

Hash Tables

Johns Hopkins Department of Computer Science Course 600.226: Data Structures, Professor: Greg Hager

Container class

• Stores key-element pairs

Allows "look-up" (find) operation

Allows insertion/removal of elements

May be *unordered* or *ordered*

Dictionary Keys

Must support equality operator

- For ordered dictionary, also support comparator operator
 - —useful for finding neighboring elements

Keys sometimes required to be unique

In this case, referred to as a MAP

Dictionary Examples

Natural language dictionary

- word is key
- element contains word, definition, pronunciation, etc.
- Web pages (a Map)
 - URL is key
 - html or other file is element

Any typical database (e.g. student record, also a map)

- has one or more search keys
- each key may require own organizational dictionary

Map ADT

Size(), isEmpty()

get(k): Return element with key k or null

- put(k,e): Insert element e with key k; if this key exists
 replace element and return old element
- remove(k): Remove element with key k; if no such
 entry return null
- keySet(), values(), entrySet(): iterators over keys and values and entries (key-value pairs) in Map

Implemented using Trees (so far)

Hash Table

Provides efficient implementation of **unordered** dictionary

• Insert, remove, and find all O(1) expected time

Bucket array

• Provides storage for elements

Hash function

- Maps keys to buckets (ranks)
- For each operation, evaluate hash function to find location of item

Bucket Array

- Each array element holds 1 or more dictionary elements
- Capacity is number of array elements
- Load is percent of capacity used
 - N is capacity of hash table
 - *n* is size of dictionary
 - *n*/*N* is load of hash table

Collision is mapping of multiple dictionary elements to the same array element

Simplest Hash Table

Keys are unique integers in range [0, *N*-1] Trivial hash function

• h(k) = k

Uses *O*(*N*) space (can be very large)

- okay if N = O(n)
- bad if key can be any 32-bit integer

—table has 2^{32} entries = 4 gigaentries

find(), insert(), and remove() all take O(1) time

"Good" hash function

Want to "spread out" values to avoid collisions Ideally, keys act as random distribution of ranks

- Probability(h(k) = i) = 1/N for all i in [0, N-1]
- Expected keys in bucket i is n/N

—this is O(1) if n = O(N)

If no collision, operations are O(1)

• so *expected* time is O(1) for all operations

Note: worst case time is still O(n)

Generating Hash Codes: Java's Object.hashCode()

generates integer for any object

generates same integer for two objects as long as equals() method evaluates to true

 different instances with same value are not equal according to Object.equals()

-won't always give expected hashing behavior

exact method is implementation dependent

Generating Hash Codes: Cast to Integer

Works well if key is byte, short, or char type

- can use Float.floatToIntBits() for floats
- Disadvantages
 - High order bits ignored for longs/doubles
 - -May result in collisions
 - Cannot handle more complex keys

Generating Hash Codes: Summing Components

Add up multiple integers to get a single integer

 k_{-1}

Ignore overflows

•
$$hc(\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_{k-1}) = \sum_{i=0}^{n-1} \mathbf{x}_i$$

Examples

- Long or double may be converted to two ints (high order and low order) and summed
- Strings may be broken into multiple characters and summed

Disadvantage

• Ordering of integers is ignored

—May result in collisions

Generating Hash Codes: Polynomial Hash Codes

Multiply each component by some constant to a power • $hc(x_0, x_1, x_2, ..., x_{k-1}) = \sum_{\substack{i=0\\i=0}} a^i x_i$ $= x_0 + a(x_1 + a(x_2 + ... x_{k-1}))...)$

• Makes hash code dependent on order of components

Disadvantages

- *k*-1 multiplies in hash evaluation
- Choice of *a* makes big difference in "goodness" of hash function

Generating Hash Codes: Cyclic Shift

Cyclic Shift Hash Codes

- Rotates bits of current code by some number of positions before adding each new component
- $hc(x_0, x_1, x_2, ..., x_{k-1}) =$ rotate(x_{k-1} + rotate(x_{k-2} + ...(x_1 + rotate(x_0))...))
- no multiplication

Disadvantages

 Choice of rotation size still makes big difference in "goodness"

Johns Hopkins Department of Computer Science Course 600.226: Data Structures, Professor: Greg Hager

Compression Maps

Division Method

- $h(k) = |k| \mod N$
- N works best if it is a prime number
- Even then, multiples of N map to same position

 $-h(iN) = 0, h(iN+j) = j \mod N$

MAD (multiply, add, and divide) Method

$$h(k) = |ak+b| \mod N$$

--h(iN) = |aiN + b| mod N = b mod N
--h(iN+j) = |aiN + aj + b| mod N
= |aj + b| mod N

• Not clear that this is much better...

Johns Hopkins Department of Computer Science Course 600.226: Data Structures, Professor: Greg Hager

Collision Handling: Chaining

For each bucket, store a sequence of elements that map to the bucket

- effectively a much smaller, auxiliary dictionary
- Linearly search sequence to find correct element

Chaining Example

$$N=7, h(k)=|k| \mod N$$

Insert 19 36 5 21 -4 26 14

(load = 1)

Johns Hopkins Department of Computer Science Course 600.226: Data Structures, Professor: Greg Hager

Map Methods with Separate Chaining used for Collisions

- Delegate operations to a list-based map at each cell:
- Algorithm get(k):
- Output: The value associated with the key k in the map, or null if there is no entry with key equal to k in the map
- **return** A[h(k)].get(k) {delegate the get to the list-based map at A[h(k)]}
- Algorithm put(k, v):
 - *Output:* If there is an existing entry in our map with key equal to *k*, then we return its value (replacing it with *v*); otherwise, we return **null**
- t = A[h(k)].put(k,v) {delegate the put to the list-based map at A[h(k)]} if t = null then {k is a new key}
- > n = n + 1
 > return t
- Algorithm remove(k):
- **Output:** The (removed) value associated with key k in the map, or **null** if there is no entry with key equal to k in the map
- t = A[h(k)].remove(k) {delegate the remove to the list-based map at A[h(k)]} if $t \neq$ null then {k was found}
 - **if** $t \neq$ **null then** {k was for n = n 1
- return t

© 2004 Goodrich, Tamassia

Collision Handling: Probing Hash Tables

Store only 1 element per bucket

• No additional space, but requires smaller load

If multiple elements map to same bucket, use some method to find empty bucket

Linear probing

$$-h'(k) = (h(k) + j) \mod N \quad j = 0, 1, 2, 3, \dots$$

» Keep adding 1 to rank to find empty bucket

• Quadratic probing

 $-h'(k) = (h(k) + j^2) \mod N \quad j = 0, 1, 2, 3, \dots$

Double hashing

$$-h'(k) = (h(k) + j*h''(k)) \mod N \ j = 0, 1, 2, 3, \dots$$

Linear Probing

Linear probing handles Example: collisions by placing the colliding item in the next (circularly) available table cell Each table cell inspected is order referred to as a "probe" Colliding items lump together, causing future collisions to cause a longer sequence of probes 2 0 3

■ **h**(**x**) = **x** mod 13

0

Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this

4 5 6 7 8 9 10 11 12

41 18|44| 59 2 3 4 5 8 9 10 11 12 6

© 2004 Goodrich, Tamassia

Linear Probing Example

$$N=7, h(k)=|k| \mod N$$

Insert 19 36 5 21 -4 26 14

(load = 1)

0	1	2	3	4	5	6
21	36	26	14	-4	19	5

Time for probing?

I(l) = $1/l \ln 1/(1-l)$ where l is load factor E.g. l = .75 \rightarrow 8-9 probes $l = .90 \rightarrow$ 50 probes

Note that in double-hashing, the second hash function cannot evaluate to zero!

hash'' $(x) = R - (x \mod R)$, R prime and R<N

Search with Linear Probing

 Consider a hash table A that uses linear probing 	Algorithm $get(k)$ $i \leftarrow h(k)$
 get(k) We start at cell h(k) We probe consecutive locations until one of the following occurs An item with key k is found, or An empty cell is found, or N cells have been unsuccessfully probed 	$p \leftarrow 0$ repeat $c \leftarrow A[i]$ if $c = \emptyset$ return null else if c.key () = k return c.element() else $i \leftarrow (i + 1) \mod N$ $p \leftarrow p + 1$ until $p = N$ return null
© 2004 Goodrich, Tamassia	

Updates with Linear Probing

- To handle insertions and deletions, we introduce a special object, called
 AVAILABLE, which replaces deleted elements
- * remove(k)
 - We search for an entry with key k
 - If such an entry (*k*, *o*) is found, we replace it with the special item
 AVAILABLE and we return element *o*
 - Else, we return *null*

put(*k*, *o*)

- We throw an exception if the table is full
- We start at cell h(k)
- We probe consecutive cells until one of the following occurs
 - A cell *i* is found that is either empty or stores
 AVAILABLE, or
 - N cells have been unsuccessfully probed
- We store entry (*k*, *o*) in cell *i*

© 2004 Goodrich, Tamassia

Double Hashing

Double hashing uses a secondary hash function **d**(**k**) and handles collisions by placing an item in the first available cell of the series

(*i* + *jd*(*k*)) mod *N* for *j* = 0, 1, ..., *N* − 1

- The secondary hash function d(k) cannot have zero values
- The table size N must be a prime to allow probing of all the cells

© 2004 Goodrich, Tamassia

Double Hashing Example

$N = 7, \ h(k) = |k| \mod N$ $R = 5, \ h''(k) = R - k \mod R$ Insert 19 36 5 21 -4 26 14 (load = 1)

Other Open Addressing Difficulties

Searching

• For NO_SUCH_KEY, must search until empty bucket found

Removing

- Cannot just empty the bucket
 - —could disconnect colliding keys
- Easiest method is setting with special DELETED_KEY sentinal
 - —insert() can reuse bucket
 - —find() must continue searching beyond bucket

Rehashing

When load of hash table gets too large

- Allocate new hash table
- Generate new hash function
- Re-hash old elements into new table
- Time cost may be amortized as in dynamic array
 —must increase size by O(n) each time

Recall disk access is expensive; probing is thus expensive

B-tree reduced disk access but still grow in size

Extendible hashing is a mashup of B-trees and hashing

Extendible Hashing

external storage N records in total to store, M records in one disk block

No more than two blocks are examined.

Modified from lydia.sinapova

Extendible Hashing

Idea:

- Keys are grouped according to the first m bits in their code.
- Each group is stored in one disk block.
- If some block becomes full, each group is split into two , and m+1 bits are considered to determine the location of a record.

4 disk blocks, each can contain 3 records4 groups of keys according to the first two bits

Modified from lydia.sinapova

Example (cont.)

New key to be inserted: **01011**. Block2 is full, so we start considering 3 bits

directory				
000/001 (still on same block	010	011	100/101	110/111
00010 00100	01001 01010 01011	01100	10001 10100	11000 11010

Modified from lydia.sinapova

Extendible Hashing

Size of the directory : 2^D

$2^{D} = O(N^{(1+1/M)} / M)$

D - the number of bits considered.

- **N** number of records
- **M** number of disk blocks

Unordered Dictionary ADT

size, isEmpty

find(k): Return element with key k; else null

findAll(k): Iterator of all elements with key k

insert(k,e): Insert element e with key k; return entry

remove(k): Remove element with key k; return entry
 or null

entries(): iterator over all entries

Some interesting facts

Time in linear case is about 1/2 (1 + 1/(1-load²))

Quadratic can always insert if less than half full

Assume not; think about the first N/2 possiblities and suppose that i^2%N = j^2%N and both i and j < N/2

 $i^2 - j^2 = 0 \Rightarrow (i+j)(i-j) = 0$ but i+j < N, so cannot be equal to zero. So first n/2 alternatives are unique