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Administrivia

Lab 3 overview session this Friday 5-6pm EDT

Next Tuesday (10/26) is project hacking day
- No class, work on lab 3a

In-class Quiz 4 for Lecture 6&7 next Thursday (10/28)
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Overview

We’ve covered OS abstractions for CPU and memory so far

I/O management is another major component of OS
- Important aspect of computer operation
- I/O devices vary greatly: various methods to control them
- New types of devices
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Virtualization
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Scheduling
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Concurrency
Threads
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Semaphores and Monitors

Persistence
I/O
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File Systems



I/O Devices 

Issues to address:
- How should I/O be integrated into systems? 
- What are the general mechanisms? 
- How can we manage them efficiently?
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…



Structure of Input/Output (I/O) Device
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CPU Memory

Graphics

Memory Bus
(proprietary)

General I/O Bus
(e.g., PCI)

Peripheral I/O Bus
(e.g., SCSI, SATA, USB)



I/O Device Interfaces

Port – connection point for device
- serial port

Bus – daisy chain for devices sharing a common set of wires
- PCI bus common in PCs and servers, PCI Express (PCIe) 
- expansion bus connects relatively slow devices

Controller – electronics that operate port, bus, device
- Sometimes integrated, sometimes separate circuit board (host adapter)
- Contains processor, microcode, private memory, bus controller, etc.
- Some talk to per-device controller with bus controller, microcode, memory, etc.
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What Is I/O Bus? E.g., PCI
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Device Interaction

How the OS communicates with the device?

I/O instructions control devices
- in and out instructions on x86

- Devices usually have registers
• device driver places commands, addresses, and data there to read/write

Memory-mapped I/O
- Device registers available as if they were memory locations.
- OS load (to read) or store (to write) to the device instead of main memory.
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Device I/O Port Locations on PCs
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x86 I/O instructions
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Pintos threads/io.h

static inline uint8_t inb (uint16_t port)
{

uint8_t data;
asm volatile ("inb %w1, %b0" : "=a" (data) : "Nd" (port));
return data;

}

static inline void outb (uint16_t port, uint8_t data)
{

asm volatile ("outb %b0, %w1" : : "a" (data), "Nd" (port));
}

static inline void insw (uint16_t port, void *addr, size_t cnt)
{

asm volatile ("rep insw" : "+D" (addr), "+c" (cnt)
: "d" (port) : "memory");

}



Canonical I/O Device 
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Command Data

Canonical Device 

Device Registers: Status interface

OS reads/writes to these



Canonical I/O Device
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Command Data

Canonical Device 

Device Registers: 

???

Status interface

internals

OS reads/writes to these



Canonical I/O Device 
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Command Data

Canonical Device 

Device Registers: 

Micro-controller (CPU)
Memory (DRAM or SRAM or both)
Other Hardware-specific Chips

Status interface

internals

OS reads/writes to these



Hardware Interface Of Canonical Device 

status register
- See the current status of the device

command register
- Tell the device to perform a certain task

data register
- Pass data to the device, or get data from the device

By reading or writing the three registers, OS controls device behavior
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Hardware Interface Of Canonical Device 

Typical interaction example
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while (STATUS == BUSY)

; //wait until device is not busy

write data to data register

write command to command register

Doing so starts the device and executes the command 

while (STATUS == BUSY)

; //wait until device is done with your request 



IDE Disk Driver
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void IDE_ReadSector(int disk, int off, 
void *buf)

{
// Select Drive
outb(0x1F6, disk == 0 ? 0xE0 : 0xF0);
IDEWait();
// Read length (1 sector = 512 B)
outb(0x1F2, 1);
outb(0x1F3, off); // LBA low
outb(0x1F4, off >> 8); // LBA mid
outb(0x1F5, off >> 16); // LBA high
outb(0x1F7, 0x20); // Read command
insw(0x1F0, buf, 256); // Read 256 words

}

void IDEWait()
{
// Discard status 4 times
inb(0x1F7); inb(0x1F7);
inb(0x1F7); inb(0x1F7);
// Wait for status BUSY flag to clear
while ((inb(0x1F7) & 0x80) != 0);

}



Memory-mapped IO

in/out instructions slow and clunky
- Instruction format restricts what registers you can use
- Only allows 216 different port numbers
- Per-port access control turns out not to be useful (any port access allows you to 

disable all interrupts)

Devices can achieve same effect with physical addresses, e.g.:

- OS must map physical to virtual addresses, ensure non-cachable
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volatile int32_t *device_control
= (int32_t *) (0xc0100 + PHYS_BASE); 

*device_control = 0x80;
int32_t status = *device_control;



Polling
OS waits until the device is ready by repeatedly reading the status register
- Positive aspect is simple and working. 
- However, it wastes CPU time just waiting for the device

• Switching to another ready process is better utilizing the CPU.
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Interrupts

Put the I/O request process to sleep and context switch to another

When the device is finished, wake the process by interrupt
- CPU and the disk are properly utilized
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Polling vs Interrupts 

However, “interrupts is not always the best solution”
- If, device performs very quickly, interrupt will “slow down” the system. 

E.g., high network packet arrival rate
- Packets can arrive faster than OS can process them

- Interrupts are very expensive (context switch)

- Interrupt handlers have high priority

- In worst case, can spend 100% of time in interrupt handler and never make any progress – receive livelock

- Best: Adaptive switching between interrupts and polling
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If a device is fast à poll is best.
If it is slow à interrupt is better.



Protocol Variants

Status checks: polling vs. interrupts

Data: programmed I/O (PIO) vs. direct memory access (DMA)

Control: special instructions vs. memory-mapped I/O
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Command DataDevice Registers: 

Micro-controller (CPU)
Memory (DRAM or SRAM or both)
Other Hardware-specific Chips

Status



Variety Is a Challenge

Problem:
- many, many devices
- each has its own protocol

How can we avoid writing a slightly different OS for each H/W?

Solution: Abstraction!
- Build a common interface
- Write device driver for each device
- Drivers are 70% of Linux source code
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File System Abstraction

File system specifics of which disk class it is using.
- Ex) It issues block read and write request to the generic block layer.
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The File System Stack

kernel

Application

File System

Generic Block Layer

Device Driver [SCSI, ATA, etc] 

Specific Block Interface [protocol-specific read/write]

Generic Block Interface [block read/write]

user

POSIX API [open, read, write, close, etc]

Hard Drive



Hard Disks
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Hard Disks
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Hard Disks
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Basic Interface

Disk interface presents linear array of sectors
- Historically 512 Bytes
- Written atomically (even if there is a power failure)
- 4 KiB in “advanced format” disks

• Torn write: If an untimely power loss occurs, only a portion of a larger write may complete

Disk maps logical sector #s to physical sectors

OS doesn’t know logical to physical sector mapping
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Basic Geometry

Platter (Aluminum coated with a thin magnetic layer)
- A circular hard surface
- Data is stored persistently by inducing magnetic changes to it.
- Each platter has 2 sides, each of which is called a surface.

10/21/21 CS 318 – Lecture 14 – I/O & Disks 28



Basic Geometry (Cont.)

Spindle
- Spindle is connected to a motor that spins the platters around.
- The rate of rotations is measured in RPM (Rotations Per Minute).

• Typical modern values : 7,200 RPM to 15,000 RPM.

Track
- Concentric circles of sectors
- Data is encoded on each surface in a track.
- A single surface contains many thousands and thousands of tracks.

Cylinder
- A stack of tracks of fixed radius
- Heads record and sense data along cylinders
- Generally only one head active at a time
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Cylinders, Tracks, & Sectors
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A Simple Disk Drive

Disk head (One head per surface of the drive)
- The process of reading and writing is accomplished by the disk head.
- Attached to a single disk arm, which moves across the surface.
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Single-track Latency: The Rotational Delay

Rotational delay: Time for the desired sector to rotate
- Ex) Full rotational delay is R and we start at sector 6

• Read sector 0: Rotational delay = 
!
"

• Read sector 5: Rotational delay = R-1 (worst case.)
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Multiple Tracks

Let’s Read 12!
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Multiple Tracks: Seek To Right Track

Let’s Read 12!
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Multiple Tracks: Seek To Right Track

Let’s Read 12!
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Multiple Tracks: Seek To Right Track

Let’s Read 12!
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Multiple Tracks: Wait for Rotation

Let’s Read 12!
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Multiple Tracks: Wait for Rotation

Let’s Read 12!
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Multiple Tracks: Wait for Rotation

Let’s Read 12!
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Multiple Tracks: Wait for Rotation

Let’s Read 12!
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Multiple Tracks: Wait for Rotation

Let’s Read 12!
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Multiple Tracks: Wait for Rotation

Let’s Read 12!
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Multiple Tracks: Transfer Data

Let’s Read 12!
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Multiple Tracks: Transfer Data

Let’s Read 12!
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Multiple Tracks: Transfer Data

Let’s Read 12!
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Yay!
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Multiple Tracks: Seek Time

Seek: Move the disk arm to the correct track
- Seek time:Time to move head to the track contain the desired sector.
- One of the most costly disk operations.
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Seek, Rotate, Transfer

Acceleration à Coasting à Deceleration à Settling
- Acceleration: The disk arm gets moving.
- Coasting: The arm is moving at full speed.
- Deceleration: The arm slows down.
- Settling: The head is carefully positioned over the correct track.

Seeks often take several milliseconds!
- settling alone can take 0.5 to 2ms.
- entire seek often takes 4 - 10 ms.
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Seek, Rotate, Transfer

Depends on rotations per minute (RPM)
- 7200 RPM is common, 15000 RPM is high-end.

With 7200 RPM, how long to rotate around?
- 1 / 7200 RPM = 1 minute / 7200 rotations = 1 second / 120 rotations = 8.3 ms / 

rotation

Average rotation?
- 8.3 ms / 2 = 4.15 ms
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Seek, Rotate, Transfer

The final phase of I/O
- Data is either read from or written to the surface.

Pretty fast — depends on RPM and sector density

100+ MB/s is typical for maximum transfer rate

How long to transfer 512-bytes?
- 512 bytes * (1s / 100 MB) = 5 𝜇𝑠
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Workload

So…
- seeks are slow
- rotations are slow
- transfers are fast

What kind of workload is fastest for disks?
- Sequential: access sectors in order (transfer dominated)
- Random: access sectors arbitrarily (seek+rotation dominated)
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Disk Scheduling

Disk Scheduler decides which I/O request to schedule next
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Disk Scheduling: FCFS

“First Come First Served”
- Process disk requests in the order they are received

Advantages
- Easy to implement
- Good fairness

Disadvantages
- Cannot exploit request locality
- Increases average latency, decreasing throughput
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FCFS Example
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SSTF (Shortest Seek Time First)

Order the queue of I/O request by track

Pick requests on the nearest track to complete first
- Also called shortest positioning time first (SPTF)

Advantages
- Exploits locality of disk requests
- Higher throughput

Disadvantages
- Starvation
- Don’t always know what request will be fastest
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SSTF Example
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“Elevator” Scheduling (SCAN)

Sweep across disk, servicing all requests passed
- Like SSTF, but next seek must be in same direction
- Switch directions only if no further requests

Advantages
- Takes advantage of locality
- Bounded waiting

Disadvantages
- Cylinders in the middle get better service
- Might miss locality SSTF could exploit

CSCAN: Only sweep in one direction
- Very commonly used algorithm in Unix
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CSCAN example
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Flash Memory
Today, people increasingly using flash memory

Completely solid state (no moving parts)
- Remembers data by storing charge
- Lower power consumption and heat
- No mechanical seek times to worry about

Limited # overwrites possible
- Blocks wear out after 10,000 (MLC) – 100,000 (SLC) erases 
- Requires flash translation layer (FTL) to provide wear leveling, so repeated writes to logical block don’t wear 

out physical block
- FTL can seriously impact performance

Limited durability
- Charge wears out over time
- Turn off device for a year, you can potentially lose data!
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Next Time…

Read Chapter 39, 40
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