
Understanding Microquanta Process
Scheduling for Cloud Applications

Erfan Sharafzadeh, Alireza Sanaee, Peng Huang, Gianni Antichi, Soudeh Ghorbani

December 2022

The Need for Low Latency in Data Centers

• The call for µs-scale and ns-
scale processing

• Emerging userspace
networking runtimes

• Thread-dispatch and
interrupt handling are
culprits!

Understanding Microquanta Process Scheduling for Cloud Applications, CloudAM 2022 2

0

5

10

15

20

25

30

35

Conventional
Linux

Kernel-bypass
UDP

Kernel-bypass
TCP

Library RDMA Raw RDMA

O
ne

-w
ay

 R
PC

 L
at

en
cy

 (µ
s)

[Zhang et al., SOSP 2021]

0

20

40

60

80

100

RDMA Two-sided Thread
Dispatch

Interrupts RPC TCP

C
um

ul
at

iv
e

La
te

nc
y

(µ
s)

[Barroso et al., CACM 2017]

~20-30µs

M
em

or
y

Su
bs

ys
te

m

I/
O

 S
ub

sy
st

em

Process Scheduling Involved Everywhere!

RPC

Process
Scheduler

Datapath

Memcached Nginx RocksDB
Userland

Kernel space

…

Network Applications

1

2

3Network packet
arrives: Trigger

the network
stack

Application threads
asking for CPU time

to produce a response

Response is
ready: prepare

network
packet(s)

Process scheduler is
invoked at least 3

times during a single
network

communication

Understanding Microquanta Process Scheduling for Cloud Applications, CloudAM 2022 3

Incoming
packets Egress

packets

Conventional Linux Schedulers Falling Short

Non-skewed
workloads can benefit

from Realtime
scheduling by

minimizing the
interference!

Non-preemptive
realtime scheduling is

unfit for skewed
workloads due to
HoL blocking!

• Running RocksDB
benchmark on a single
machine under three
process schedulers

Understanding Microquanta Process Scheduling for Cloud Applications, CloudAM 2022 4

20%
100%

Microquanta holds a
middle-ground but

raises its own issues!

M
em

or
y

Su
bs

ys
te

m

I/
O

 S
ub

sy
st

em

Introducing Three Representative Schedulers

RPC

Process
Scheduler

Datapath

Memcached Nginx RocksDB
Userland

Kernel space

R
ea

lt
im

e
FI

FO C
FS

 R
un

qu
eu

e

CFS quota
Timeout

Latency sensitive (Higher Prio)
CPU intensive (Lower Prio)

CPU1
2

…

Network Applications

Understanding Microquanta Process Scheduling for Cloud Applications, CloudAM 2022 5

• Strictly higher priority
• Non-preemptive

• Strict Fairness
• Time-sharing

Microquanta Scheduling

m
ic

ro
ua

nt
a

R
un

qu
eu

e

C
FS

 R
un

qu
eu

e

Runtime
Timeout

CFS quota
Timeout

Latency sensitive (Higher Prio)
CPU intensive (Lower Prio)

Favoring latency-
sensitive processes

Balanced

Favoring CPU-
intensive workload

Managed by
CFS

Managed by
Microquanta

• Per-CPU FIFO queues

• Microsecond-scale
scheduling between
processes

• Tunable CPU
allocation via
Runtime and Period
Parameters

P
er

io
d

R
u

n
ti

m
e

Understanding Microquanta Process Scheduling for Cloud Applications, CloudAM 2022 6

Impact of Microquanta Parameter Setting on
Application Performance

Understanding Microquanta Process Scheduling for Cloud Applications, CloudAM 2022 7

Strictly favoring
Memcached threads

Finer period
settings perform

better

Microquanta and Fast Load-Balancing

Understanding Microquanta Process Scheduling for Cloud Applications, CloudAM 2022 8

10-second
convergence time

for CFS!

Non uniform load
distribution, hot
zones still exist

Very fast
convergence for
Microquanta ~1s

Uniform load-
distribution

- 500 benchmark threads pinned to core #1 -> Released on 10th second
- The schedulers start distributing threads

Application Performance Comparison

Understanding Microquanta Process Scheduling for Cloud Applications, CloudAM 2022 9

Uncontested

Uncontested Contested

Contested

Similar
latency

performance

Load-balancing
is crucial!

Network application
must be prioritized!

Microquanta cannot
benefit the busy-
polling threads of

IO-kernel

The Future of Process Scheduling

• Linux process scheduling is challenged by skewed workloads

• Parameter-based scheduling faces tuning issues

• Design space of process schedulers
• Schedulers that can learn and adapt to workload changes
• Schedulers that are tied to applications logic

• Kernel-bypass runtimes (Shinjuku, Caladan)
• Userspace thread-management (Arachne)
• In-application scheduling (Ghost, Peafowl)

Understanding Microquanta Process Scheduling for Cloud Applications, CloudAM 2022 10

Microquanta Kernel Repository: https://github.com/erfan111/linux_uquanta

Contact: erfan@cs.jhu.edu

https://github.com/erfan111/linux_uquanta
mailto:erfan@cs.jhu.edu

	Slide 1: Understanding Microquanta Process Scheduling for Cloud Applications
	Slide 2: The Need for Low Latency in Data Centers
	Slide 3: Process Scheduling Involved Everywhere!
	Slide 4: Conventional Linux Schedulers Falling Short
	Slide 5: Introducing Three Representative Schedulers
	Slide 6: Microquanta Scheduling
	Slide 7: Impact of Microquanta Parameter Setting on Application Performance
	Slide 8: Microquanta and Fast Load-Balancing
	Slide 9: Application Performance Comparison
	Slide 10: The Future of Process Scheduling

