
Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager

Hash Tables

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager

What is a Dictionary?

Container class
• Stores key-element pairs

Allows “look-up” (find) operation

Allows insertion/removal of elements

May be unordered or ordered

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager

Dictionary Keys

Must support equality operator
• For ordered dictionary, also support comparator

operator

— useful for finding neighboring elements

Keys sometimes required to be unique

In this case, referred to as a MAP

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager

Dictionary Examples

Natural language dictionary
•  word is key
•  element contains word, definition, pronunciation, etc.

Web pages (a Map)
•  URL is key
•  html or other file is element

Any typical database (e.g. student record, also a map)
•  has one or more search keys
•  each key may require own organizational dictionary

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager

Map ADT

Size(), isEmpty()

get(k): Return element with key k or null

put(k,e): Insert element e with key k; if this key exists
replace element and return old element

remove(k): Remove element with key k; if no such
entry return null

keySet(), values(), entrySet(): iterators over keys and
values and entries (key-value pairs) in Map

Implemented using Trees (so far)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager

Hash Table
Provides efficient implementation of unordered

dictionary
•  Insert, remove, and find all O(1) expected time

Bucket array
• Provides storage for elements

Hash function
• Maps keys to buckets (ranks)

• For each operation, evaluate hash function to find
location of item

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager

Bucket Array

Each array element holds 1 or more dictionary
elements

Capacity is number of array elements
Load is percent of capacity used

• N is capacity of hash table
•  n is size of dictionary
•  n/N is load of hash table

Collision is mapping of multiple dictionary
elements to the same array element

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager

Simplest Hash Table

Keys are unique integers in range [0, N-1]
Trivial hash function

•  h(k) = k

Uses O(N) space (can be very large)
•  okay if N = O(n)

•  bad if key can be any 32-bit integer
— table has 232 entries = 4 gigaentries

find(), insert(), and remove() all take O(1) time

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager

Hash Function

Maps each key to an array rank
•  h(k): K → R
•  array rank is integer in [0, N-1]

Decomposed into two parts
•  hash code generation

— converts key to an integer
•  compression map

— converts integer hash code to valid rank
•  h(k) = cm(hc(k))

keys
ranks

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager

“Good” hash function

Want to “spread out” values to avoid collisions

Ideally, keys act as random distribution of ranks
•  Probability(h(k) = i) = 1/N for all i in [0, N-1]

•  Expected keys in bucket i is n/N

— this is O(1) if n = O(N)

If no collision, operations are O(1)
•  so expected time is O(1) for all operations

Note: worst case time is still O(n)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager

Generating Hash Codes:
Java’s Object.hashCode()

generates integer for any object
generates same integer for two objects as long

as equals() method evaluates to true
•  different instances with same value are not equal

according to Object.equals()
— won’t always give expected hashing behavior

exact method is implementation dependent

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager

Generating Hash Codes:
Cast to Integer

Works well if key is byte, short, or char type
•  can use Float.floatToIntBits() for floats

Disadvantages
• High order bits ignored for longs/doubles

— May result in collisions
• Cannot handle more complex keys

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager

Generating Hash Codes:
Summing Components

Add up multiple integers to get a single integer
•  Ignore overflows
•  hc(x0, x1, x2, ..., xk-1) = Σ xi

Examples
•  Long or double may be converted to two ints (high order

and low order) and summed
•  Strings may be broken into multiple characters and

summed
Disadvantage

•  Ordering of integers is ignored
— May result in collisions

i=0

k-1

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager

Generating Hash Codes:
Polynomial Hash Codes

Multiply each component by some constant to a power
•  hc(x0, x1, x2, ..., xk-1) = Σaixi

 = x0 + a(x1 + a(x2 + ...xk-1))...)

•  Makes hash code dependent on order of components

Disadvantages

•  k-1 multiplies in hash evaluation

•  Choice of a makes big difference in “goodness” of hash
function

i=0

k-1

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager

Generating Hash Codes:
Cyclic Shift

Cyclic Shift Hash Codes
•  Rotates bits of current code by some number of positions

before adding each new component

•  hc(x0, x1, x2, ..., xk-1) =
 rotate(xk-1 + rotate(xk-2 + ...(x1 + rotate(x0))...))

•  no multiplication

— only addition and bitwise shifts and ORs

Disadvantages
•  Choice of rotation size still makes big difference in
“goodness”

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager

Compression Maps
Division Method

•  h(k) = |k| mod N
•  N works best if it is a prime number
•  Even then, multiples of N map to same position

— h(iN) = 0, h(iN+j) = j mod N

MAD (multiply, add, and divide) Method
•  h(k) = |ak+b| mod N

— h(iN) = |aiN + b| mod N = b mod N
— h(iN+j) = |aiN + aj + b| mod N

 = |aj + b| mod N
•  Not clear that this is much better...

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager

Collision Handling: Chaining

For each bucket, store a sequence of elements
that map to the bucket
•  effectively a much smaller, auxiliary dictionary

Linearly search sequence to find correct element

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager

Chaining Example

N = 7, h(k) = |k| mod N

0 1 2 3 4 5 6

21
14

36 -4 19
5
26

Insert 19 36 5 21 -4 26 14 (load = 1)

© 2004 Goodrich, Tamassia

Map Methods with Separate
Chaining used for Collisions
" Delegate operations to a list-based map at each cell:
" Algorithm get(k):
" Output: The value associated with the key k in the map, or null if there is no
" entry with key equal to k in the map
" return A[h(k)].get(k) {delegate the get to the list-based map at A[h(k)]}
"

" Algorithm put(k,v):
" Output: If there is an existing entry in our map with key equal to k, then we
" return its value (replacing it with v); otherwise, we return null
" t = A[h(k)].put(k,v) {delegate the put to the list-based map at A[h(k)]}
" if t = null then {k is a new key}
" n = n + 1
" return t
"

" Algorithm remove(k):
" Output: The (removed) value associated with key k in the map, or null if there
" is no entry with key equal to k in the map
" t = A[h(k)].remove(k) {delegate the remove to the list-based map at A[h(k)]}
" if t ≠ null then {k was found}
" n = n - 1
" return t

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager

Collision Handling:
Probing Hash Tables

Store only 1 element per bucket
•  No additional space, but requires smaller load

If multiple elements map to same bucket, use some method to
find empty bucket

•  Linear probing
— h’(k) = (h(k) + j) mod N j = 0, 1, 2, 3, . . .

» Keep adding 1 to rank to find empty bucket
•  Quadratic probing

— h’(k) = (h(k) + j2) mod N j = 0, 1, 2, 3, . . .
•  Double hashing

— h’(k) = (h(k) + j*h’’(k)) mod N j = 0, 1, 2, 3, . . .

© 2004 Goodrich, Tamassia

Linear Probing
" Linear probing handles

collisions by placing the
colliding item in the next
(circularly) available table cell

" Each table cell inspected is
referred to as a “probe”

" Colliding items lump together,
causing future collisions to
cause a longer sequence of
probes

" Example:
n  h(x) = x mod 13
n  Insert keys 18, 41, 22,

44, 59, 32, 31, 73, in this
order

0 1 2 3 4 5 6 7 8 9 10 11 12

 41 18 44 59 32 22 31 73
0 1 2 3 4 5 6 7 8 9 10 11 12

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager

Linear Probing Example

N = 7, h(k) = |k| mod N

0 1 2 3 4 5 6

21 14 36 -4 19 5 26

Insert 19 36 5 21 -4 26 14 (load = 1)

Time for probing?

I(l) = 1/l ln 1/(1-l) where l is load factor

E.g. l = .75 è 8-9 probes

 l = .90 è 50 probes

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager

Double Hashing

Note that in double-hashing, the second hash
function cannot evaluate to zero!

hash’’(x) = R – (x mod R), R prime and R<N

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager

© 2004 Goodrich, Tamassia

Search with Linear Probing
" Consider a hash table A that

uses linear probing
" get(k)

n  We start at cell h(k)
n  We probe consecutive

locations until one of the
following occurs
w  An item with key k is

found, or
w  An empty cell is found, or
w  N cells have been

unsuccessfully probed

Algorithm get(k)
 i ← h(k)
 p ← 0
 repeat
 c ← A[i]
 if c = ∅	

	
 	
 	
return null
 else if c.key () = k
 return c.element()
 else
 i ← (i + 1) mod N

 p ← p + 1
until p = N
	
return null

© 2004 Goodrich, Tamassia

Updates with Linear Probing
" To handle insertions and

deletions, we introduce a
special object, called
AVAILABLE, which replaces
deleted elements

" remove(k)
n  We search for an entry

with key k
n  If such an entry (k, o) is

found, we replace it with
the special item
AVAILABLE and we
return element o

n  Else, we return null

" put(k, o)
n  We throw an exception if

the table is full
n  We start at cell h(k)
n  We probe consecutive cells

until one of the following
occurs
w  A cell i is found that is

either empty or stores
AVAILABLE, or

w N cells have been
unsuccessfully probed

n  We store entry (k, o) in
cell i

© 2004 Goodrich, Tamassia

Double Hashing
" Double hashing uses a secondary

hash function d(k) and handles

collisions by placing an item in

the first available cell of the

series

 (i + jd(k)) mod N

 for j = 0, 1, … , N - 1

" The secondary hash function d(k)

cannot have zero values

" The table size N must be a prime

to allow probing of all the cells

" Common choice of

compression function for the

secondary hash function:

d2(k) = q - k mod q

" where

n  q < N

n  q is a prime

" The possible values for d2(k)

are

 1, 2, … , q

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager

Double Hashing Example
N = 7, h(k) = |k| mod N

R = 5, h’’(k) = R – k mod R

0 1 2 3 4 5 6

21 36 -4 19

Insert 19 36 5 21 -4 26 14 (load = 1)

5 26 14

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager

Other Open Addressing Difficulties

Searching
•  For NO_SUCH_KEY, must search until empty bucket

found

Removing
•  Cannot just empty the bucket

— could disconnect colliding keys
•  Easiest method is setting with special DELETED_KEY

sentinal
— insert() can reuse bucket
— find() must continue searching beyond bucket

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager

Rehashing

When load of hash table gets too large
• Allocate new hash table

• Generate new hash function

• Re-hash old elements into new table

• Time cost may be amortized as in dynamic array

— must increase size by O(n) each time

Extendible Hashing

Recall disk access is expensive; probing is
thus expensive

B-tree reduced disk access but still grow in
size

Extendible hashing is a mashup of B-trees
and hashing

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager

Extendible Hashing

Ø external storage

Ø N records in total to store,

Ø M records in one disk block

No more than two blocks are
examined.

Modified from lydia.sinapova

Extendible Hashing

Idea:
•  Keys are grouped according to the
 first m bits in their code.
•  Each group is stored in one
 disk block.
•  If some block becomes full,
 each group is split into two ,
 and m+1 bits are considered to
 determine the location of a record.

Modified from lydia.sinapova

Example

4 disk blocks, each can contain 3 records

4 groups of keys according to the first

 two bits

00010 01001 10001 11000
00100 01010 10100 11010

 01100

00 01 10 11
directory

Modified from lydia.sinapova

Example (cont.)

New key to be inserted: 01011.
Block2 is full, so we start considering 3 bits

00010 01001 01100 10001 11000
---- 01010 --- 11010
00100 01011 10100

directory
000/001 010 011 100/101 110/111
(still on
same block)

Modified from lydia.sinapova

Extendible Hashing

Size of the directory : 2D

2D = O(N (1+1/M) / M)

D - the number of bits considered.
N - number of records
M - number of disk blocks

Modified from lydia.sinapova

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager

Unordered Dictionary ADT

size, isEmpty

find(k): Return element with key k; else null

findAll(k): Iterator of all elements with key k

insert(k,e): Insert element e with key k; return entry

remove(k): Remove element with key k; return entry
or null

entries(): iterator over all entries

Some interesting facts

Time in linear case is about ½ (1 + 1/(1-load2))

Quadratic can always insert if less than half full

 Assume not; think about the first N/2 possiblities
and suppose that i^2%N = j^2%N and both i and
j < N/2

 i^2 – j^2 = 0 è (i+j)(i-j) = 0 but i+ j < N, so
cannot be equal to zero. So first n/2 alternatives
are unique

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Greg Hager

