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Hardware for software people

In CS, our main concern is software
We take computing hardware for granted
How does it work? Is it magic?

Modern computing hardware: immensely complicated
o 4th gen Core i7: 1.4 billion transistors! 2000+ pins!

e If you wanted to design and build your own computer, where to start?



8 bit CPUs!

e The microcomputer era began in the mid 1970s with 8 bit CPUs
o Motorola 6800, 6809
o Intel 8080, Zilog Z80
o MOS 6502
e These were used in the first mainstream personal computers!
o Altair 8800
o Apple |, Apple Il
o Commodore VIC-20, C64
o Atari 400, 800
o TRS-80 Model I, Color Computer

e These CPUs are surprisingly easy to use and understand!
e You can use them to build a complete computer system!



Digital logic



Digital logic

e Computer hardware is based on digital logic

e In a digital circuit, voltages are either high (true, 1) or low (false, 0)

e Logic gates implement boolean operations (AND, OR, NAND, NOR, XOR,
NOT, etc.) on digital signals

o "Signal" just means a digital voltage at a specific point in the circuit
e Any boolean function (with any number of inputs and outputs) can be
implemented by connecting logic gates



Basic logic gates
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Combining logic gates

E.g., a circuit with 4 inputs that produces a high output if any of the 4 inputs is high

Inputs j_ Output



Sequential logic

e Basic logic gates implement
combinational logic: outputs are a
mathematical function of the inputs

e A sequential logic element has "state"

e Example: D-type flip flop
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Basically, a 1-bit memory!

Two inputs: D (data) and CIk (clock signal)
On a low to high transition on CIk, the Q
output is set to the current value of D

S and R can be asserted to unconditionally
set or reset Q

Q output is always the opposite of Q

Image source: Wikipedia



Logic ICs

e /7400 family logic ICs: wide variety of devices providing logic gates and
sequential logic elements

e Some examples (from the "HCT" sub-family):
o 74HCTO00: quad 2-input NAND
o T4HCT27: triple 3-input NOR
o 74HCT74: dual D-type flip flop

74HCT138: 3 to 8 decoder

e There are literally hundreds of these

o



Rules for building digital circuits

e An output can be connected to any number of inputs
e Two outputs should never be connected
o  Exception: tri-state outputs connected to a bus
e Typically, every input should be connected to an output, or connected to a

constant high or low voltage

o "Floating" inputs (not driven by any output) can cause the circuit to behave strangely
o Aresistor to VCC (positive) or GND (0V) can provide a nominal high or low voltage that can be
"overridden" by a stronger output

e Moral: there are "design patterns” that you can follow



Example circuit with D-type flip flop
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Building circuits!

One of the most fun things about digital circuits is that you can build them!
Easiest way: on a solderless breadboard

Groups of 5 holes are connected electrically

Use jumper wires to connect circuit nodes



Example circuit construction

Push buttons
(to drive D and
Clk inputs)

LED driven by
Q output

74HC14 used
for switch
debouncing

74HC74 (one flip
flop used)



The point

e Building digital circuits using logic ICs is pretty easy!



Microprocessor circuits



Microprocessors

e Microprocessor (Z80, 6502, 6809, ...)

o Address bus (16 outputs): specifies a memory address
o Data bus (8 bidirectional pins): used to transfer 1 byte of data to/from processor
o  Control signals (bus control, interrupts, etc.)

e Peripheral devices are attached to the data bus:

o ROM (firmware code)
o RAM
o UART (serial port)
o Timer/counter
o eftc...
e Glue logic: "decodes" addresses, generates a chip select for each peripheral
device

o  Only one peripheral device may access the bus at any given time!
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Peripherals

Peripheral chips needed:

e ROM for firmware code (e.g., 28C256 32KB EEPROM)
e RAM for stack, variables, programs loaded at runtime (e.g., 62256 32K static
RAM)

e |/O devices:
o UART (e.g., HD63B50 ACIA)
o Timer/counter (e.g., 82C54)
o Parallel I/O (e.g., 82C55A)



Memory map

e Early 8 bit CPUs used memory-mapped I/O
e Peripheral devices accessed using memory load and store instructions

e Most peripheral devices have a small number of (1 byte) registers
o E.g., 63B50 ACIA has 2 registers

e The system designer must implement a memory map such that each
peripheral device is selected when an address in a specific range is accessed

e RAM and ROM devices require large blocks of addresses

e Peripheral devices require small blocks of addresses

e Each address generated by the CPU must activate at most one peripheral
device



Example memory map

e $0000-7FFF: RAM
e $8000-$8FFF: I/O area

o Further subdivided into smaller areas for specific devices
e $9000-$FFFF: ROM
e On 6502 and 6809, high part of address space must be ROM because the

reset vector is at a fixed address in high memory
o E.g., 6809 reset vector is at $FFFE

e Chip selects (for RAM, ROM, peripherals) are active low

o Meaning that a low voltage must be generated to "wake up" the selected peripheral chip



Address decoding

e The address decoding logic generates chip select signals for peripherals
e How to implement the example memory map?
e CPU generates address on its AO—A15 outputs
o l.e., these are the binary representation of the address
e Address decoding logic uses logic gates (and other combinational logic) to
generate the chip selects

e General idea:

o High address signals decoded to determine which region of the address space is being
accessed (and generate chip select signals)

o Lower address signals sent directly to peripheral devices to indicate which byte of data is
being accessed



Address decoding logic
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Address decoding logic
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Address decoding logic
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Address decoding logic
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Address decoding logic
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Address decoding logic
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Address decoding logic
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Peripheral device chip selects
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Interfacing a peripheral device
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Interfacing a peripheral device
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Interfacing a peripheral device
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Interfacing a peripheral device
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Building a system

We've seen all of the
essentials, the rest is just
deciding what peripherals to
add, building the hardware,
and writing software




Building and testing microprocessor
circuits



How to get started?

Things you will need if you want to try doing this on your own:

|ICs and components
Prototyping supplies
Test equipment
Software



|ICs and components

e Logic ICs: expect to pay $0.50 or so each
o Digi-key, Mouser
o Specialized businesses (e.g., Unicorn Electronics)
o eBay also a possibility (but beware of counterfeit chips)

e 8 bit CPUs

o 6502 is still in production!
o  Widely available as used or New Old Stock on eBay, surplus sites
o Expectto pay $5-$107?

e Other devices (ROM, RAM, peripheral chips)

e Components (resistors, capacitors, LEDs)
o Pre-packaged kits with a variety of values are a good option
o  Adafruit, Sparkfun



Prototyping stuff

e Solderless breadboards: really cheap ones ($2) can be ok

e Wire (pre-made jumper kits are helpful)
o 22 AWG solid core is ideal for breadboard use

e Small hand tools (pliers, wire stippers, wire cutters)

e |f you want to construct permanent versions of circuits:
Soldering station (cheap ones are surprisingly good), solder
Protoboards

IC sockets

Wire (finer gauge, stranded)

o O O O



Test equipment

A multimeter is essential for measuring
voltages, resistances, etc.

e Not useful for fast-changing voltages,
though

Inexpensive ones can be surprisingly good!
($15-$25 range, avoid the really cheap ones)
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Test equipment

A logic analyzer records digital voltages over
time

The really cheap ones ($8, 8 channel, 24
MHz) are surprisingly good!

e Use with open source Sigrok software

| Sdleae. oo
| Elogic gficc
| Analyzer &

| 24MHz 8CH




Test equipment

Power supply: for the 1970s-1980s era of
digital logic, 5V was the most common supply
voltage

These are very common as small "wall wart"
switching supplies

Adjustable bench supplies are useful, but not
essential

Image source: Adafruit (this is a product
you can buy from them)



Software

e Assembler (for writing programs to load onto the 8 bit system)
e EDA (Electronic Design Automation) software is useful for creating

schematics, designing PCBs
o Recommended: KiCad (open source)

e Sigrok (logic analyzer software)
e Serial communications (connect your PC or laptop to the 8 bit system)



Conclusions



Conclusions

e Hardware design is surprisingly accessible
o Lots of great learning resources

e 8-bit computer era is a sweet spot
o Simple/accessible, but can do interesting things

e Modern microcontrollers are incredibly similar to 8-bit microcomputer systems
o Microprocessor+integrated peripherals in a single device



Questions?



