
601.465/665 — Natural Language Processing

Homework 7: Neuralization

Prof. Jason Eisner — Fall 2024
Due date: Tuesday 26 November, 12 noon

This homework is a continuation of the previous one. You will “neuralize” your CRF tagger by
using neural networks to predict its transition and emission potentials. In particular,

• You will allow different potential matrices in different contexts.

• You will extract context features that are useful for tagging using a bidirectional recurrent
neural network (biRNN). These will let you score tag, perhaps tagging words that it has not
seen in unigrams and bigrams in context.

• Your neural network will use pretrained word embeddings to encode the context, which helps
it smooth across similar word types. For example, might correctly tag words that it has never
seen in training data.

To maximize the training objective (conditional log-likelihood), you will use PyTorch’s back-
propagation to compute its gradient, and take gradient steps using SGD as in the language modeling
homework.

Homework goals: See the previous homework handout.

Collaboration: You may work in pairs on this homework. That is, if you choose, you may
collaborate with one partner from the class, handing in a single homework with both your names
on it. However:

(a) You should do all the work together, for example by pair programming. Don’t divide it up
into “my part” and “your part.”

(b) Your PDF submission to Gradescope should describe at the top what each of you contributed,
so that we know you shared the work fairly.

(c) It is okay to use the same partner for homeworks 6 and 7, though it is not required.
In any case, observe academic integrity and never claim any work by third parties as your own.

Materials: You should build on your code from the previous homework. You will need the
forward algorithm and Viterbi algorithm from the previous homework to work correctly—but you
won’t need the full forward-backward algorithm (E step) or the M step.

You will also continue to work with the data from the previous homework (which were described
in its reading section F). You can reuse the lexicons of word embeddings from Homework 3.

We provide additional starter code and INSTRUCTIONS for working with it at https://www.cs.
jhu.edu/~jason/465/hw-rnn/.

https://www.cs.jhu.edu/academic-programs/academic-integrity-code/
http://www.cs.jhu.edu/~jason/465/hw-tag/data/
https://www.cs.jhu.edu/~jason/465/hw-lm/lexicons/
https://www.cs.jhu.edu/~jason/465/hw-rnn/code/INSTRUCTIONS.html
https://www.cs.jhu.edu/~jason/465/hw-rnn/
https://www.cs.jhu.edu/~jason/465/hw-rnn/

Reading: First read the handout attached to the end of this homework!

Autograding: We will post instructions about what files to submit beyond your writeup. We’ll�15

probably ask you to upload your best trained models.
In this homework, the leaderboard will probably show performance on endev. This development

data is being used to help develop everyone’s systems.
For actual grading, however, we will evaluate your code on test data entest that you have never

seen (as in Homework 3). The autograder will run your code to both train and test your model. It
will compare the actual output generated by your tagger to the gold-standard tags on the entest
data.

1 Implement a Neural CRF

The biRNN-CRF is a fairly modern neural architecture. There are many variants, but this style of
model is commonly used to do structured prediction.

A specific version is spelled out in reading section H. You’ll want to carefully examine reading
section H.4 on how to parameterize the potential functions.

Your easiest route is to follow the steps given in the INSTRUCTIONS file.

(a) Describe the deterministic patterns in the next and pos datasets.�16

(b) Why can’t your models from the previous homework fit these patterns? Why can a biRNN-�17

CRF do it?

(c) Does the dimensionality d ≥ 0 matter (can it be too small or large)�18

Hint: Remember to avoid for loops. That is, don’t compute the potentials one at a time—for
every transition and emission that might occur on the untagged sentence—even if the formulas
happen to be presented that way. Often with neural nets, you’re doing the same operation many
times over on different inputs. And if you’re lucky, you don’t need to do them in any particular
order: the output of one computation isn’t needed as the input of the next. In that case, “tensorize”
and work on all the inputs in parallel! Combine your work into a few big tensor operations instead
of many little ones. It will be So Much Faster.

2 Experiment

Compare your biRNN-CRF to the simple stationary CRF, primarily using ensup for training and
endev for evaluation. Again, INSTRUCTIONS gives some tips.

Your performance will depend on some hyperparameters that control the model architecture
(RNN dimensionality, choice of lexicon) and also on hyperparameters that control training (learning
rate, regularization, minibatch size). Experiment a bit with these until you’ve learned something.
:-)

What did you find out?

(a) Were you able to get better cross-entropy or accuracy with the biRNN-CRF than with the�19

simple stationary CRF?

7

https://www.cs.jhu.edu/~jason/465/hw-rnn/code/INSTRUCTIONS.html
https://www.cs.jhu.edu/~jason/465/hw-rnn/code/INSTRUCTIONS.html

(b) How did hyperparameters affect those metrics? Discuss.�20

(c) How did hyperparameters affect the progress and speed of training? Discuss.�21

(d) What happens if you evaluate your trained model on the training data (ensup)? Discuss.�22

Note: The simple CRF (ConditionalRandomFieldBackprop) uses an SGD optimizer by de-
fault, whereas we snuck in a smarter AdamW optimizer in the ConditionalRandomFieldNeural

subclass. To make your comparison fair, you might want to use AdamW for both. This is a small
change to the code.

3 Informed Embeddings

Your original CRF had one parameter for every (t, w) pair (the log-potential). Your BiRNN-CRF
has fewer parameters: even if there is a large vocabulary of words, they all have to use the same
embedding dimensions. This means you can’t easily learn special properties of particular words:
words with similar embeddings will behave similarly.

If the pretrained embeddings have dimensions that implicitly encode part of speech, then this
might work. However, the pretrained embeddings we borrowed from HW3 were more semantic
than syntactic. They were trained using CBOW, which doesn’t really consider the adjacency or
order of word tokens. Therefore, their dimensions may not be useful features for our task.

You could try using embeddings from some other kind of pretrained model, such as an RNN
language model. But here’s another idea. For the training words, at least, you know how often
they showed up in training data, and also how often they showed up with particular tags. Maybe
you can derive additional features from those frequencies. These are certainly related to the POS
tagging task, and they may distinguish words whose CBOW embeddings would otherwise be close.

Augment your word embeddings with these features, as sketched in INSTRUCTIONS.

(a) Which works best—the CBOW features, the frequency-based features, or both together? How�23

about simple one-hot embeddings of the training words?

(b) What if you isolate the effect of the embeddings by turning off the RNN context features?�24

(Just set the RNN dimensionality d of ~h,~h′ to be 0, which gives you back a stationary model
that sees words only via their embeddings.)

(c) Do any of these options beat your original stationary model from the previous homework?�25

(d) You might expect the CBOW embeddings to help most for “seen” words, the frequency-�26

based features to help most for “known” words, and the RNN context features to help most
for “novel” words. Why? Do you in fact see evidence of that pattern?

“Seen” here refers to words that appeared only in the untagged lexicon (not in supervised data).
This is a bit different from the previous homework (EM), where “seen” referred to words that
appeared only in untagged text (not in supervised data). “Novel” continues to refer to words that
are OOV for the model: all OOV words are treated alike, so only context tells us how to tag them.
(See reading section G.1 in the previous homework.)

8

https://cs.jhu.edu/~jason/465/hw-lm/lexicons/README
https://www.cs.jhu.edu/~jason/465/hw-rnn/code/INSTRUCTIONS.html

4 Extensions [extra credit]

As in the previous homework, you can try to improve performance for extra credit. You’ve already
tried experimenting with the hyperparameters, but what else might help? Tell us what you tried,,27

why you thought it was a good idea, and how much it helped (or didn’t).
Just a good design discussion—working out a plan that might improve performance—will get,28

you a few points of extra credit. But for full extra credit, you should actually try it.1

Here are some ideas to get you started:

• What if you treat the word embeddings as parameters and tune them along with everything
else? (This can only improve the known-word embeddings. However, that may help unknown
words if the known-words appear in their context where the RNNs can see them.)

• What if you enrich the embeddings with features for affixes or word shapes? (See lexicon.py.)

• Can you find a more appropriate embedding lexicon online and try to use it?

• What if you change the neural architecture? Formulas (45), (47) and (48) are not the only
way you could define potentials in terms of parameters. Start by writing out your alternative
formulas.

– In fact, those formulas were a little awkward to compute in PyTorch, because you had
to run the feed-forward network separately2 for each tag unigram and tag bigram at
position j. What if you only ran the feed-forward network once at position j (on some
appropriate input vector), and it gave you a whole vector of contextually influenced
log-potentials, all computed from the same hidden layer? Perhaps that’ll work better,
and it may also be faster.

– You could try shallower or deeper architectures.

– You could try dropping the RNN and just using a fixed-size window of words.

• Perhaps different groups of parameters need to train for different amounts of time, or in a
particular order, or with different regularization. Can you come up with a training recipe
that works better?

– Look into “parameter groups” in PyTorch to figure out how to set per-parameter options.

– Freeze some parameters at the start of training and don’t try to learn them until other
parameters have already learned to do a pretty good job (after which . you might freeze
the other parameters so that they don’t lose their mojo).

– Pretrain the two RNNs on a task like language modeling or cloze language modeling (cf.
ELMo and BERT). This allows you to use much more data.

– A quick trick: if some parameter tensor X needs a larger learning rate, you can replace
X in your formulas by (say) X*10. (This means the optimal parameter X will tend to be
10× smaller.) But then an ε change to X will have 10× the effect, which means that
the gradient will be 10× bigger. So X will move 10× faster—and the quantity X*10 that
you’re actually using will move 100× faster! Also, the L2 regularizer on X will be 100×
weaker, unless you change it.

1It may be convenient to use the --awesome flag to invoke your new behavior (which might involve a new subclass).
2Though hopefully not one at a time, as noted in the earlier hint!

9

https://pytorch.org/docs/stable/optim.html#per-parameter-options
https://discuss.pytorch.org/t/passing-to-the-optimizers-frozen-parameters/83358

• Neural nets are data-hungry, especially if they’re complex with a lot of parameters. What if
you trained on a lot more data? Can you find some?

• Maybe part-of-speech tagging doesn’t really need that much context, and a simple stationary
CRF (or a unigram model) does pretty well. Can you come up with an artificial tagging
dataset where your biRNN-CRF architecture will greatly outperform the simpler models? In
other words, can you show that the biRNN-CRF tagger is able to learn something impor-
tant when it’s really there to be learned? (To make this interesting, the patterns in your
data should be harder to learn than in the simple next and pos datasets. They should be
complicated and/or noisy, rather than simple and deterministic.)

10

601.465/665 — Natural Language Processing

Reading for Homework 7: Neuralization

Prof. Jason Eisner — Fall 2024

We don’t have a required textbook for this course. Instead, handouts like this one are the main
readings. This handout accompanies homework 7. It is a continuation of the homework 6 handout
and refers back to that handout.

H Fancier CRF Featurization

Last homework (reading section E.3) introduced a simple restricted family of CRFs:

p(t | w) ∝

(
n+1∏
i=1

φA(ti−1, ti)

)
·

(
n∏
i=1

φB(ti, wi)

)
(30)

where the potential functions are defined in terms of weights

φA(s, t) = expWA
st > 0 φB(t, w) = expWB

tw > 0 (31)

and are stored in potential matrices as A = expWA, B = expWB. We will now upgrade this to a
more modern architecture using word embeddings and neural networks.

H.1 Features from Word Embeddings

Our CRF used a separate parameter WB
tw for each possible emission, corresponding to the HMM

parameter p(w | t). However, with a large vocabulary, this is a lot of parameters. For words that
only appear once or twice in the training data, these parameters may take many epochs to converge
to their final values.

One way to address the slow convergence would be to initialize the parameters to something
reasonable. For example, you could initialize the potential matrices A and B to HMM transition
and emission probabilities estimated via equation (17) from the supervised data (more precisely,
you would initialize WA and WB to the logs of those probabilities).

But perhaps a better approach is to reduce the number of parameters, by sharing parameters
among similar words. This has a smoothing effect. How do we know which words are similar? We
can use pretrained word embeddings!

Let ~w ∈ Re be the embedding of word type w. This contains lots of information about w from
some large unsupervised corpus. Hopefully, it contains enough information to guess which tags will
tend to emit w. For each tag t, we can learn a weight vector ~θBt . Now we can define

WB
tw = ~θBt · ~w (42)

Equivalently, the matrix WB can be computed “all at once” by

WB = ΘBE> (43)

R-25

where ΘB is a matrix whose rows are the d-dimensional weight vectors ~θBt for the different tags,
and E is a matrix whose rows are the d-dimensional embeddings ~w for the different words.

When the vocabulary is small, as in the ice cream example, you could just take E to be the
identity matrix. In this case, the word embeddings are one-hot vectors. Now we have WB = ΘB,
so row t of WB can be adjusted freely.

Still linear? Notice that even when we define WB by equation (43), equation (30) is still a
conditional log-linear model over taggings. Its parameters (weights) are now stored in the WA

and ΘB matrices. In particular, each tag t has a separate set of d features, whose weights ~t are
stored in a row of ΘB. Whenever that tag is applied to a word w, all d of those features fire
with strengths corresponding to the dimensions of ~w. So you can think of the feature functions as
detecting properties of ~w, and their weights ~t as evaluating how compatible those properties are
with t. Fundamentally, the reason that we still have a log-linear model is that the unnormalized
log-probabilities are linear in WB, which in turn is linear in the new parameters ΘB.

This model is log-linear only because the embeddings E—which serve as linear coefficients—are
fixed. If we decide to fine-tune the embeddings E along with the weights ΘB (see below), then
our unnormalized log-probabilities are no longer linear functions of the parameters, because we are
multiplying pairs of parameters together! In this case, the CRF training objective (35) is no longer
necessarily convex.

Fine-tuning the word embeddings. Once the model is trained and the Θ (and WA) parame-
ters are working well, you can optionally adjust the E parameters as well during subsequent SGD
steps. This is the “fine-tuning” stage. It does risk overfitting to the training data and forgetting the
pretrained information. The simplest remedy is to monitor your evaluation metric on development
data, and stop fine-tuning when that metric starts going down. This is known as “early stopping.”

H.2 Features from Tag Embeddings

A natural question arises: Should we also use tag embeddings? Not necessarily. Our tag set on this
homework is small enough that it’s reasonable to directly learn the k× k matrix WA, which stores
a separate feature weight for each tag bigram st. This is still a log-linear model over taggings t,
where the st feature counts the number of times st appears in t.

However, if k were large, then it might also be worth reducing the number of transition pa-
rameters by learning low-dimensional embeddings of the tags. For example, you could define
WA
st = ~θAs ·~θAt , or equivalently WA = ΘA(ΘA)>. Again, this is no longer a log-linear model because

it multiplies pairs of weights together

H.3 Context-Dependent Features

The CRF family (30) is not very expressive. It turns out that any distribution in that family
could also have been obtained as the conditional distribution (24) of some HMM (Smith and
Johnson (2007)). Thus, maximizing the conditional log-likelihood of this CRF is no better than
discriminatively training an HMM (maximizing its conditional log-likelihood (25)). However, the
last homework said:

This is warmup for the next homework, where we’ll unlock the full power of CRFs by
incorporating many more features to help discriminate among taggings t. The resulting

R-26

https://www.aclweb.org/anthology/J07-4003/
https://www.aclweb.org/anthology/J07-4003/

CRFs will be richer than HMMs, but will remain efficient thanks to their linear-chain
structure.

Now we unlock the power. Let’s change equation (30) to allow the potential functions to also
depend on the sentence w and the position in it:

p̃(t | w) ∝

(
n+1∏
i=1

φA(ti−1, ti,w, i)

)
·

(
n∏
i=1

φB(ti, wi,w, i)

)
(44)

Now we have a much more powerful model, because now when a potential function evaluates a
transition (ti−1, ti) or an emission (ti, wi) at position i in a tagging, it can look at the context
in w of that transition or emission. Information from the whole sentence w can help inform
our local tagging judgment. Crucially, because the CRF is not a generative model—see reading
section E.2—the sentence w is fixed, and so the feature functions can look freely at it.

Equation (44) is called a linear-chain CRF, because the random variables that we are trying to
predict—T1, T2, . . . , Tn—are linked together in a chain by the φA potential functions, making each
tag interdependent with the next one.28 The φB potential functions link the tags to the words.29

H.4 Parameterization

What kind of context-dependent potential functions should we learn? We have lots of choices, but
here is a straightforward approach using bidirectional RNNs.

The obvious way to generalize equation (31) along the lines of equation (42) is to build unnor-
malized log-linear functions for use in (44):

φA(s, t,w, i) = exp
(
~θA · ~fA(s, t,w, i)

)
φB(t, w,w, i) = exp

(
~θB · ~fB(t, w,w, i)

)
(45)

Here each ~f function returns a feature vector. We could hand-craft those features using our linguistic
intuition, but it’s easier to let a neural network discover the relevant features. That is, ~f should
construct a vector embedding of its 4 arguments—the transition or emission in context.

Here’s one way to do that, using the entire context. First, let ~hj be a vector embedding of

the sentence prefix w1 · · ·wj , and let ~h′j be a vector embedding of the sentence suffix wj+1 · · ·wn.
Crucially, these depend only on w and not on t. The prefix and suffix can contain any number of
tokens, so a good way to embed them is to use left-to-right and right-to-left RNNs.

~hj = σ(M
[
1;~hj−1; ~wj

]
) ∈ Rd ~h′j−1 = σ(M ′

[
1; ~wj ;~h

′
j

]
) ∈ Rd (46)

28I’ve written the CRF in the form (44) for similarity to the HMM (1). But it’s actually reasonable to restrict the
first product in (44) to range over just the n − 1 bigrams of the sentence proper (that is,

∏n
i=2 rather than

∏n+1
i=1).

This would drop the bigram factors that involve bos and eos—we don’t really need those symbols at all in a CRF! In
contrast to the generative HMM, we no longer need to generate eos to determine the number of tags, because that
is determined by the input as n = |w|. And because the potential functions in equation (44) can look at context,
they can see that t1 is the first tag—and evaluate whether it is a good first tag—when they score (t1, t2) and (t1, w1).
Similarly, they can see that tn is the last tag when they score (tn−1, tn) and (tn, wn). They don’t need bos and
eos for this. (Note: If you would like to drop those two bigram factors in your CRF, but still share your dynamic
programming code with the HMM, you could keep them but treat them as having value 1 in the CRF version.)

29Actually the φB factors don’t actually add any power, because the φA functions can look at the words just as
well. But it may still be convenient to keep the φB factors, because they provide a kind of backoff (from tag bigrams
to tag unigrams), and because they may be parameterized differently from the φA factors.

R-27

where you pick the RNN dimensionality d. For the base cases, a simple choice is to define ~h−1 = ~0
(just before w0 = bosw) and ~h′n+1 = ~0 (just after wn+1 = eosw) rather than learning these vectors

as parameters. The subscripts on ~hj−1 and ~h′j denote the inter-word positions immediately before

and after wj (similar to our convention in parsing). Notice that it is ~h0 and ~h′n that embed the
empty prefix and empty suffix (no words).30

The recurrent equations (46) are efficient because they embed all O(n) prefixes and suffixes in
O(n) total time. They’re rather similar to the computations of ~α and ~β, particularly the versions
in footnotes 1 and 17. The most important difference is that the definitions of ~h,~h′ include a
nonlinearity, the σ (“sigmoid”) function. This is defined by σ(x) = 1/(1 + exp(−x)), and is applied
separately (“elementwise”) to each element of its argument. The square-bracket-semicolon notation
denotes concatenation of multiple column vectors into a column vector. The matrices M and M ′

are parameters of the model.
Now we’ve got prefix and suffix embeddings. Let’s suppose we also have a vector embedding ~t

for each tag t, and a vector embedding ~w for each word w. We can then combine these to construct
our embeddings of the argument tuples used in (45) (for all i values needed by equation (44)):

~fA(s, t,w, i) = σ(UA
[
1;~hi−2;~s;~t;~h

′
i

]
) (47)

~fB(t, w,w, i) = σ(UB
[
1;~hi−1;~t; ~w;~h′i

]
) (48)

For example, equation (47) is encoding a tuple of the form (prefix, s, t, suffix). That is, ~hi−2 encodes
the prefix before the tag bigram st ending at position i, and ~h′i encodes the suffix after that tag
bigram token. So equation (47) encodes this tag bigram token in context.31

In each of equations (46)–(48), we are essentially following the standard recipe from class for
encoding tuples: concatenate the embeddings of the tuple’s elements, then apply a sigmoided affine
transformation. The tag embeddings ~s,~t and the matrices UA, UB are additional parameters. The
word embeddings ~w may be pretrained vectors that are held constant, although they too could be
treated as parameters and fine-tuned.

H.5 Summary of Neural Featurization

The last homework discussed training an HMM discriminatively, and then switched from an HMM
to a CRF, which is always trained discriminatively. One advantage of discriminative training is

30If you use the simplification in footnote 28, you will only need the embeddings ~h0, . . . ,~hn and ~h′n, . . . ,~h
′
0 in

equations (47) and (48) below. Without that simplification, you will unfortunately also need ~h−1 and ~h′n+1.
31Of course, you don’t have to do it this way. There are other reasonable ways to embed a tag bigram in context:

for example, instead of ~hi−2 and ~h′i, you could use ~hi and ~h′i−2, so that the prefix and suffix embeddings also include
the two words that are being tagged by st. Or you could simply drop the prefix and suffix embeddings altogether
from equation (47), in which case the resulting φB in equation (45) does not consider context any more than it did
in equation (31). The point is, you have a lot of options, just as when you define features for a log-linear model.

Also, a common choice is to replace equation (45) with something like

φA(s, t,w, i) = exp
(
~θA,s,t · ~f(w, i)

)
φB(t, w,w, i) = exp

(
~θB,t,w · ~f(w, i)

)
where the vectors ~θA,s,t and ~θB,t,w are learned embeddings of the possible transitions and emissions, akin to the
learned embeddings of possible vocabulary words that we’d use if we were predicting a word. The advantage of
this architecture is that the context encoding ~f(w, i) of position i can be reused for all the possible transitions and
emissions at position i. We no longer need to embed each transition and each emission separately in context. So this
architecture is a little more efficient than equation (45), though also a little less flexible.

R-28

that it is more focused on the actual prediction task. But in this homework, we turn to another
advantage of discriminative training of p(t | w): it allows more complex models like equation (44),
which can freely examine the entirety of w when figuring out how to tag wi. This is because it
doesn’t have the responsibility of generating w in any particular order.

The old way to build a CRF was to design feature templates so that each feature would fire on
certain tags and tag bigrams in the context of certain specified patterns in w. But in practice, such
features rarely looked at much of w (usually just the local context around the tag or tag bigram).

Our more modern approach just uses a biRNN (46) to scan w for useful patterns. These
patterns combine with the tags or tag bigrams through a further neural network (47)–(48) to define
the feature vectors ~f . This whole system is trained via equation (25) so that the neural machinery
is encouraged to extract whatever features turn out to be useful for the tagging task.

We also made use of pretrained word embeddings, and noted that they could optionally be
fine-tuned as part of the system too.

Along the way, we lost the log-linear property, since the CRF’s log-potential functions are no
longer linear functions of the parameters. We are now doing log-nonlinear modeling (also known
as “deep learning”).

If you have hand-designed features that you expect to be useful as well (why guess when you
know?), you can simply append them to the feature vectors in (47)–(48) (outside the σ), and then
training the potentials (45) will learn ~θ-weights for them too.

I CRF Algorithms

Now that our CRF uses context-dependent and non-linear features, does anything change?

I.1 Dynamic Programming with Context-Dependent Features

To compute the CRF’s conditional log-likelihood (25), the expensive part is computing the nor-
malizing constant Z(w) (28). Since this sums over exponentially many taggings, we would like to
still do this by running some small variant of the forward algorithm (Algorithm 1 in the previous
handout).

Remember that the core of the forward algorithm is the successive update of ~α vectors by
equation (12). To deal with context-dependent features, we’ll just replace that equation with a
slight variant:

~α(j) =
(
~α(j − 1) ·A(j)

)
�~b(j) (49)

where A(j) is a matrix of potentials for bigrams at position j in the given input sentence w, and
~b(j) is a vector of potentials for unigrams at position j in the given input sentence w.

All we have to do is to package up the appropriate potentials that were defined in equation (45):

A
(j)
st = φA(s, t,w, j) b

(j)
t = φB(t, wj ,w, j) (50)

In short, the new idea is that A and B are no longer fixed throughout a sentence or a minibatch of
sentences. At each position j in a sentence, we construct contextual versions A(j) and ~b(j), which
depend on the sentence w and the learned parameters. This is the main trick of CRFs.

R-29

Crucially, the transition and emission potentials at position j don’t depend on the tags at
positions other than j − 1 and j. (The model still considers only tag bigrams.) They can therefore
be reused across exponentially many taggings. We can still use dynamic programming algorithms
to efficiently work with the CRF distribution (29), taking advantage of the linear chain structure
of equation (44).

In particular, for training, we can use the forward algorithm to compute the conditional log-
likelihood (and then compute its gradient by back-propagation and follow it by SGD, as usual).
The forward algorithm should use A(j) and~b(j) at step j. For extracting actual taggings, the Viterbi
algorithm, the backward sampling algorithm, and posterior decoding can be similarly modified to
use the same A(j) and ~b(j). You can lazily compute each matrix “on demand” only when you first
need to use it. Or alternatively, you can eagerly compute all the matrices needed for a sentence or
minibatch as soon as you receive it, and then look each matrix up when you need to use it.

I.2 Using Back-Propagation

At the end of the previous homework, you switched from EM training to SGD training in order
to train a CRF. In this homework, you will continue with SGD training, but switch to using
back-propagation to compute the gradient.

In the previous homework (reading section E.4), you “manually” computed the gradient of the
regularized CRF objective (35), following the usual recipe for log-linear models. In particular, the
conditional log-likelihood (32) had a gradient that was a difference between observed and expected
counts. You found the expected counts by using the forward-backward algorithm (Algorithm 4).

However, back-propagation is a more general and automatic way of computing gradients! In the
new log-nonlinear models on this homework, the gradient is no longer a simple difference between
observed and expected counts. But back-prop will still be able to compute it efficiently, sending a
gradient signal back through the recurrent computations of the RNNs.

Due to the nonlinearities, the objective function may have multiple local optima even for fully su-
pervised learning. (Unsupervised learning introduced its own nonlinearities through the summation
over different taggings—this uses the nonlinear operator logaddexp on the log-probabilities—which
is why the incomplete-data log-likelihood had multiple local optima for EM to get stuck in.)

Computing the regularized CRF objective (35) isn’t too hard—as noted above, the conditional
log-likelihood (32) can be computed with just the forward algorithm. If you compute it in PyTorch,
you can then also use PyTorch’s back-propagation method to find its gradient.32

On this homework, you will compute gradients of your objective function using PyTorch’s
backward method (which is general back-propagation, not the HMM backward algorithm). Thus,
make sure your log-likelihood function is computed using PyTorch operations.33

32So internally, when back-propagation is applied to the forward algorithm, it must do something like Algorithm 4,
using the backward algorithm to secretly compute expected counts. Indeed, it’s possible to extract those expected
counts: check out the bonus reading section K.

33For example, to construct a PyTorch tensor that represents log p, be careful to write torch.log(p), or the more
concise version p.log(), where p is already a PyTorch tensor. Don’t write math.log(p) or numpy.log(p), because
those aren’t PyTorch operations. They will just return an ordinary scalar that doesn’t remember its dependence on
p, so the backward method will not see that it needs to propagate gradient information back to Z. That will screw
up the training of your model.

R-30

Problem with log 0. You may find that your gradient contains partial derivatives of nan . NaN or
nan stands for “not a number”; this special floating-point value is used to represent an indeterminate
quantity (see https://en.wikipedia.org/wiki/NaN).

The issue arises from the behavior of the logsumexp or logaddexp operator when all its argu-
ments are −∞. (That case arises when you are summing up the paths to a tag that is impossible—
such as bos at a position j > 0. Each of these paths has a log-alpha value of log 0 = −∞.)

I’ve reported this problem at https://github.com/pytorch/pytorch/issues/49724, with a
detailed explanation of why it happens. Hopefully it will get fixed. If you are still running into it,
just use either of the following workarounds:

• I built an improved version of logsumexp that treats −∞ properly during backprop. To get
it, do import logsumexp safe. This will redefine the logsumexp and logaddexp operations
so that they accept a new keyword argument safe inf=True, which makes the nan values
turn into 0 when appropriate.

• Alternatively, represent a 0 probability by log 1e-45 instead of log 0, where 1e-45 is a number
very close to 0. This is a hack, but it’s a simple way to avoid the problem.

J Vectorization and GPUs for speed

Remember that you’ll be much faster if you can avoid Python loops in favor of PyTorch’s vectorized
computations (as discussed on HW2 and HW3).

This also allows you to speed up your experiments by running on a GPU. You are
again free to try this, as you were in Homework 3 (please see the Kaggle section of its reading
handout). We have again provided a Kaggle dataset for you.

For example, don’t compute the elements of (50) one at a time. The tensor A has 3 dimensions,
indexed by s, t, j; can you compute all its entries in parallel? Note that those entries are defined
by (45) and depend on feature vectors (47) and (48). So you’ll want to compute all of those in
parallel too. Start with matrices H and H ′ that collect up all the of biRNN hidden state vectors
(46) in their rows or columns.

Better yet, if you are running on a minibatch, can you work in parallel on all M sentences in
the minibatch? This expands most of the tensors with an extra dimension, indexed by the sentence
number 0 ≤ m < M . For example, you’d have a 4-dimensional tensor that stacks up the A tensors
for the M different sentences. You’d also run your RNNs on all sentences in parallel. Note that
you’d have to modify methods like log forward and viterbi tagging to take a List[Sentence]

instead of just a single Sentence. (One tricky issue is that sentences in the same minibatch may
have different lengths, so you need to “pad” shorter sentences with extra eos symbols. The details
of how to do or skip computations on those extra symbols is left as an exercise.)

More vectorization may speed you up even on a CPU, and it also allows you to make better use
of GPU parallelism. Ideally, you won’t leave any of the GPU processors unused. Thus, you may
want to start by trying a very large minibatch size that gives you an out-of-memory runtime error,
and reduce it only as much as needed to make that error go away.

R-31

https://en.wikipedia.org/wiki/NaN
https://github.com/pytorch/pytorch/issues/49724
https://cs.jhu.edu/~jason/465/hw-prob/hw-prob.pdf
https://cs.jhu.edu/~jason/465/hw-lm/hw-lm.pdf
https://cs.jhu.edu/~jason/465/hw-lm/hw-lm.pdf
https://www.cs.jhu.edu/~jason/465/hw-rnn/code/INSTRUCTIONS.html#using-kaggle

K Back-Propagation As An Alternative to the Backward Pass in
HMMs and CRFs

As long as we’re now using backprop (reading section I.2), this section suggests an interesting
alternative way to implement something in the homeworks.

Suppose you want fractional counts from an HMM, either to use in EM or for some other
purpose such as posterior decoding. It’s not actually necessary to implement the forward-backward
algorithm. It turns out that the back-propagation algorithm automatically computes the same
quantities. In fact, as footnote 32 mentioned, it computes them in the same way!

First run the forward algorithm to compute Z for a given sentence. The β probabilities are
actually just the partial derivatives of Z:

βt(j) =
∂Z

∂αt(j)
(51)

This falls out from the fact that Z =
∑

t∈τj αt(j) · βt(j), i.e., the sum of all paths through tag t at
time j. Moreover, it turns out that

c(s, t) =
∂ logZ

∂ logAst
c(t, w) =

∂ logZ

∂ logBtw
(52)

where c(. . .) represent the fractional counts for the given sentence. (If you want the total fractional
counts for a batch or minibatch of sentences, replace ∂ logZ with ∂

∑
m logZm.)

Fundamentally, equations (52) work because the HMM probability p(t,w) (equation (1)) is a
log-linear function of the counts of the different types of transitions and emissions in the tagged
sentence (t,w), where the weights of these transition and emission types are log-probabilities given
in the A and B matrices. Remember that in a log-linear model, the partial derivatives of logZ with
respect to the feature weights are just expected feature counts. That’s where (52) comes from.

The same trick can be used when the A and B hold the potentials of a CRF, as introduced in
reading section E.3 in the last assignment.

And when the potential functions vary by position j (reading section H.3), you can just take
the partial derivatives with respect to logA(j) and log b(j) from reading section I.1. These will give
you the fractional probabilities of the different tags at position j, rather than summing over all
positions as equation (52) did.34

This connection between gradients and expected counts also holds for fancier probabilistic
models based on CFGs and FSTs and more. If you’re curious to understand the details, I published
a tutorial paper that explains all of this in detail—focusing on the inside-outside and forward-
backward algorithms.

K.1 Computational Details

If you computed logZ from versions of A,B that were represented in logspace (such as lA, lB in
reading section C.2, or WA,WB in equation (31)), then calling back-propagation on logZ will
directly compute (52) for you.

34If you want the fractional probabilities at j but A and B do not vary by position, you can make position-specific
versions by defining A(j) = A + 0 and B(j) = B + 0 for each j. Then use these position-specific versions in the
computation and compute gradients with respect to them.

R-32

https://www.cs.jhu.edu/~jason/papers/#eisner-2016
https://www.cs.jhu.edu/~jason/papers/#eisner-2016

First compute logZ, making sure that gradients are being tracked.35 Then call the retain grad()

method on the tensors holding the log-probabilities, before calling the .backward() method on
logZ. Finally you can look at the .grad attributes of the tensors holding the log-probabilities;
these will be tensors of gradients. The .grad attributes usually only stay available at leaf nodes
of the computation graph (that is, parameters), but retain grad lets you them at intermediate
nodes as well.

Alternatively, if you only have easy access to the probabilities or potentials A and B, and
not their logs, then you can use those instead, by making the following change of variables in
equation (52):

c(s, t) =
∂ logZ

∂ logAst
c(t, w) =

∂ logZ

∂ logBtw

=
∂ logZ

∂Ast
· ∂Ast
∂ logAst

=
∂ logZ

∂Ast
·Ast =

∂ logZ

∂Btw
· ∂Btw
∂ logBtw

=
∂ logZ

∂Btw
·Btw (53)

L Neuralization and SGD for HMMs

While this homework has focused on CRFs, it is also possible to use neural nets to define the
transition and emission probabilities of an HMM. In this case, we train the parameters of those
neural nets.

There is unfortunately not a role for the biRNN in an HMM. Because the HMM is generative,
there seems to be no way to introduce RNNs or other context features without breaking the dynamic
programming structure that makes HMMs efficient.36

However, the HMM transition and emission probabilities pA(t | s) and pB(w | t) can be defined
using embeddings or other features of the tags and words, just as we did earlier for CRFs (reading
sections H.1 and H.2). Chiu & Rush (2020) show that HMMs are actually surprisingly good
language models—competitive with RNNs—if you use tag embeddings to give them a huge number
of states!

L.1 Training a Neuralized HMM

You can train your neuralized HMM by either SGD or by EM. Each time you update the underly-
ing parameters that control the transition and emission probabilities, you need to recompute the
probabilities (that is, the matrices A,B).

To train by SGD, you simply try to maximize the HMM’s objective function, namely the
incomplete-data log-likelihood (14). This adjusts the underlying parameters. You might want to
use an L2 regularizer on these parameters.

To train by EM, you do each E step as usual, and then use SGD for the M step. A full M step
would maximize the model’s expected log-likelihood (18). However, it is actually enough to do a

35Warning: Gradient tracking will have been turned off for efficiency if your fractional-count method is called in
the context “with torch.no grad():” . . . for example, if it’s called while train() is evaluating the loss() in the
hmm.py starter code. So a fractional-count method that uses back-prop will need to override this, by indenting the
computation of logZ under a line “with torch.enable grad():” (such a line in Python is a context manager that
does some setup before running a block of code and some cleanup afterwards).

36Again, that is a reason to prefer CRFs for tagging—they allow a more expressive model of p(t | w). Because
they are only a conditional model that conditions on a fixed w, they can extract rich features such as biRNN features
from that w. They do not have to produce a distribution over all values of w.

R-33

https://arxiv.org/abs/2011.04640
https://book.pythontips.com/en/latest/context_managers.html

generalized M step that merely increases (18)—typically by taking just one or a few gradient
steps. In this case you can even use mini-batches.

In both cases, you need to use back-propagation to find the gradient. You also need to choose
some hyperparameters: a mini-batch size and a stepsize schedule for SGD. You were able to avoid
the hyperparameters in the last assignment because for the simple non-neuralized HMM, you could
use EM with a closed-form M step (17)—no SGD was required.

L.2 HMM Parameterization for SGD

For an HMM, you need to ensure that the rows of A and B are probability distributions. The
entries of each row have to be non-negative and sum to 1. If you treated A or B as the parameters
of the model, then a direct gradient step to adjust them might violate these constraints.

Even without neuralization, there is an obvious solution. Take the underlying model parameters
to be matrices WA and WB, which have the same shape as A and B respectively. Each row of
A (or B) is defined to be the result of passing the corresponding row of WA (or WB) through a
softmax function. (All rows can be computed at once with a single call to PyTorch’s softmax.)
This is called a softmax parameterization of A,B—it’s like the logarithmic parameterization of
A,B in the CRF case (equation (31)), but with normalization. In other words,

pA(t | s) =
expWA

st∑
t′ expWA

st′
pB(w | t) =

expWB
tw∑

w′ expWB
tw′

(54)

Each of these formulas is just a very simple conditional log-linear model, with one feature for each
tag-tag bigram or tag-word pair. The weight of this feature is given by the corresponding matrix
element.

The point is that the elements of WA and WB can be any real numbers, and you’ll still get
well-defined conditional probability distributions. So you don’t have to worry that an SGD update
to WA,WB will give you invalid parameters.

The neuralization idea is that WA and WB can in turn be parameterized in terms of word
and/or tag embeddings, exactly as in the CRF case (reading sections H.1–H.2). In that case,
SGD will update the underlying parameters by following their gradient. Then you will recompute
WA,WB, which leads to recomputing A,B via equation (54).

Boundary symbols. Omitting the bosw and eosw columns makes it easy to produce each row
as a softmax. It also means you don’t have to worry about the fact that bosw and eosw don’t
have embeddings in the lexicon.

Scaling trick. If you are avoiding underflow through the scaling trick (reading section C.1), then
κj is just some constant that you picked. The choice of κj does not actually affect the results—you
are just dividing by it in one place and multiplying by it in another.

So you don’t have to compute the gradient of κj (which would be 0). You can make it be an
ordinary float rather than a tensor. Then even if you happened to choose it by some calculation
that depends on your forward computation, PyTorch doesn’t know that, and will not waste time
back-propagating through that computation to determine how to improve κj .

R-34

Logspace computation. If you are avoiding underflow by running the forward algorithm in
logspace (reading section C.2), you may prefer to skip equation (54) and directly construct logspace
versions lA, lB of A,B. This can be done simply by using logsoftmax in PyTorch, instead of
softmax as equation (54) did.37

Mathematically, the entries of lA, lB are logarithms of (54), which can be rewritten as

log pA(t | s) = WA
st − logsumexpt′W

A
st′ log pB(w | t) = WB

tw − logsumexpw′W
B
tw′ (55)

In other words, each row of lA is obtained by shifting the corresponding row of WA by its logsumexp,
and similarly for lB . (logsumexpt′ is a summation operator just like

∑
t′ , but it adds up quan-

tities represented in log-space and gives a result represented in log-space. Thus, logsumexpt′ · · ·
returns log

∑
t′ exp · · · , just as logaddexp(x, y) returned log(expx + exp y) in reading section C.2.

Underflow-resistant logsumexp and logaddexp operators are available in PyTorch.)

L.3 Word and Tag Frequencies

There is one potential problem with the softmax parameterization of B, namely that the word
embeddings may not contain information about word frequency. The HMM is a generative model
that needs to generate the words. But pB(w | t) might be just as high for a rare word as for a
frequent word, if those words have similar embeddings!

Fortunately, this shouldn’t actually be a problem for the tagging task, because if pB(w | t) is
50 times too high for all tags, then this just increases the log-likelihood by a constant, log 50, but
doesn’t change the relative probabilities of the taggings.

But if you want your HMM to be able to generate sentences as well as tag them, then you can
fix the problem by defining

WB
tw = ~θt · ~w + log p̂(w) (56)

where p̂(w) is estimated by counting words in the training data (with some simple smoothing).
This means that p(w | t) will be defined as proportional to p̂(w) · exp(~θt · ~w). Since Bayes’ Theorem
says that p(w | t) ∝ p(w) · p(t | w), this means that really we’re using exp ~θt · ~w to model p(t | w),
up to a constant. That seems like a reasonable thing to do.

Even better, you can concatenate log p̂(w) onto the vector ~w as an additional dimension. If
training ~θt learns a weight of γ for this dimension, then this means it defines p(w | t) as proportional
to p̂(w)γ · exp(~θt · ~w). We might expect that it would learn γ ≈ 1 (and this might be a good choice
for initialization), but since the other dimensions of ~w already do reflect the frequency of ~w to some
extent, then perhaps it will learn γ < 1.

You can take this even farther, and augment ~w with information about the frequency with
which w had various tags in supervised training data, such log p̂(t | w). This vector of logprobs is
itself a kind of simple syntactic embedding of the word. It should be useful for CRFs as well as for
HMMs.

37It’s better not to use log(softmax(...)), since back-propagating through that can encounter the log 0 bug
mentioned in reading section I.2.

R-35

