
CS 318 Principles of Operating Systems

Lecture 14: I/O & Disks

Prof. Ryan Huang

Fall 2021



Administrivia

Lab 3 overview session this Friday 5-6pm EDT

Next Tuesday (10/26) is project hacking day
- No class, work on lab 3a

In-class Quiz 4 for Lecture 6&7 next Thursday (10/28)

10/21/21 CS 318 – Lecture 14 – I/O & Disks 2



Overview

We’ve covered OS abstractions for CPU and memory so far

I/O management is another major component of OS
- Important aspect of computer operation
- I/O devices vary greatly: various methods to control them
- New types of devices

10/21/21 CS 318 – Lecture 14 – I/O & Disks 3

Virtualization
Processes

Scheduling

Virtual Memory

Concurrency
Threads

Synchronization

Semaphores and Monitors

Persistence
I/O

Disks

File Systems



I/O Devices 

Issues to address:
- How should I/O be integrated into systems? 
- What are the general mechanisms? 
- How can we manage them efficiently?

10/21/21 CS 318 – Lecture 14 – I/O & Disks 4

…



Structure of Input/Output (I/O) Device

10/21/21 CS 318 – Lecture 14 – I/O & Disks 5

CPU Memory

Graphics

Memory Bus
(proprietary)

General I/O Bus
(e.g., PCI)

Peripheral I/O Bus
(e.g., SCSI, SATA, USB)



I/O Device Interfaces

Port – connection point for device
- serial port

Bus – daisy chain for devices sharing a common set of wires
- PCI bus common in PCs and servers, PCI Express (PCIe) 
- expansion bus connects relatively slow devices

Controller – electronics that operate port, bus, device
- Sometimes integrated, sometimes separate circuit board (host adapter)
- Contains processor, microcode, private memory, bus controller, etc.
- Some talk to per-device controller with bus controller, microcode, memory, etc.

10/21/21 CS 318 – Lecture 14 – I/O & Disks 6



What Is I/O Bus? E.g., PCI

10/21/21 CS 318 – Lecture 14 – I/O & Disks 7



Device Interaction

How the OS communicates with the device?

I/O instructions control devices
- in and out instructions on x86

- Devices usually have registers
• device driver places commands, addresses, and data there to read/write

Memory-mapped I/O
- Device registers available as if they were memory locations.
- OS load (to read) or store (to write) to the device instead of main memory.

10/21/21 CS 318 – Lecture 14 – I/O & Disks 8



Device I/O Port Locations on PCs

10/21/21 CS 318 – Lecture 14 – I/O & Disks 9



x86 I/O instructions

10/21/21 CS 318 – Lecture 14 – I/O & Disks 10
Pintos threads/io.h

static inline uint8_t inb (uint16_t port)
{

uint8_t data;
asm volatile ("inb %w1, %b0" : "=a" (data) : "Nd" (port));
return data;

}

static inline void outb (uint16_t port, uint8_t data)
{

asm volatile ("outb %b0, %w1" : : "a" (data), "Nd" (port));
}

static inline void insw (uint16_t port, void *addr, size_t cnt)
{

asm volatile ("rep insw" : "+D" (addr), "+c" (cnt)
: "d" (port) : "memory");

}



Canonical I/O Device 

10/21/21 CS 318 – Lecture 14 – I/O & Disks 11

Command Data

Canonical Device 

Device Registers: Status interface

OS reads/writes to these



Canonical I/O Device

10/21/21 CS 318 – Lecture 14 – I/O & Disks 12

Command Data

Canonical Device 

Device Registers: 

???

Status interface

internals

OS reads/writes to these



Canonical I/O Device 

10/21/21 CS 318 – Lecture 14 – I/O & Disks 13

Command Data

Canonical Device 

Device Registers: 

Micro-controller (CPU)
Memory (DRAM or SRAM or both)
Other Hardware-specific Chips

Status interface

internals

OS reads/writes to these



Hardware Interface Of Canonical Device 

status register
- See the current status of the device

command register
- Tell the device to perform a certain task

data register
- Pass data to the device, or get data from the device

By reading or writing the three registers, OS controls device behavior

10/21/21 CS 318 – Lecture 14 – I/O & Disks 14



Hardware Interface Of Canonical Device 

Typical interaction example

10/21/21 CS 318 – Lecture 14 – I/O & Disks 15

while (STATUS == BUSY)

; //wait until device is not busy

write data to data register

write command to command register

Doing so starts the device and executes the command 

while (STATUS == BUSY)

; //wait until device is done with your request 



IDE Disk Driver

10/21/21 CS 318 – Lecture 14 – I/O & Disks 16

void IDE_ReadSector(int disk, int off, 
void *buf)

{
// Select Drive
outb(0x1F6, disk == 0 ? 0xE0 : 0xF0);
IDEWait();
// Read length (1 sector = 512 B)
outb(0x1F2, 1);
outb(0x1F3, off); // LBA low
outb(0x1F4, off >> 8); // LBA mid
outb(0x1F5, off >> 16); // LBA high
outb(0x1F7, 0x20); // Read command
insw(0x1F0, buf, 256); // Read 256 words

}

void IDEWait()
{
// Discard status 4 times
inb(0x1F7); inb(0x1F7);
inb(0x1F7); inb(0x1F7);
// Wait for status BUSY flag to clear
while ((inb(0x1F7) & 0x80) != 0);

}



Memory-mapped IO

in/out instructions slow and clunky
- Instruction format restricts what registers you can use
- Only allows 216 different port numbers
- Per-port access control turns out not to be useful (any port access allows you to 

disable all interrupts)

Devices can achieve same effect with physical addresses, e.g.:

- OS must map physical to virtual addresses, ensure non-cachable

10/21/21 CS 318 – Lecture 14 – I/O & Disks 17

volatile int32_t *device_control
= (int32_t *) (0xc0100 + PHYS_BASE); 

*device_control = 0x80;
int32_t status = *device_control;



Polling
OS waits until the device is ready by repeatedly reading the status register
- Positive aspect is simple and working. 
- However, it wastes CPU time just waiting for the device

• Switching to another ready process is better utilizing the CPU.

10/21/21 CS 318 – Lecture 14 – I/O & Disks 18

.1 1 1 1 1 p p p p p 1 1 1 1 1CPU

Disk

Diagram of CPU utilization by polling

1 1 1 1 1

: task 11 : pollingP
“waiting IO” 



Interrupts

Put the I/O request process to sleep and context switch to another

When the device is finished, wake the process by interrupt
- CPU and the disk are properly utilized

10/21/21 CS 318 – Lecture 14 – I/O & Disks 19

1 1 1 1 1 2 2 2 2 2 1 1 1 1 1CPU

Disk

Diagram of CPU utilization by interrupt 

1 1 1 1 1

: task 11 : task 22



Polling vs Interrupts 

However, “interrupts is not always the best solution”
- If, device performs very quickly, interrupt will “slow down” the system. 

E.g., high network packet arrival rate
- Packets can arrive faster than OS can process them

- Interrupts are very expensive (context switch)

- Interrupt handlers have high priority

- In worst case, can spend 100% of time in interrupt handler and never make any progress – receive livelock

- Best: Adaptive switching between interrupts and polling

10/21/21 CS 318 – Lecture 14 – I/O & Disks 20

If a device is fast à poll is best.
If it is slow à interrupt is better.



Protocol Variants

Status checks: polling vs. interrupts

Data: programmed I/O (PIO) vs. direct memory access (DMA)

Control: special instructions vs. memory-mapped I/O

10/21/21 CS 318 – Lecture 14 – I/O & Disks 21

Command DataDevice Registers: 

Micro-controller (CPU)
Memory (DRAM or SRAM or both)
Other Hardware-specific Chips

Status



Variety Is a Challenge

Problem:
- many, many devices
- each has its own protocol

How can we avoid writing a slightly different OS for each H/W?

Solution: Abstraction!
- Build a common interface
- Write device driver for each device
- Drivers are 70% of Linux source code

10/21/21 CS 318 – Lecture 14 – I/O & Disks 22



File System Abstraction

File system specifics of which disk class it is using.
- Ex) It issues block read and write request to the generic block layer.

10/21/21 CS 318 – Lecture 14 – I/O & Disks 23

The File System Stack

kernel

Application

File System

Generic Block Layer

Device Driver [SCSI, ATA, etc] 

Specific Block Interface [protocol-specific read/write]

Generic Block Interface [block read/write]

user

POSIX API [open, read, write, close, etc]

Hard Drive



Hard Disks

10/21/21 CS 318 – Lecture 14 – I/O & Disks 24



Hard Disks

10/21/21 CS 318 – Lecture 14 – I/O & Disks 25



Hard Disks

10/21/21 CS 318 – Lecture 14 – I/O & Disks 26



Basic Interface

Disk interface presents linear array of sectors
- Historically 512 Bytes
- Written atomically (even if there is a power failure)
- 4 KiB in “advanced format” disks

• Torn write: If an untimely power loss occurs, only a portion of a larger write may complete

Disk maps logical sector #s to physical sectors

OS doesn’t know logical to physical sector mapping

10/21/21 CS 318 – Lecture 14 – I/O & Disks 27



Basic Geometry

Platter (Aluminum coated with a thin magnetic layer)
- A circular hard surface
- Data is stored persistently by inducing magnetic changes to it.
- Each platter has 2 sides, each of which is called a surface.

10/21/21 CS 318 – Lecture 14 – I/O & Disks 28



Basic Geometry (Cont.)

Spindle
- Spindle is connected to a motor that spins the platters around.
- The rate of rotations is measured in RPM (Rotations Per Minute).

• Typical modern values : 7,200 RPM to 15,000 RPM.

Track
- Concentric circles of sectors
- Data is encoded on each surface in a track.
- A single surface contains many thousands and thousands of tracks.

Cylinder
- A stack of tracks of fixed radius
- Heads record and sense data along cylinders
- Generally only one head active at a time

10/21/21 CS 318 – Lecture 14 – I/O & Disks 29



Cylinders, Tracks, & Sectors

10/21/21 CS 318 – Lecture 14 – I/O & Disks 30



A Simple Disk Drive

Disk head (One head per surface of the drive)
- The process of reading and writing is accomplished by the disk head.
- Attached to a single disk arm, which moves across the surface.

10/21/21 CS 318 – Lecture 14 – I/O & Disks 31

A Single Track Plus A Head

1
23

4

5

6

7
8 9

10

11

0

spindle

Rotates this way

head

ar
m



Single-track Latency: The Rotational Delay

Rotational delay: Time for the desired sector to rotate
- Ex) Full rotational delay is R and we start at sector 6

• Read sector 0: Rotational delay = 
!
"

• Read sector 5: Rotational delay = R-1 (worst case.)

10/21/21 CS 318 – Lecture 14 – I/O & Disks 32

A Single Track Plus A Head

1
23

4

5

6

7
8 9

10

11

0

spindle

Rotates this way

head

ar
m



Multiple Tracks

Let’s Read 12!

10/21/21 CS 318 – Lecture 14 – I/O & Disks 33

1
23

06
5 4

7
8
9

10
11

15
14

13
12

16

17

18

19

23

22

21

20



Multiple Tracks: Seek To Right Track

Let’s Read 12!

10/21/21 CS 318 – Lecture 14 – I/O & Disks 34

1
2

3

0
6
5 4

7
8

9

10

11

15
14

13
12

16

17

18

19

23

22

21

20



Multiple Tracks: Seek To Right Track

Let’s Read 12!

10/21/21 CS 318 – Lecture 14 – I/O & Disks 35

1
2
3

0
6
5 4

7
8 9

10

11

15

14

13
12

16
17

18

19

23

22

21
20



Multiple Tracks: Seek To Right Track

Let’s Read 12!

10/21/21 CS 318 – Lecture 14 – I/O & Disks 36

1
2
3

0
6
5 4

7

8 9
10

11

15

14
13 12

16 17

18

19

23

22

21 20



Multiple Tracks: Wait for Rotation

Let’s Read 12!

10/21/21 CS 318 – Lecture 14 – I/O & Disks 37
1 2

3

0
6 5 4

7
8 9

10
11

15
14

13 12

16

17

18
19

23
22

21

20



Multiple Tracks: Wait for Rotation

Let’s Read 12!

10/21/21 CS 318 – Lecture 14 – I/O & Disks 38

1 2
30

6 5
47

8
9 10

11

15
14 13

12

16

17 18

19

23

22 21

20



Multiple Tracks: Wait for Rotation

Let’s Read 12!

10/21/21 CS 318 – Lecture 14 – I/O & Disks 39

1
2 3

0 6
5
4

78

9
10 11

15 14
13

12

16

17

18 19

23 22

21

20



Multiple Tracks: Wait for Rotation

Let’s Read 12!

10/21/21 CS 318 – Lecture 14 – I/O & Disks 40

1
2

3

0
6
54

7
8

9

10

11

15
14

13
12

16

17

18

19

23

22

21

20



Multiple Tracks: Wait for Rotation

Let’s Read 12!

10/21/21 CS 318 – Lecture 14 – I/O & Disks 41

1
2

3
0

6
54

7
89

10
11

15
14

1312

1617

18
19

23
22

2120



Multiple Tracks: Wait for Rotation

Let’s Read 12!

10/21/21 CS 318 – Lecture 14 – I/O & Disks 42

12
3 0

65
4 7
8

910

11

15
1413

12

16

1718

19

23

2221

20



Multiple Tracks: Transfer Data

Let’s Read 12!

10/21/21 CS 318 – Lecture 14 – I/O & Disks 43

123

0
65

4

7 8
9
10

11

15

1413
12

16
17

18

19

23

22

21
20



Multiple Tracks: Transfer Data

Let’s Read 12!

10/21/21 CS 318 – Lecture 14 – I/O & Disks 44

1
23

06
5
4

7 8

9
1011

1514
13

12

16

17

1819

2322

21

20



Multiple Tracks: Transfer Data

Let’s Read 12!

10/21/21 CS 318 – Lecture 14 – I/O & Disks 45

1
23

06
5
4

7 8

9
1011

1514
13

12

16

17

18
19

23
22

21

20



Yay!

10/21/21 CS 318 – Lecture 14 – I/O & Disks 46

1
23

06
5
4

7
8
9

10
11

15
14
13

12

16

17

18
19

23

22

21

20



Multiple Tracks: Seek Time

Seek: Move the disk arm to the correct track
- Seek time:Time to move head to the track contain the desired sector.
- One of the most costly disk operations.

10/21/21 CS 318 – Lecture 14 – I/O & Disks 47

1

2

3

4

5
6

7

8

9

10

11
0

13

14

15

16

17
18

19

20

21

22

23
12

25

26

27

28

2930
31

32

33

34

35 24

1

2
3

4

5

6

7

8
9

10

11

0

13

1415
16

17

18

19

20 21
22

23

12

25
2627

28

29

30

31
32 33

34

35

24
spindle spindle

seek

Rotates this way Rotates this way

Re
m
ai
ni
ng

 ro
ta
tio

n



Seek, Rotate, Transfer

Acceleration à Coasting à Deceleration à Settling
- Acceleration: The disk arm gets moving.
- Coasting: The arm is moving at full speed.
- Deceleration: The arm slows down.
- Settling: The head is carefully positioned over the correct track.

Seeks often take several milliseconds!
- settling alone can take 0.5 to 2ms.
- entire seek often takes 4 - 10 ms.

10/21/21 CS 318 – Lecture 14 – I/O & Disks 48



Seek, Rotate, Transfer

Depends on rotations per minute (RPM)
- 7200 RPM is common, 15000 RPM is high-end.

With 7200 RPM, how long to rotate around?
- 1 / 7200 RPM = 1 minute / 7200 rotations = 1 second / 120 rotations = 8.3 ms / 

rotation

Average rotation?
- 8.3 ms / 2 = 4.15 ms

10/21/21 CS 318 – Lecture 14 – I/O & Disks 49



Seek, Rotate, Transfer

The final phase of I/O
- Data is either read from or written to the surface.

Pretty fast — depends on RPM and sector density

100+ MB/s is typical for maximum transfer rate

How long to transfer 512-bytes?
- 512 bytes * (1s / 100 MB) = 5 𝜇𝑠

10/21/21 CS 318 – Lecture 14 – I/O & Disks 50



Workload

So…
- seeks are slow
- rotations are slow
- transfers are fast

What kind of workload is fastest for disks?
- Sequential: access sectors in order (transfer dominated)
- Random: access sectors arbitrarily (seek+rotation dominated)

10/21/21 CS 318 – Lecture 14 – I/O & Disks 51



Disk Scheduling

Disk Scheduler decides which I/O request to schedule next

10/21/21 CS 318 – Lecture 14 – I/O & Disks 52

9

21

33

27

15

3

24 12 06 18 30

10

11
22

2334

35

25
26 13

14
1

2

28
29

16

17

4

5

31

32
19

20
7

8

Spindle

Rotates this way



Disk Scheduling: FCFS

“First Come First Served”
- Process disk requests in the order they are received

Advantages
- Easy to implement
- Good fairness

Disadvantages
- Cannot exploit request locality
- Increases average latency, decreasing throughput

10/21/21 CS 318 – Lecture 14 – I/O & Disks 53



FCFS Example

10/21/21 CS 318 – Lecture 14 – I/O & Disks 54



SSTF (Shortest Seek Time First)

Order the queue of I/O request by track

Pick requests on the nearest track to complete first
- Also called shortest positioning time first (SPTF)

Advantages
- Exploits locality of disk requests
- Higher throughput

Disadvantages
- Starvation
- Don’t always know what request will be fastest

10/21/21 CS 318 – Lecture 14 – I/O & Disks 55



SSTF Example

10/21/21 CS 318 – Lecture 14 – I/O & Disks 56



“Elevator” Scheduling (SCAN)

Sweep across disk, servicing all requests passed
- Like SSTF, but next seek must be in same direction
- Switch directions only if no further requests

Advantages
- Takes advantage of locality
- Bounded waiting

Disadvantages
- Cylinders in the middle get better service
- Might miss locality SSTF could exploit

CSCAN: Only sweep in one direction
- Very commonly used algorithm in Unix

10/21/21 CS 318 – Lecture 14 – I/O & Disks 57



CSCAN example

10/21/21 CS 318 – Lecture 14 – I/O & Disks 58



Flash Memory
Today, people increasingly using flash memory

Completely solid state (no moving parts)
- Remembers data by storing charge
- Lower power consumption and heat
- No mechanical seek times to worry about

Limited # overwrites possible
- Blocks wear out after 10,000 (MLC) – 100,000 (SLC) erases 
- Requires flash translation layer (FTL) to provide wear leveling, so repeated writes to logical block don’t wear 

out physical block
- FTL can seriously impact performance

Limited durability
- Charge wears out over time
- Turn off device for a year, you can potentially lose data!

10/21/21 CS 318 – Lecture 14 – I/O & Disks 59



Next Time…

Read Chapter 39, 40

10/21/21 CS 318 – Lecture 14 – I/O & Disks 60


