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The Need for Low Latency in Data Centers

• The call for µs-scale and ns-
scale processing

• Emerging userspace 
networking runtimes

• Thread-dispatch and 
interrupt handling are 
culprits!
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Process Scheduling Involved Everywhere!

RPC

Process 
Scheduler

Datapath

Memcached Nginx RocksDB
Userland

Kernel space

…

Network Applications
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2

3Network packet 
arrives: Trigger 

the network 
stack

Application threads 
asking for CPU time 

to produce a response

Response is 
ready: prepare 

network 
packet(s)

Process scheduler is 
invoked at least 3 

times during a single 
network 

communication
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Incoming 
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packets



Conventional Linux Schedulers Falling Short

Non-skewed 
workloads can benefit 

from Realtime 
scheduling by 

minimizing the 
interference!

Non-preemptive 
realtime scheduling is 

unfit for skewed 
workloads due to 
HoL blocking!

• Running RocksDB 
benchmark on a single 
machine under three 
process schedulers
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20%
100%

Microquanta holds a 
middle-ground but 

raises its own issues!
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Introducing Three Representative Schedulers
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• Strictly higher priority
• Non-preemptive

• Strict Fairness
• Time-sharing



Microquanta Scheduling
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• Per-CPU FIFO queues

• Microsecond-scale 
scheduling between 
processes

• Tunable CPU 
allocation via 
Runtime and Period 
Parameters
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Impact of Microquanta Parameter Setting on 
Application Performance
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Strictly favoring 
Memcached threads

Finer period 
settings perform 

better



Microquanta and Fast Load-Balancing
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10-second 
convergence time 

for CFS!

Non uniform load 
distribution, hot 
zones still exist

Very fast 
convergence for 
Microquanta ~1s

Uniform load-
distribution

- 500 benchmark threads pinned to core #1 -> Released on 10th second
- The schedulers start distributing threads



Application Performance Comparison
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Uncontested

Uncontested Contested

Contested

Similar 
latency 

performance

Load-balancing 
is crucial!

Network application 
must be prioritized!

Microquanta cannot 
benefit the busy-
polling threads of 

IO-kernel



The Future of Process Scheduling

• Linux process scheduling is challenged by skewed workloads

• Parameter-based scheduling faces tuning issues

• Design space of process schedulers
• Schedulers that can learn and adapt to workload changes
• Schedulers that are tied to applications logic

• Kernel-bypass runtimes (Shinjuku, Caladan)
• Userspace thread-management (Arachne)
• In-application scheduling (Ghost, Peafowl)
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Microquanta Kernel Repository: https://github.com/erfan111/linux_uquanta 

Contact: erfan@cs.jhu.edu 

https://github.com/erfan111/linux_uquanta
mailto:erfan@cs.jhu.edu
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