Building 8 bit computers for fun

David Hovemevyer

daveho@cs.jhu.edu
November 5, 2020

https://www.cs.jhu.edu/~daveho

Outline

Background

Digital logic

Microprocessors, busses, addresses, peripherals
Building and testing microcomputer circuits
Conclusions

Hardware for software people

In CS, our main concern is software
We take computing hardware for granted
How does it work? Is it magic?

Modern computing hardware: immensely complicated
o 4th gen Core i7: 1.4 billion transistors! 2000+ pins!

e If you wanted to design and build your own computer, where to start?

8 bit CPUs!

e The microcomputer era began in the mid 1970s with 8 bit CPUs
o Motorola 6800, 6809
o Intel 8080, Zilog Z80
o MOS 6502
e These were used in the first mainstream personal computers!
o Altair 8800
o Apple |, Apple Il
o Commodore VIC-20, C64
o Atari 400, 800
o TRS-80 Model I, Color Computer

e These CPUs are surprisingly easy to use and understand!
e You can use them to build a complete computer system!

Digital logic

Digital logic

e Computer hardware is based on digital logic

e In a digital circuit, voltages are either high (true, 1) or low (false, 0)

e Logic gates implement boolean operations (AND, OR, NAND, NOR, XOR,
NOT, etc.) on digital signals

o "Signal" just means a digital voltage at a specific point in the circuit
e Any boolean function (with any number of inputs and outputs) can be
implemented by connecting logic gates

Basic logic gates

4 D -

AND NAND OR

— >

NOT XOR XNOR

Image source: Adafruit

Combining logic gates

E.g., a circuit with 4 inputs that produces a high output if any of the 4 inputs is high

Inputs j_ Output

Sequential logic

e Basic logic gates implement
combinational logic: outputs are a
mathematical function of the inputs

e A sequential logic element has "state"

e Example: D-type flip flop

@)

@)

(@)

Basically, a 1-bit memory!

Two inputs: D (data) and CIk (clock signal)
On a low to high transition on CIk, the Q
output is set to the current value of D

S and R can be asserted to unconditionally
set or reset Q

Q output is always the opposite of Q

Image source: Wikipedia

Logic ICs

e /7400 family logic ICs: wide variety of devices providing logic gates and
sequential logic elements

e Some examples (from the "HCT" sub-family):
o 74HCTO00: quad 2-input NAND
o T4HCT27: triple 3-input NOR
o 74HCT74: dual D-type flip flop

74HCT138: 3 to 8 decoder

e There are literally hundreds of these

o

Rules for building digital circuits

e An output can be connected to any number of inputs
e Two outputs should never be connected
o Exception: tri-state outputs connected to a bus
e Typically, every input should be connected to an output, or connected to a

constant high or low voltage

o "Floating" inputs (not driven by any output) can cause the circuit to behave strangely
o Aresistor to VCC (positive) or GND (0V) can provide a nominal high or low voltage that can be
"overridden" by a stronger output

e Moral: there are "design patterns” that you can follow

Example circuit with D-type flip flop

VCC VCC
(@) (@)
Sw1
SW_Push
1
® O O ®
U1iA
T4HCT7 4
SW2 Jl—’
SW_Push 2 5
| D q
O O L 3>C -
=< | [l
R1 R2 ~
R R

Building circuits!

One of the most fun things about digital circuits is that you can build them!
Easiest way: on a solderless breadboard

Groups of 5 holes are connected electrically

Use jumper wires to connect circuit nodes

Example circuit construction

Push buttons
(to drive D and
Clk inputs)

LED driven by
Q output

74HC14 used
for switch
debouncing

74HC74 (one flip
flop used)

The point

e Building digital circuits using logic ICs is pretty easy!

Microprocessor circuits

Microprocessors

e Microprocessor (Z80, 6502, 6809, ...)

o Address bus (16 outputs): specifies a memory address
o Data bus (8 bidirectional pins): used to transfer 1 byte of data to/from processor
o Control signals (bus control, interrupts, etc.)

e Peripheral devices are attached to the data bus:

o ROM (firmware code)
o RAM
o UART (serial port)
o Timer/counter
o eftc...
e Glue logic: "decodes" addresses, generates a chip select for each peripheral
device

o Only one peripheral device may access the bus at any given time!

6809 CPU

o

DONOOAE,WN-

(Top view)

HALT

Peripherals

Peripheral chips needed:

e ROM for firmware code (e.g., 28C256 32KB EEPROM)
e RAM for stack, variables, programs loaded at runtime (e.g., 62256 32K static
RAM)

e |/O devices:
o UART (e.g., HD63B50 ACIA)
o Timer/counter (e.g., 82C54)
o Parallel I/O (e.g., 82C55A)

Memory map

e Early 8 bit CPUs used memory-mapped I/O
e Peripheral devices accessed using memory load and store instructions

e Most peripheral devices have a small number of (1 byte) registers
o E.g., 63B50 ACIA has 2 registers

e The system designer must implement a memory map such that each
peripheral device is selected when an address in a specific range is accessed

e RAM and ROM devices require large blocks of addresses

e Peripheral devices require small blocks of addresses

e Each address generated by the CPU must activate at most one peripheral
device

Example memory map

e $0000-7FFF: RAM
e $8000-$8FFF: I/O area

o Further subdivided into smaller areas for specific devices
e $9000-$FFFF: ROM
e On 6502 and 6809, high part of address space must be ROM because the

reset vector is at a fixed address in high memory
o E.g., 6809 reset vector is at $FFFE

e Chip selects (for RAM, ROM, peripherals) are active low

o Meaning that a low voltage must be generated to "wake up" the selected peripheral chip

Address decoding

e The address decoding logic generates chip select signals for peripherals
e How to implement the example memory map?
e CPU generates address on its AO—A15 outputs
o l.e., these are the binary representation of the address
e Address decoding logic uses logic gates (and other combinational logic) to
generate the chip selects

e General idea:

o High address signals decoded to determine which region of the address space is being
accessed (and generate chip select signals)

o Lower address signals sent directly to peripheral devices to indicate which byte of data is
being accessed

Address decoding logic

U103B
74HCTO0
E o 4
6 RMEM.
o RW 5
U103A
U103D 74HCTO0
74HCT00 1
12 3 WMEM
{ 1 2
13
A15 a RAMEN
U104B U103C
TLHCT27 U104A 74HCTO0
AllL 3 TLHCT27 9
A13 4 6 1 8 ROMEN
A12 5 2 2 10
\/
GND
I

Address decoding logic

U1038B
74HCTOO
| E " 4
_ 6 RMEM
L RW 5
U103A
U103D 74HCTO0
74HCTOO 1
12 3 WMEM
{ 1 2
13
-RMEM and -WMEM signals
AL5 " indicate whether the CPU
U104B uto3c | wants to read or write a byte
74HCT2T U104A 74HCTO0 | of data (not actually part of
AlL 3 74HCT27 9 :
M3 4 6 1 { address decoding, but
A2 5) > 2 10) needed by the peripheral

<V
GND

devices when they are
selected)

Address decoding logic

lower than $8000, so it is the
chip select for the RAM chip

U103B
74HCTO0
E " 4
B 6 RMEM
o RW 5
U103A
74HCT00 _
7%2?80 1 A15 is low for addresses
12 3
{ 1 2
13
A15 T T RAMEN

U104B

R Lot
R)

UlLVeTA

74HCT27

AlL 3
A13 4 6
Al12 5

1
2
N
GND

10

U103C

— i ATA A

(R R VAV

Address decoding logic

U1038
74HCTOO0
E " - e
6 RMEM
RW 5
U103A
U103D 74HCTOO0
ZLECTAN 1
This 3-input NOR gate's ; 5 o WMEM
output is high IFF all of '
A12-A14 are low (true when
/O region is accessed) . e
U104B U103C
74HCT27 U104A 74HCT00
74HCT27 9
ROMEN

AlL 3
Al13 4 6
Al12 5

1 8
2 2 10

<V
GND

Address decoding logic

u103B
74HCTOO

u103D
74HCTO0

4
6
5
U103A
74HCT00

1
3
2

A15

U104B

This NOR gate is used as an
inverter: its output is low IFF
all of A12-A14 are low

74HCT27

AlL 3 74HCT27
A13 4 6
Al12 5

U104A

U103C
74HCTO0

9
8
10

Address decoding logic

u103B
74HCTOO

. - s e
_ 6 RMEM
- RW 5

U103A

u103D 74HCT00

Z4HCT00 1 This NAND gate's output is
12)93 low IFF at least one of
—{ g b“ 2 A12-A14 is high and A15 is

high: this is the ROM chip

select signal
A15 ~
U104B U103C
T4HCT27 U104A 74HCTO0
Aly 5 T4HCT27 9
A13 4 6 1 8 ROMEN
AL2 5 2 2 10

<V
GND

Address decoding logic

U103B
74HCTOO
E . “ e
B 6 RMEM
- RW 5
U103A
U103D 74HCTO0
74HCTOO 1
12)03 WMEM
{):11 2
13
A15 " RAMEN
U104B U103C
ZLHCT27 U104A 74HCTO0
. T4HCT27 9
These two signals (A15 and 1 8 ROMEN
(A12V A13V A14)) are sent to 2 2 10
decoding logic for peripherals
in 1/0 region o
GND

Peripheral device chip selects

AlL 3 T4HCT27 9
A13 4 6 1 8 ROMEN
M2 5 2\ 2 10 vee
< 13 U106 TODEVO through TODEVIS
74HCT138 decode the region $8000—$81FF
into 16 "devices" of 32 bytes
i vl each.
GND o
A5 1 [} 15 10DEVO
A0 00
s o A6 2 |as = gy baa TODEVL
R i B A7 5 | o2 N3 TODEV2
vee 03 pL2 TODEV3
o T os P1 TODEVA
6 E3 05 10 IODEVS
A9 1 A0S 00 15 10RO 5 2 o 06 9 I0DEV6
A10 2 A > o1 14 10R1 A8 4 (1 Z 07 7 10DEV7
Al1l 3 A2 02 13 I10R2
03 M2 IOR3 B
04 11 10R4
Al56 E3 05 10 I0R5
5 E2 o 06 9 I0R6
4NE1 Z o7 P IOR7 A15 GND e
U107 can be omitted if
- u107 IODEVO-I0DEV7 are
__ __ 74HCT138 sufficient for planned 1/0
IORQ through IOR7 are active low enables devices.
for 512 byte "regions" of the |10 space: o
N IORQ: asserted for addresses $8000—-$81FF 1 o 15 TODEVS
GND GND |OR1: asserted for addresses $8200—$83FF > AO Q 00 14 TODEVD
IOR2: asserted for addresses $8400—-$B5FF Al 01 pr—————————
[OR3: asserted for addresses $8600—$B7FF 3 {2 o2 N3 TODEVIO
IOR4: asserted for addresses $8800—-$89FF 03 12 I0DEV11
74HCT1 38 3-t0-8 deCOderS 10R5: asserted for addresses $BA00-$8BFF 04 \11 TODEVIZ
IOR6: asserted for addresses gBCOO—gSDFF 6 |5 o5 KO TODEVL3
1 IOR7: asserted for addresses $8EQ0—-$8FFF e —————
used to generate chip selects 5 £ ooKo iobevis_
. . 4NEgr 2 g7 NZ TODEVI5
for peripheral devices (by ®
1 @
further decoding A5-A11
signals) e

GND GND

Interfacing a peripheral device

vee
U301
82C55A
O
N
[}
RSTD——32] RESET = PAG |-
PAL |2
PA2 |2
82¢55ACs0— 6| T PAS |-
RMEMD—RMEM. =1 RD PAG |20
WMEMD—WMEM 61 WR PAS |32
PA6 |38
pa7 2L
Aop—A0 9 { a0
A1p—AL 81 a1 pBo L8
PB1 [
PB2 [29
: . DO__S%1pg pB3 |21
Chip select signal (from address (RS pas 22
. . D2 pB5 |23
decoding logic): when low, /D3 31| R [25
. T " /D4 30fp, PB7 [25-
peripheral chip "wakes up "b5 29| o
/M D6 pco H% — ppco
D7 271 p7 pc1 32— ppct
% pc2 H6&— ppc2
pc3 HZ— ppc3
pcy 3 ppey
pcs H2— ppes
pce Hi— ppcs
pc7 L ppc7
2
o
,\
GND

Interfacing a peripheral device

vee
U301
82C55A
el
(o]
o
RSTD————32 RESET S PAO [
PAL |-
PA2 [
B3ChBA c5p—— 61 7% PA3 |-
RMEMD—RMELM r0 PAy (40
WMEMD—WMEM 36{ WR PAS |32
Pa6 |38
PA7 (3L
rop—AL 31 A0
a1p—AL 8 1 a1 pBo 8
pB1 (2
pB2 29
: Do 341 po PB3 2L
Memory read and write /_/Diﬁ D1 pa4 [22-
D2 32 23
. . . D2 PB5 [23-
signals let peripheral device /. D3 31]p5 PB6 [24-
/b4 30 25
s . D4 PB7 (22
know whether it is sending /05 29| oo
D6 28 14
N D6 pco H——ppco
data or receiving data /b7 27| oo S PR
/ Pc2 6 — ppe2
Pc3 H—pPc3
peu 13— ppcy
Pcs 22— pPes
Pc6 Hi—ppcs
pc7 RO—ppe7
=
o
~
GND

Interfacing a peripheral device

vee
U301
82C55A
O
(o]
(o)
RSTD————32{ RESET S PAO [
PAL |-
PA2 -2
S 82C55A CSD———2 T3 PA3 L
RMEMD—RMEM 3| RD PAL |20
WHEMD—YMEM 361 WR PAS |32
PA6 138
= = PA7 2L
AOD> s A0
A1p—AL o 8 {a1 PBo (L&
pB1 (2
pB2 29
, - , Do 3uf 0 pe3 |21
Address inputs indicate which /,_/mss b1 pas [22.
D2 32 23
: . D2 PBS [23-
device register the CPU wants /7/0331 b3 poe 24
D430 25
: : D4 PB7 |23
to access (this peripheral has /05 29| o
D628 14
: D6 pco H4—ppeo
4 registers) /___/szv 07 pe1 115 Zpcs
pc2 o pre2
pc3s H—ppcs3
peu 13— ppcy
pcs H2——ppes
Pce H—ppes
pc7 RO—ppe7
2
(&)
~
GND

Interfacing a peripheral device

vce

U301
82C55A
0
N

RSTD————32 RESET g PAO [
PAL ~23-
S 82C55A CoD——2| TS gﬁi 1
RMEMD—LMEM 3| RD PAL (20
WNMEMD—YMEM 361 wR A5 |22
PAG 132
AoD—A2 9 { a0 .
a1D—AL 81 a1 pBo |18
PB1 13-
PB2 [
.) DO 34 21
Data bus is used for transferring /o133 oy Poa 22
00 | D) e |23
data /7“ D3 PB6 %
05 29| o PTI
D6 28 14
e Shared by CPU and all o7 27|28 ey s ——2ore?
; ; 4 Pc2 6 — ppe2
peripheral devices! cs L oecs
e When a device's chip select o] eI
. . i1
is not asserted, its s TR
connections to the data bus =
are "tri-stated" (electrically .
disconnected)
GND

Building a system

We've seen all of the
essentials, the rest is just
deciding what peripherals to
add, building the hardware,
and writing software

Building and testing microprocessor
circuits

How to get started?

Things you will need if you want to try doing this on your own:

|ICs and components
Prototyping supplies
Test equipment
Software

|ICs and components

e Logic ICs: expect to pay $0.50 or so each
o Digi-key, Mouser
o Specialized businesses (e.g., Unicorn Electronics)
o eBay also a possibility (but beware of counterfeit chips)

e 8 bit CPUs

o 6502 is still in production!
o Widely available as used or New Old Stock on eBay, surplus sites
o Expectto pay $5-$107?

e Other devices (ROM, RAM, peripheral chips)

e Components (resistors, capacitors, LEDs)
o Pre-packaged kits with a variety of values are a good option
o Adafruit, Sparkfun

Prototyping stuff

e Solderless breadboards: really cheap ones ($2) can be ok

e Wire (pre-made jumper kits are helpful)
o 22 AWG solid core is ideal for breadboard use

e Small hand tools (pliers, wire stippers, wire cutters)

e |f you want to construct permanent versions of circuits:
Soldering station (cheap ones are surprisingly good), solder
Protoboards

IC sockets

Wire (finer gauge, stranded)

o O O O

Test equipment

A multimeter is essential for measuring
voltages, resistances, etc.

e Not useful for fast-changing voltages,
though

Inexpensive ones can be surprisingly good!
($15-$25 range, avoid the really cheap ones)

‘ ANENG ™ ANBU)z e, gATh

HOLD/X% AUTO POWER OFF =

: l31) %
H

Hz V

oFf ||

ce

- 6000 COUNTS i wah

FUSED __
10AMAX

Test equipment

A logic analyzer records digital voltages over
time

The really cheap ones ($8, 8 channel, 24
MHz) are surprisingly good!

e Use with open source Sigrok software

| Sdleae. oo
| Elogic gficc
| Analyzer &

| 24MHz 8CH

Test equipment

Power supply: for the 1970s-1980s era of
digital logic, 5V was the most common supply
voltage

These are very common as small "wall wart"
switching supplies

Adjustable bench supplies are useful, but not
essential

Image source: Adafruit (this is a product
you can buy from them)

Software

e Assembler (for writing programs to load onto the 8 bit system)
e EDA (Electronic Design Automation) software is useful for creating

schematics, designing PCBs
o Recommended: KiCad (open source)

e Sigrok (logic analyzer software)
e Serial communications (connect your PC or laptop to the 8 bit system)

Conclusions

Conclusions

e Hardware design is surprisingly accessible
o Lots of great learning resources

e 8-bit computer era is a sweet spot
o Simple/accessible, but can do interesting things

e Modern microcontrollers are incredibly similar to 8-bit microcomputer systems
o Microprocessor+integrated peripherals in a single device

Questions?

