

- **Input:** \(N \) samples \(z_i \sim Q \) and their true labels \(y(z_i) \); Maximum number of examination steps \(T \); Loss function \(L \); Model \(f \); Function \(g \); Space \(S \).
- **for** \(i = 1 \) to \(N \) **do**
 - Initialize \(\text{examiner} \) with \(S \).
- **for** \(t = 1 \) to \(T \) **do**
 - \(s_t^i = \text{examiner}.\text{generate()} \)
 - \(l_t^i = L(f(g(z_i, s_t^i)), y(z_i)) \)
 - \(\text{examiner}.\text{update} (s_t^i, l_t^i) \)
- **return** \(E_{\text{examiner}} = \frac{1}{T} \sum_{i=1}^{N} l_t^i \)

Evaluating a model’s ability to recognize a lamp instance in ShapeNet:

Reinforcement Learning as AE

- **Definitions:**
 - Space \(S \): Cartesian product of \(C \) factors \(S = \Psi^1 \times \Psi^2 \times \cdots \times \Psi^C \)
 - The candidate \(s_t^i \): composed of \(\psi_i^{t,i} \), \(\psi_{i,t}^{i} \), \(\psi_{i,t}^{1} \), \(\psi_{i,t}^{C} \), where \(\psi_{i,t}^{c} \in \Psi^c \)
 - The probability of generating \(s_t^i \):
 \[P(s_t^i) = \prod_{c=1}^{C} P(\psi_{i,t}^{c} | \psi_{i,t}^{c-1}) \]

- **Implementation Details:**
 - A LSTM is used to parameterize conditional probabilities.
 - Reward Signal \(R \) is \(L(f(g(z, s_t^i)), y(z)) \)
 - Optimize the rewards using policy gradient:
 \[\nabla_{\theta} E \left[R \right] \approx \frac{1}{B} \sum_{b=1}^{B} \sum_{c=1}^{C} \nabla_{\theta} \log P(\psi_{i,t}^{c} | \psi_{i,t}^{c-1}) R_b \]

Bayesian Optimization as AE

- **Definitions:**
 - Gaussian Process (GP) is used to maximize \(L(f(g(z, s_t^i)), y(z)) \)
 - The candidate \(s_t^i \): point proposed by the acquisition function \(a : S \rightarrow \mathbb{R}^+ \)

- **Implementation Details:**
 - By the end of examination, the candidates \(\{ s_t^i \in S \}_{t=1}^{T} \) are points that induce the most up-to-date posterior multivariate Gaussian distribution on \(S \).
 - For each iteration \(t = 1, 2, \ldots, T \), we select the next candidate by:
 \[s_t^i = \arg \max_{s \in S} a(s) \]

Various Comparisons

- RL Examiners and BO Examiners are Complementary:
 - Discrete vs. Continuous.
 - Maintaining Sampling Distribution on \(S \) vs. Maintaining Function Value on \(S \).
 - Longer Iteration Regime vs. Shorter Iteration Regime.

- Adversarial Examiner and Adversarial Attacks:
 \[E_{\text{attack}} \approx \frac{1}{N} \sum_{i=1}^{N} \max_{h_i \in \Delta} L(f(x_i + h_i), y(x_i)) \]
 - Underlying Form \((z) \) vs. Surface Form \((s) \)
 - Start with Entire Space vs. “Canonical” Starting Point
 - Non-differentiable Settings vs. Differentiable Settings

Conclusion

- We advocate for a new testing paradigm for machine learning models, where more emphasis is placed on the worst case instead of reporting the average case performance.
- We hope to extend to other domains (e.g., language) and see more ubiquitous usage of our general adversarial examination framework.