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What is a Dictionary? 

Container class 
• Stores key-element pairs  

Allows “look-up” (find) operation 

Allows insertion/removal of elements 

May be unordered or ordered 
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Dictionary Keys 

Must support equality operator 
• For ordered dictionary, also support comparator 

operator 

— useful for finding neighboring elements 

Keys sometimes required to be unique 

In this case, referred to as a MAP 
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Dictionary Examples 

Natural language dictionary 
•  word is key 
•  element contains word, definition, pronunciation, etc. 

Web pages (a Map) 
•  URL is key 
•  html or other file is element 

Any typical database (e.g. student record, also a map) 
•  has one or more search keys 
•  each key may require own organizational dictionary 



Johns Hopkins Department of Computer Science 
Course 600.226: Data Structures, Professor: Greg Hager 

Map ADT 

Size(), isEmpty() 

get(k): Return element with key k or null 

put(k,e): Insert element e with key k; if this key exists 
replace element and return old element 

remove(k): Remove element with key k; if no such 
entry return null 

keySet(), values(), entrySet(): iterators over keys and 
values and entries (key-value pairs) in Map 

Implemented using Trees (so far) 
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Hash Table 
Provides efficient implementation of unordered 

dictionary 
•  Insert, remove, and find all O(1) expected time 

Bucket array 
• Provides storage for elements 

Hash function 
• Maps keys to buckets (ranks) 

• For each operation, evaluate hash function to find 
location of item 
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Bucket Array 

Each array element holds 1 or more dictionary 
elements 

Capacity is number of array elements 
Load is percent of capacity used 

• N is capacity of hash table 
•  n is size of dictionary 
•  n/N is load of hash table 

Collision is mapping of multiple dictionary 
elements to the same array element 
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Simplest Hash Table 

Keys are unique integers in range [0, N-1] 
Trivial hash function 

•  h(k) = k 

Uses O(N) space (can be very large) 
•  okay if N = O(n) 

•  bad if key can be any 32-bit integer 
— table has 232 entries = 4 gigaentries 

find( ), insert( ), and remove( ) all take O(1) time 
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Hash Function 

Maps each key to an array rank 
•  h(k): K → R 
•  array rank is integer in [0, N-1] 

Decomposed into two parts 
•  hash code generation 

— converts key to an integer 
•  compression map 

— converts integer hash code to valid rank 
•  h(k) = cm( hc( k ) ) 

keys 
ranks 
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“Good” hash function 

Want to “spread out” values to avoid collisions 

Ideally, keys act as random distribution of ranks 
•  Probability( h(k) = i )  =  1/N for all i in [0, N-1] 

•  Expected keys in bucket  i  is  n/N 

— this is O(1) if n = O(N) 

If no collision, operations are O(1) 
•  so expected time is O(1) for all operations 

Note: worst case time is still O(n) 
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Generating Hash Codes: 
Java’s Object.hashCode() 

generates integer for any object 
generates same integer for two objects as long 

as equals( ) method evaluates to true 
•  different instances with same value are not equal 

according to Object.equals( ) 
— won’t always give expected hashing behavior 

exact method is implementation dependent 
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Generating Hash Codes: 
Cast to Integer 

Works well if key is byte, short, or char type 
•  can use Float.floatToIntBits() for floats 

Disadvantages 
• High order bits ignored for longs/doubles 

— May result in collisions 
• Cannot handle more complex keys 
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Generating Hash Codes: 
Summing Components 

Add up multiple integers to get a single integer 
•  Ignore overflows 
•  hc(x0, x1, x2, ..., xk-1) = Σ xi 

Examples 
•  Long or double may be converted to two ints (high order 

and low order) and summed 
•  Strings may be broken into multiple characters and 

summed 
Disadvantage 

•  Ordering of integers is ignored 
— May result in collisions 

i=0 

k-1 
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Generating Hash Codes: 
Polynomial Hash Codes 

Multiply each component by some constant to a power 
•  hc(x0, x1, x2, ..., xk-1) = Σaixi 

  = x0 + a(x1 + a(x2 + ...xk-1))...) 

•  Makes hash code dependent on order of components 

Disadvantages 

•  k-1 multiplies in hash evaluation 

•  Choice of a makes big difference in “goodness” of hash 
function 

i=0 

k-1 
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Generating Hash Codes: 
Cyclic Shift 

Cyclic Shift Hash Codes 
•  Rotates bits of current code by some number of positions 

before adding each new component 

•  hc(x0, x1, x2, ..., xk-1) = 
  rotate(xk-1 + rotate(xk-2 + ...(x1 + rotate(x0))...)) 

•  no multiplication 

— only addition and bitwise shifts and ORs 

Disadvantages 
•  Choice of rotation size still makes big difference in 
“goodness” 
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Compression Maps 
Division Method 

•  h(k) = |k| mod N 
•  N works best if it is a prime number 
•  Even then, multiples of N map to same position 

— h(iN) = 0,  h(iN+j) = j mod N 

MAD (multiply, add, and divide) Method 
•  h(k) = |ak+b| mod N 

— h(iN) = |aiN + b| mod N = b mod N 
— h(iN+j) = |aiN + aj + b| mod N  

    = |aj + b| mod N 
•  Not clear that this is much better... 
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Collision Handling: Chaining 

For each bucket, store a sequence of elements 
that map to the bucket 
•  effectively a much smaller, auxiliary dictionary 

Linearly search sequence to find correct element 
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Chaining Example 

N = 7,   h(k) = |k| mod N 

0 1 2 3 4 5 6 

21 
14 

36 -4 19 
5 
26 

Insert  19  36  5  21  -4  26  14 (load = 1) 



© 2004 Goodrich, Tamassia 

Map Methods with Separate 
Chaining used for Collisions 
" Delegate operations to a list-based map at each cell: 
" Algorithm get(k):   
" Output: The value associated with the key k in the map, or null if there is no   
"  entry with key equal to k in the map   
" return A[h(k)].get(k)  {delegate the get to the list-based map at A[h(k)]} 
"   

" Algorithm put(k,v):    
" Output: If there is an existing entry in our map with key equal to k, then we   
"  return its value (replacing it with v); otherwise, we return null   
" t = A[h(k)].put(k,v)  {delegate the put to the list-based map at A[h(k)]} 
" if t = null then   {k is a new key} 
"  n = n + 1   
" return t 
"   

" Algorithm remove(k):    
" Output: The (removed) value associated with key k in the map, or null if there 
"  is no entry with key equal to k in the map   
" t = A[h(k)].remove(k)       {delegate the remove to the list-based map at A[h(k)]} 
" if t ≠ null then            {k was found} 
"  n = n - 1   
" return t 
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Collision Handling: 
Probing Hash Tables 

Store only 1 element per bucket 
•  No additional space, but requires smaller load 

If multiple elements map to same bucket, use some method to 
find empty bucket 

•  Linear probing 
— h’(k) = ( h(k) + j ) mod N   j = 0, 1, 2, 3, . . . 

» Keep adding 1 to rank to find empty bucket 
•  Quadratic probing 

— h’(k) = ( h(k) + j2 ) mod N   j = 0, 1, 2, 3, . . . 
•  Double hashing 

— h’(k) = ( h(k) + j*h’’(k) ) mod N  j = 0, 1, 2, 3, . . . 
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Linear Probing 
" Linear probing handles 

collisions by placing the 
colliding item in the next 
(circularly) available table cell 

" Each table cell inspected is 
referred to as a “probe” 

" Colliding items lump together, 
causing future collisions to 
cause a longer sequence of 
probes 

" Example: 
n  h(x) = x mod 13 
n  Insert keys 18, 41, 22, 

44, 59, 32, 31, 73, in this 
order 

                           
0 1 2 3 4 5 6 7 8 9 10 11 12 

    41     18 44 59 32 22 31 73   
0 1 2 3 4 5 6 7 8 9 10 11 12 
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Linear Probing Example 

N = 7,   h(k) = |k| mod N 

0 1 2 3 4 5 6 

21 14 36 -4 19 5 26 

Insert  19  36  5  21  -4  26  14 (load = 1) 



Time for probing? 

I(l) = 1/l ln 1/(1-l)  where l is load factor 

E.g. l = .75 è 8-9 probes 

        l = .90 è 50 probes 
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Double Hashing 

Note that in double-hashing, the second hash 
function cannot evaluate to zero! 

 

hash’’(x) = R – (x mod R), R prime and R<N 
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Search with Linear Probing 
" Consider a hash table A that 

uses linear probing 
" get(k) 

n  We start at cell h(k)  
n  We probe consecutive 

locations until one of the 
following occurs 
w  An item with key k is 

found, or 
w  An empty cell is found, or 
w  N cells have been 

unsuccessfully probed  

Algorithm get(k)   
 i ← h(k) 
 p ← 0 
 repeat 
  c ← A[i] 
  if c = ∅	


	

 	

 	

return null 
   else if c.key () = k 
   return c.element() 
  else 
   i ← (i + 1) mod N 

  p ← p + 1 
until   p = N 
	

return null 
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Updates with Linear Probing 
" To handle insertions and 

deletions, we introduce a 
special object, called 
AVAILABLE, which replaces 
deleted elements 

" remove(k) 
n  We search for an entry 

with key k  
n  If such an entry (k, o) is 

found, we replace it with 
the special item 
AVAILABLE and we 
return element o 

n  Else, we return null 

" put(k, o) 
n  We throw an exception if 

the table is full 
n  We start at cell h(k)  
n  We probe consecutive cells 

until one of the following 
occurs 
w  A cell i is found that is 

either empty or stores 
AVAILABLE, or 

w N cells have been 
unsuccessfully probed 

n  We store entry (k, o) in 
cell i 
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Double Hashing 
" Double hashing uses a secondary 

hash function d(k) and handles 

collisions by placing an item in 

the first available cell of the 

series 

 (i + jd(k)) mod N 

 for j = 0,  1, … , N - 1 

" The secondary hash function d(k) 

cannot have zero values 

" The table size N must be a prime 

to allow probing of all the cells 

" Common choice of 

compression function for the 

secondary hash function:   

d2(k) = q - k mod q 

"   where 

n  q < N 

n  q is a prime 

" The possible values for d2(k) 

are 

  1, 2, … , q 



Johns Hopkins Department of Computer Science 
Course 600.226: Data Structures, Professor: Greg Hager 

Double Hashing Example 
N = 7,   h(k) = |k| mod N 

R = 5,  h’’(k) = R – k mod R 

0 1 2 3 4 5 6 

21 36 -4 19 

Insert  19  36  5  21  -4  26  14 (load = 1) 

5 26 14 
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Other Open Addressing Difficulties 

Searching 
•  For NO_SUCH_KEY, must search until empty bucket 

found 

Removing 
•  Cannot just empty the bucket 

— could disconnect colliding keys 
•  Easiest method is setting with special DELETED_KEY 

sentinal 
— insert( ) can reuse bucket 
— find( ) must continue searching beyond bucket 



Johns Hopkins Department of Computer Science 
Course 600.226: Data Structures, Professor: Greg Hager 

Rehashing 

When load of hash table gets too large 
• Allocate new hash table 

• Generate new hash function 

• Re-hash old elements into new table 

• Time cost may be amortized as in dynamic array 

— must increase size by O(n) each time 



Extendible Hashing 

Recall disk access is expensive; probing is 
thus expensive 

B-tree reduced disk access but still grow in 
size 

Extendible hashing is a mashup of B-trees 
and hashing 
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Extendible Hashing 

Ø external storage  

Ø N records in total to store,  

Ø M records in one disk block 
 

No more than two blocks are 
examined. 

Modified from lydia.sinapova 



Extendible Hashing 

Idea: 
•  Keys are grouped according to the    
          first m bits in their code. 
•  Each group is stored in one  
          disk block. 
•  If some block becomes full,  
      each group is split into two ,  
      and m+1 bits are considered to   
      determine the location of a record. 

Modified from lydia.sinapova 



Example 

4 disk blocks, each can contain 3 records 

4 groups of keys according to the first  

   two bits 

00010  01001  10001  11000 
00100  01010  10100  11010 

  01100 

00   01   10   11 
directory 

Modified from lydia.sinapova 



Example (cont.) 

New key to be inserted: 01011. 
Block2 is full, so we start considering 3 bits 

00010   01001   01100        10001   11000 
----    01010      ---             11010 
00100   01011      10100    

 

directory 
000/001   010      011    100/101   110/111  
(still on 
same block) 

Modified from lydia.sinapova 



Extendible Hashing 

Size of the directory : 2D 
 
2D =    O(N (1+1/M) / M) 
 
D  - the number of bits considered. 
N  - number of records 
M - number of disk blocks 

Modified from lydia.sinapova 
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Unordered Dictionary ADT 

size, isEmpty 

find(k): Return element with key k; else null 

findAll(k): Iterator of all elements with key k 

insert(k,e): Insert element e with key k; return entry 

remove(k): Remove element with key k; return entry 
or null 

entries(): iterator over all entries 



Some interesting facts 

Time in linear case is about ½ (1 + 1/(1-load2)) 

Quadratic can always insert if less than half full 

  Assume not; think about the first N/2 possiblities 
and suppose that i^2%N = j^2%N and both i and 
j < N/2 

 i^2 – j^2 = 0 è (i+j)(i-j) = 0  but i+ j < N, so 
cannot be equal to zero. So first n/2 alternatives 
are unique 
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