
Outline
Introduction

Concurrency Bug Patterns
Conclusions

Finding Concurrency Bugs in Java

David Hovemeyer and William Pugh

July 25, 2004

David Hovemeyer and William Pugh Finding Concurrency Bugs in Java

Outline
Introduction

Concurrency Bug Patterns
Conclusions

Introduction
Background
Our Work

Concurrency Bug Patterns
Inconsistent Synchronization
Double Checked Locking
Unconditional Wait
Other Bug Patterns

Conclusions
Conclusions
Recommendations

David Hovemeyer and William Pugh Finding Concurrency Bugs in Java

Outline
Introduction

Concurrency Bug Patterns
Conclusions

Background
Our Work

Programmers are Not Scared Enough

I Java makes threaded programming “too easy”
I Language often hides consequences of incorrect

synchronization

I Many (most?) Java programmers play fast and loose with
synchronization

I Result: many production concurrent Java programs have
serious, avoidable concurrency bugs

I Programmer intuition about behavior of programs with data
races is almost always wrong

I Program usually works
I ...until deployed in a mission-critical application?

David Hovemeyer and William Pugh Finding Concurrency Bugs in Java

Outline
Introduction

Concurrency Bug Patterns
Conclusions

Background
Our Work

Our Work

I Develop simple, effective static analysis techniques for finding
bugs

I Including concurrency bugs
I http://findbugs.sourceforge.net

I Idea: bug patterns
I Deviations from good practice
I Code idioms that are likely to be errors

I Analyze real applications and libraries
I Was analysis effective at finding real errors?
I Was the false positive rate acceptable?
I Can we convince developers bugs are worth fixing?
I Can we gain insight on why bugs are introduced?

David Hovemeyer and William Pugh Finding Concurrency Bugs in Java

http://findbugs.sourceforge.net

Outline
Introduction

Concurrency Bug Patterns
Conclusions

Inconsistent Synchronization
Double Checked Locking
Unconditional Wait
Other Bug Patterns

Concurrency Bug Patterns

David Hovemeyer and William Pugh Finding Concurrency Bugs in Java

Outline
Introduction

Concurrency Bug Patterns
Conclusions

Inconsistent Synchronization
Double Checked Locking
Unconditional Wait
Other Bug Patterns

Finding and Eliminating Data Races

I Lots of techniques exist to find and eliminate data races:
I Race-free Java dialects (sound, but restrictive)
I Sophisticated static analysis (interprocedural,

context-sensitive)
I Dynamic techniques

I How about simple techniques?
I Java programs usually have relatively simple concurrency

patterns
I Look for violations of most common synchronization idiom
I Can we find real bugs?

David Hovemeyer and William Pugh Finding Concurrency Bugs in Java

Outline
Introduction

Concurrency Bug Patterns
Conclusions

Inconsistent Synchronization
Double Checked Locking
Unconditional Wait
Other Bug Patterns

Inconsistent Synchronization

I Common idiom: synchronize on this reference
I Track scope of locks intraprocedurally, examine field accesses

I Ignore accesses in...
I non-public methods called only from locked contexts
I methods not likely to be reachable from multiple threads:

constructors, finalizers, readObject(), etc.

I Report fields where accesses are usually, but not always,
synchronized

I Result: this technique finds lots of data races
I 114 we verified in core J2SE libraries (JDK 1.5, build 42)
I 2 found in prerelease version of JDK 1.4.2, fixed by Sun in

JDK 1.5

David Hovemeyer and William Pugh Finding Concurrency Bugs in Java

Outline
Introduction

Concurrency Bug Patterns
Conclusions

Inconsistent Synchronization
Double Checked Locking
Unconditional Wait
Other Bug Patterns

Ranking Warnings: The Hypothesis

I We believed that programmers would strive to synchronize all
mutable field accesses for objects intended to be thread-safe

I Therefore:
I The higher the percentage of synchronized accesses,
I The more likely unsynchronized accesses would indicate

genuine bugs

I So, we gave higher priority to warnings of fields synchronized
between 75% and 99% of the time

David Hovemeyer and William Pugh Finding Concurrency Bugs in Java

Outline
Introduction

Concurrency Bug Patterns
Conclusions

Inconsistent Synchronization
Double Checked Locking
Unconditional Wait
Other Bug Patterns

Ranking Warnings: The Reality

I The hypothesis was incorrect:

 0

 20

 40

 60

 80

 100

 120

 50 60 70 80 90 100

N
um

be
r o

f w
ar

ni
ng

s

Minimum accesses synchronized (percent)

Inconsistent synchronization false positive results for rt-1.5-b42

Serious
Harmless and false

David Hovemeyer and William Pugh Finding Concurrency Bugs in Java

Outline
Introduction

Concurrency Bug Patterns
Conclusions

Inconsistent Synchronization
Double Checked Locking
Unconditional Wait
Other Bug Patterns

Interpretation

I Fields synchronized, e.g., 95% of the time not significantly
more likely to be bugs than fields synchronized 50% of the
time

I Programmers are deliberately using race conditions to
communicate values between threads

I Some examples of unsynchronized accesses:
I Set methods (very common)
I Get methods (very common)
I Copying internal collection to an array

I Programs work “most of the time”
I Many bugs may not be exploitable in practice
I Still, not a comforting thought

David Hovemeyer and William Pugh Finding Concurrency Bugs in Java

Outline
Introduction

Concurrency Bug Patterns
Conclusions

Inconsistent Synchronization
Double Checked Locking
Unconditional Wait
Other Bug Patterns

Double Checked Locking

I A common technique to avoid locking in lazy initialization of
a singleton:

if (singleton == null) {
synchronized (lock) {
if (singleton == null)
singleton = new Singleton();

}
}

I JVM can reorder writes!
I Without acquiring lock, may see incompletely initialized object

I Still widely used
I We found 78 doublecheck instances in core J2SE libraries
I And 4 doublecheck instances in JBoss

David Hovemeyer and William Pugh Finding Concurrency Bugs in Java

Outline
Introduction

Concurrency Bug Patterns
Conclusions

Inconsistent Synchronization
Double Checked Locking
Unconditional Wait
Other Bug Patterns

Detecting Double Checked Locking

I State machine driven pattern recognition over bytecode
I Bytecode closely matches source

I Look for:

1. Load of field
2. Null comparison
3. Monitorenter
4. Load of field
5. Null comparison
6. Object creation, Store to field

David Hovemeyer and William Pugh Finding Concurrency Bugs in Java

Outline
Introduction

Concurrency Bug Patterns
Conclusions

Inconsistent Synchronization
Double Checked Locking
Unconditional Wait
Other Bug Patterns

Unconditional Wait

I Triggered when monitor wait is done immediately upon
entering a synchronized block:

1. monitorenter
2. invokevirtual Object.wait()

I Often means condition was checked without the lock held

I Usually a novice thread programmer error, but...

I 2 occurrences in JBoss!

David Hovemeyer and William Pugh Finding Concurrency Bugs in Java

Outline
Introduction

Concurrency Bug Patterns
Conclusions

Inconsistent Synchronization
Double Checked Locking
Unconditional Wait
Other Bug Patterns

Example

I Example (JBoss 4.0.0 DR3)

// If we are not enabled, then wait
if (!enabled) {
try {
log.debug("Disabled, waiting for notification");
synchronized (lock) {
lock.wait();

}
}
catch (InterruptedException ignore) {}

}

David Hovemeyer and William Pugh Finding Concurrency Bugs in Java

Outline
Introduction

Concurrency Bug Patterns
Conclusions

Inconsistent Synchronization
Double Checked Locking
Unconditional Wait
Other Bug Patterns

Other Bug Patterns

I Some concurrency bug patterns more useful for finding
mistakes in novice code:

I Wait Not In Loop
I Monitor waits must be in a loop which checks the condition

I Other threads can run between wakeup and reacquiring lock
I Java allows spurious wakeups
I Monitors used for multiple conditions

I Two Lock Wait
I Waiting with two locks creates possibility of deadlock
I Found bug in J2SE CORBA ORB implementation

I More patterns described in paper

David Hovemeyer and William Pugh Finding Concurrency Bugs in Java

Outline
Introduction

Concurrency Bug Patterns
Conclusions

Conclusions
Recommendations

Conclusions

David Hovemeyer and William Pugh Finding Concurrency Bugs in Java

Outline
Introduction

Concurrency Bug Patterns
Conclusions

Conclusions
Recommendations

Conclusions

I Trivial static inspection reveals a large number of concurrency
bugs in widely-used applications and libraries

I Why are these bugs there?
I Benign reason: everyone makes mistakes
I Sinister reason: programmers are too willing to take chances

I Many bug patterns can be easily automated
I With tuning, false positive rate is acceptable (usually less than

50%)

David Hovemeyer and William Pugh Finding Concurrency Bugs in Java

Outline
Introduction

Concurrency Bug Patterns
Conclusions

Conclusions
Recommendations

Recommendations

I Once introduced, bugs are difficult and expensive to fix
I Especially true of concurrency bugs, where reproducibility is

low and likelihood of introducing other errors is high

I We should make early detection tools (static and dynamic)
easy to use

I Tools that don’t require developers to change working style
more likely to be adopted in practice

I Simplicity helps:
I If analysis is simple, it’s usually easy to explain results to user
I It makes sense to fix obvious bugs before tackling subtle bugs

David Hovemeyer and William Pugh Finding Concurrency Bugs in Java

	Outline
	Introduction
	Background
	Our Work

	Concurrency Bug Patterns
	Inconsistent Synchronization
	Double Checked Locking
	Unconditional Wait
	Other Bug Patterns

	Conclusions
	Conclusions
	Recommendations

