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Abstract

A language model may be viewed as a Σ-
valued stochastic process for some alphabet
Σ. However, in some pathological situations,
such a stochastic process may “leak” proba-
bility mass onto the set of infinite strings and
hence is not equivalent to the conventional view
of a language model as a distribution over or-
dinary (finite) strings. Such ill-behaved lan-
guage processes are referred to as non-tight in
the literature. In this work, we study condi-
tions of tightness through the lens of stochastic
processes. In particular, by regarding the EOS
symbol as marking a stopping time and using
results from martingale theory, we give char-
acterizations of tightness that generalize our
previous work (Du et al., 2023).

1 Introduction

Mathematically, there are two views of language
models. From a formal language perspective, a
language model is viewed as a distribution over
Σ∗, the set of (finite-length) strings over a finite
alphabet Σ (Booth and Thompson, 1973). From
a probabilistic perspective, a language model is
viewed as a discrete stochastic process {Xt ∈ Σ :
t ∈ Z+} (Markov, 1913; Shannon, 1948). Under
the latter view, to signal the end of the string, it
is common to augment the alphabet with a special
end-of-string symbol, EOS, and define the Xt to be
Σ-valued random variables where Σ = Σ∪{EOS}.
Although Xt is defined for all t > 0, the random
string consists only of the symbols Xt preceding
the first EOS. We call such a stochastic process a
language process, following Meister et al. (2022).

While the literature rarely distinguishes between
the two views, there is an important difference: the
probability mass of a language process can “leak”
onto the set of infinite strings, meaning that < 1
of the probability mass is assigned to the set of
(finite) strings.1 When such leakage happens, the
language process is said to be non-tight (Chi, 1999;

1A string has finite length by definition (Sipser, 2013), so
an “infinite string” is really a sequence, not a string.

Cohen and Johnson, 2013) and cannot be regarded
as a language model (i.e., a distribution over Σ∗).
Non-tightness may cause language processes to
generate infinite sequences (Welleck et al., 2020)
and bias Monte Carlo samplers over strings (Lew
et al., 2023). This phenomenon raises a natural
question: How can we mathematically determine
whether a language process is a language model?

As demonstrated by several examples in Du et al.
(2023, Section 2), a precise answer to this question
requires some probability theory (Kolmogorov,
1933). To this end, Du et al. (2023) formalize
language processes (which they call “sequence
models”) as extensions of pre-measures, and then
obtain characterizations of tightness using the
Borel–Cantelli lemmas.

In this work, we revisit the problem of char-
acterizing tightness through the lens of stochas-
tic processes, an intuitive, high-level construct in
measure-theoretic probability. We begin by pre-
senting language processes using the Kolmogorov
Extension Theorem (§2), which establishes their
existence more simply and directly than the con-
struction of Du et al. (2023). We then formulate
EOS as a stopping time, yielding a natural under-
standing of EOS that connects the tightness property
to martingales (§3.1).2 Applying results from mar-
tingale theory, we are able to characterize tightness
more generally than in previous work (§3.2).

2 Language Models as Stochastic
Processes

In probability theory, a stochastic process is a col-
lection of random variables {Xt : t ∈ T} on some
probability space (Ω,F , P ) over some index set
T .3 Language models are often framed in terms
of stochastic processes, usually implicitly through

2The study of optional stopping is a major motivation for
the development of martingale theory (Doob, 1953).

3See [M1]. Throughout this paper, we will freely use con-
cepts from measure-theoretic probability. To be self-contained,
we summarize necessary definitions and background in App. B
and refer to it when appropriate.
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the notation Xt to refer to the tth word. We first
make this intuitive notation rigorous by formulating
Xt as a random variable over a certain probability
space, which we must construct. Previous papers
simply assume the existence of such a probability
space, occasionally explicitly (Meister et al., 2022).

It is popular to specify a language model in terms
of a parametric family of autoregressive conditional
probabilities {p(xt | x<t) : xt ∈ Σ,x<t ∈ Σ

∗}.
However, we need to show that the stochastic
process {Xt : t ∈ T} actually exists—that is, there
is a distribution over infinite sequences in Σ

∞ that
has the given conditional probabilities. We will use
the canonical tool for this, the Kolmogorov exten-
sion theorem. The theorem states that a collection
of distributions over finite subsets of the variables
Xt can be extended to a joint distribution over all of
the infinitely many variables Xt, provided that the
distributions in the collection agree on the variables
where they overlap (a consistency condition).

As is the case for many fundamental theorems,
the Kolmogorov extension theorem has many vari-
ants. Most probability texts (Chung, 1974; Billings-
ley, 1995; Durrett, 2019) only state and prove
the theorem for R-valued stochastic processes,
whereas we are interested in constructing a Σ-
valued stochastic process. For completeness and
rigor, we state a discrete version of the theorem
below and provide a proof.

Theorem 2.1 (Kolmogorov Extension Theorem).
Let T be an arbitrary index set, and (Ω,F ) be a
finite measurable space where F is the discrete
σ-algebra.4 Define F k and F T as in [M3]. Given
a system of measures {µ∗} where for each k-tuple
(t1, . . . , tk) of distinct elements in T , µt1,...,tk is
a measure over (Ωk,F k) , and where for every
choice of H1, . . . Hk ∈ F , these measures satisfy
(1) For all permutations π,

µt1,...,tk(H1 × · · · ×Hk) =

µtπ(1),...,tπ(k)
(Hπ(1) × · · · ×Hπ(k))

(1)

(2) For arbitrary distinct k-tuples (t1, . . . , tk),

µt1,...,tk−1
(H1 × · · · ×Hk−1) =

µt1,...,tk−1,tk(H1 × · · · ×Hk−1 × Ω).
(2)

Then, there is a unique probability measure P on
(ΩT ,F T ) such that the coordinate random vari-
ables {Xt : t ∈ T} have µt1,...,tk as their finite-

4That is, F is the power set of Ω.

dimensional distributions, i.e.,

P
(
(Xt1 , . . . , Xtk) ∈ A

)
= µt1,...,tk(A) (3)

for all A ∈ F k.

Proof. App. C.

In Theorem 2.1, the outcomes in the probability
space may be denoted as ω ∈ ΩT and the random
variables Xt are defined by Xt(ω) = ωt ∈ Ω,
which extract the respective elements of ω.5

We now show that Theorem 2.1 enables a sim-
ple construction of the language process from the
autoregressive conditionals, where Ω = Σ and the
index set T = Z+ = {1, 2, . . .}.

For t ≥ 0 and x ∈ Σ
t, define pt(x) =∏t

s=1 p(xs | x<s). These finite-dimensional
distributions naturally yield a system of finite-
dimensional measures {µ∗} where each µt1,...,tk

is derived from some pt by sorting the indices and
marginalizing over skipped indices. This process
is detailed below.

We first define the measures for consecutive in-
dex tuples of the form (1, . . . , t):

µ1,...,t(H1 × · · · ×Ht)
def
=

∑

x∈H1×···×Ht

pt(x). (4)

We now use marginalization to extend to arbitrary
sorted k-tuples (t1, . . . , tk) where t1 < · · · < tk,
by defining

µt1,...,tk(H1 × · · · ×Hk)
def
= µ1,··· ,tk

(
tk∏

t=1

Gt

)
(5)

where Gt = Ht if t = ti for some i and other-
wise Gt = Σ. Finally, we use permutation to ex-
tend to unsorted tuples. For an arbitrary k-tuple
(t1, . . . , tk) of distinct elements, we define

µt1,...,tk(H1 × · · · ×Hk)
def
=

µtπ(1),...,tπ(k)
(Hπ(1) × · · · ×Hπ(k))

(6)

where π is the unique permutation that sorts the
elements: tπ(1) < · · · < tπ(k).

By construction, the family of measures
{µ∗} defined above satisfies both conditions
in Theorem 2.1. Hence, Theorem 2.1 implies
that there exists a unique probability measure

5It is possible to state a weaker version of Theorem 2.1
without the first condition by requiring t1 < · · · < tk in the
system of measures {µ∗}, as is the case in Durrett (2019).
However, this requires choosing a total order of the index set
T .
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(Σ
Z+

,FZ+
, P ) such that the coordinate random

variables {Xt : t ∈ Z+} have {µ∗} as its
finite-dimensional distributions. Since {µ∗} is
directly derived from a family of autoregressive
conditionals {p(· | x<t) : x<t ∈ Σ

∗}, the
collection of random variables {Xt : t ∈ Z+} is
the corresponding language process.

3 Characterizing Tightness

Having established the existence of a language pro-
cess with given autoregressive conditional proba-
bilities, we can readily apply tools from the theory
of stochastic processes. We will see that two key
subjects of our investigation, EOS termination and
tightness, are naturally characterized by stopping
times. Stopping times are central to the study of
stochastic processes (Doob, 1953).6 This connec-
tion will allow us to derive tightness conditions that
generalize Du et al. (2023).

3.1 Stopping Time
To define stopping time, we first review the nec-
essary definition of filtration. Given a stochastic
process {Xt : t ∈ Z+} on a probability space
(ΩT ,F T , P ), let (Ω,F ) = (ΩT ,F T ) denote its
underlying measurable space. For any measurable
space (Ω,F ) (not necessarily with the above struc-
ture), a sequence of sub-σ-algebras {F t : t ∈ N}
is called a filtration of the space if

F 0 ⊆ F 1 ⊆ · · · ⊆ F . (7)

Our stochastic process is said to be adapted to
a filtration {F t : t ∈ N} of its measurable space
if for each t, Xt is F t-measurable and not merely
F -measurable. This means that the “prefix dis-
tribution” P (X1, . . . , Xt) does not depend on the
entire measure function P , but is determined by
the restriction of P to just the sets in F t. This is
because F t ⊆ F includes enough of the events of
the full measurable space F . In particular, in our
discrete-variable setting where F is the discrete
σ-algebra, F t contains all the events of the form
Xt = xt and thus (by Eq. (7)) all events of the
form X1 = x1 ∧ · · · ∧Xt = xt.

Intuitively, a filtration describes an evolution of
representational power. Each F t is fine-grained
enough to characterize the information conveyed
by X1, . . . , Xt, whereas F t−1 ⊆ F t may not be
able to do so. Then an adapted process {Xt} is one

6They also happen to be practically important in designing
Monte Carlo samplers for language models (Lew et al., 2023).

where each prefix distribution P (X1, . . . , Xt) can
be defined over the simplified measurable space
(Ω,F t): the events of the prefix distribution re-
main measurable there.

We are now ready to give the formal definition
of a stopping time.

Definition 3.1. In a filtered probability space
(Ω,F , P, {F t}), an N∪{∞}-valued random vari-
able τ is called a stopping time if {τ = t} ∈ F t

for all t ∈ N.

This means that P (τ = t) can be defined over
the simplified measurable space (Ω,F t). So can
P (τ = t′) for any t′ < t, thanks to Eq. (7).

In the above setting where the filtered probability
space is a discrete stochastic process that is adapted
to its filtration, it follows that for t′ ≤ t, the joint
probabilities P (τ = t′, X1 = x1, . . . , Xt = xt)
and thus the conditional probabilities P (τ = t′ |
X1 = x1, . . . , Xt = xt) can also be defined using
the simplified measurable space.

In the case of language processes, let us define

τEOS
def
= inf{t : Xt = EOS}, (8)

which is the first time at which EOS appears in the
sequence. Observe that {τEOS = t} is the event of
getting any string of length t− 1 and {τEOS = ∞}
is the event of getting any infinite string. Let us con-
struct a filtration such that τEOS is a stopping time.

We use the natural filtration (cf. [M4]) of
(Σ

Z+

,FZ+
), defined by

F t
def
=
{{

xω : ω ∈ Σ
Z+}

: x ∈ Σ
t
}
. (9)

It is straightforward to verify that {Xt} is
adapted to {F t} and that τEOS is indeed a
stopping time.7 Notice also that for t′ ≤ t,
P (τEOS = t′ | X1 = x1, . . . , Xt = xt) is always
0 or 1: this is not guaranteed for stopping times in
general, but holds here because τEOS = t′ is fully
determined by X1, . . . Xt (Eq. (8)).

The stopping time characterization of EOS gives
rise to an understanding of the language process
as a string-valued random variable, i.e., the formal
language view of language model we introduced in
§1. Define the stopped language process by Yt =
Xt∧τEOS (recall that τEOS is itself a random vari-
able).8 In other words, {Yt} agrees with {Xt} up

7We provide a proof of this fact in Proposition D.1 in
App. D.

8It is common to use lattice-theoretic notation in stochastic
processes, i.e., x ∧ y = min{x, y} and x ∨ y = max{x, y}.
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through the first EOS and continues with EOS there-
after. The set of sequences {yt} in which EOS is
followed by any non-EOS symbol is assigned proba-
bility 0. Hence, there exists a bijection between the
support of {Yt} and Σ∗∪ΣZ+

where ΣZ+
is the set

of infinite strings.9 If the language process is tight,

i.e., P (Σ
Z+

) = 0 as well, then the stopped process
{Yt} can be regarded as a string-valued random
variable (one that almost surely takes values in Σ∗).

Finally, we can use τEOS to give a straightfor-
ward characterization of tightness. Recall that a
tight language process is where EOS termination
occurs with probability 1. This corresponds to the
following definition.

Definition 3.2. A language process is said to be
tight if P (τEOS < ∞) = 1.

A tight language process specifies a distribution
{Yt} over Σ∗, that is, a language model.

3.2 Tightness Results
We now derive concrete conditions for when
a language process is tight. The construct of
filtration allows us to apply results from martingale
theory, which yields generalizations of results
from previous work (Du et al., 2023). Specifically,
we recall the Lévy–Borel–Cantelli theorem from
martingale theory.

Theorem 3.3 (Lévy–Borel–Cantelli Theorem).10

Let (Ω,F , P, {Gt}t≥0) be a filtered probability
space with G0 = {∅,Ω} and {At}t≥1 be a se-
quence of events with At ∈ Gt. Then

{At i.o.} a.s.
=

{ ∞∑

t=1

P (At | Gt−1) = ∞
}
. (10)

where { } indicates an event, i.o. is “infinitely of-
ten,” and a.s. is “almost surely” (see [M6]). That
is, if an outcome ω satisfies infinitely many of the
properties At, it is almost surely an outcome in
which the At have infinite total conditional prob-
ability, and vice-versa. The definition of “condi-
tional probability” here is subtle: P (At | Gt−1) de-
notes a Kolmogorov conditional (see [M5]). In the
case where Gt−1 is a finitely generated σ-algebra,
we can say that this conditional probability of At

is conditioned on the most specific event of Gt−1 in

9The mapping that maps from Σ∗ ∪ ΣZ+

to the support of
{Yt} by adding an infinite sequence of EOS to elements of Σ∗

is this bijection.
10See, e.g., Kallenberg, 2021, Corollary 9.21 or Durrett,

2019, Theorem 4.3.4.

which ω falls (which is well-defined in this case).
Hence it is conditioned on at least whether ω satis-
fies A1, . . . , At−1, since A1, . . . , At−1 ∈ Gt−1.

We remark that both the first and the second
Borel–Cantelli lemmas from elementary measure
theory, which were used in Du et al. (2023), can be
straightforwardly derived from Theorem 3.3 (see,
e.g., Williams, 1991, §12.5).

To relate Theorem 3.3 to tightness, let (Ω,F , P )
be our language process, with {Gt} being some
filtration of its measurable space. (The language
process is not necessarily adapted to the filtration.)
We choose

At
def
= {τEOS ≤ t}. (11)

A little thought shows that {At i.o.} = {τEOS <
∞}, since {At i.o.} means that there are infinitely
many times t beyond the first EOS, and {τEOS <
∞} means that there is a first EOS; both are true
just when ω corresponds to a finite string. (See
Proposition D.2 in the Appendix.) Thus, the se-
quence of events {At}t≥1 connects the tightness
property with Theorem 3.3 in the following way.

Theorem 3.4. Let {Gt}t≥0 be any filtration over a
language process with G0 = {∅,Ω} and At ∈ Gt

for all t ≥ 1. Then,

{τEOS < ∞} a.s.
=

{ ∞∑

t=1

P (At | Gt−1) = ∞
}
. (12)

Due to its abstract form, Theorem 3.4 is very gen-
eral. It yields different characterizations of tight-
ness depending on the chosen filtration {Gt}, which
need only satisfy G0 = {∅,Ω} and At ∈ Gt for
each t ≥ 1. For example, applying Theorem 3.4 to
the natural filtration defined in Eq. (9), we obtain
the following characterization of tightness:

tight ⇔
∞∑

t=1

P (At | Ft−1)
a.s.
= ∞. (13)

In other words, a language process is tight if it has
probability 1 of drawing a sequence ω for which∑

t P (τEOS ≤ t | X1, . . . , Xt−1) is infinite.11 Us-
ing a different filtration leads to a more practical
condition to determine tightness, as we state below.

11Which is to say, ω either contains EOS, or avoids gen-
erating EOS at every step despite EOS often having a high
probability given the previous symbols. The latter event has
probability 0, so this is equivalent to saying that the language
process has probability 1 of drawing a sequence that contains
EOS—i.e., it is tight.
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Corollary 3.5 (Theorem 4.7 in Du et al., 2023). A
language process is tight if and only if st = 1 for
some t or

∑
t st = ∞, where st is defined as

st
def
= P (τEOS ≤ t | τEOS > t− 1) (14)

=

∑
ω∈Σt−1 p(EOS | x)p(x)∑

ω∈Σt−1 p(x)
. (15)

That is, st is the probability that a prefix of length
t−1 that does not contain EOS will be immediately
followed by EOS.

Proof. Apply Theorem 3.4 to the filtration Gt =
σ({A1, . . . , At}) (defined in [M2]) and then com-
pute P (At | Gt−1). See App. E for details.

Note that the quantity st in Cor. 3.5 involves a
partition function in its denominator, which may
be intractable to compute (Lin et al., 2021). We
therefore derive the following condition which is
easier to verify in practice.
Corollary 3.6 (Proposition 4.3 in Du et al., 2023).
If p(EOS | x) ≥ f(t) for all t ≥ 1, x ∈ Σt−1,
and

∑∞
t=1 f(t) = ∞, then the language process

induced by p is tight.

Proof. A direct consequence of Cor. 3.5. See
App. E.

In particular, the lower bound function f(t) in
Cor. 3.6 can be established for specific architectures
such as Transformers or RNNs. We refer to Du et al.
(2023, Section 5) for these results.

We conclude with some simple examples of ap-
plying these tightness conditions. If a language
model satisfies p(EOS | x) ≥ ε/(t+1) for x ∈ Σt

and ε > 0, the corresponding language process
is tight by Cor. 3.6 since the series

∑∞
t=0

1
t+1 di-

verges. On the other hand, if p(EOS | x) ≤ 2−(t+1)

for x ∈ Σt, the corresponding language process is
non-tight by Cor. 3.5 since

∑∞
t=0 2

−(t+1) < ∞.

4 Conclusions

This paper presents a formal treatment of language
model and its tightness using the theory of stochas-
tic processes. We discuss the formalization of lan-
guage model as a stochastic process by applying
a discrete version of the Kolmogorov Extension
theorem. We then give a more intuitive formal
understanding of EOS by characterizing it as a stop-
ping time, a key construct in stochastic processes.
Finally, the stopping formulation allows us to con-
nect tightness to martingale theory and obtain more
general conditions on tightness.

Limitations

Theorem 3.4 is a new general result about tightness,
but the only applications we gave of this theorem
(namely Corollaries 3.5 and 3.6) were to derive
characterizations of tightness that were previously
known. In this article, we only discussed the lan-
guage process as derived from an autoregressive
language model. However, there are alternative
models of production of language, such as PCFG.
It is possible to formally derive a stochastic process
for PCFG based on variants of branching processes
and, indeed, several previous works have made
use of such formalisms to varying extents (Booth
and Thompson, 1973; Miller and O’Sullivan, 1992;
Chi, 1999). However, our construction using the
Kolmogorov Extension theorem does not directly
extend to these cases.

We also refrained from discussing specific pa-
rameterizations of language models, such as finite-
state, recurrent, or Transformer-based language
models. Interested readers can refer to Du et al.
(2023, §5) which contains a comprehensive anal-
ysis of various concrete parametrizations of lan-
guage models.
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A Related Work

Formal constructions of language models in axiomatic probability theory (e.g., measure-theoretic probabil-
ity à la Kolmogorov, 1933) have not been studied until recently (Dębowski, 2020, Ch. 2; Du et al., 2023).
Du et al. (2023) directly constructs and extends a pre-measure from strings. Closest to our treatment is
Dębowski (2020, §2.2), which states the existence of the process by citing the Kolmogorov Extension
theorem. However, they cite a proof of the R-valued version of the Kolmogorov Extension theorem and
omit how to apply the theorem (in §2.3, below Definition 2.11).12

We also note that, there are statements of more general versions of the Kolmogorov extension theorem
in terms of projective limits, e.g., Kallenberg (2021, Theorem 8.23) or Tao (2011, Thereom 2.4.3).
The projective limit version of the theorem is stated for Borel spaces, and hence encapsulates both the
continuous case and the discrete case. On a more abstract level, Kozen (2016) points out the category-
theoretic connection between the Kolmogorov extension theorem and Doob’s martingale convergence
theorem. However, we deem these versions of the Kolmogorov extension theorem to be unnecessarily
abstract for our purposes and hence state and prove the more intuitive version with the consistency
conditions in our §2.

Tightness in language models has been studied in various contexts, most recently in the context of
neural autoregressive language models (Chen et al., 2018; Welleck et al., 2020; Lin et al., 2021; Meister
et al., 2022; Du et al., 2023). In particular, Welleck et al. (2020) prove the simple fact that a nonzero
lower bound of EOS probability implies tightness. Later, Du et al. (2023) prove the more general sufficient
and necessary condition. In this article, we generalize this result using martingale theory to almost sure
equalities of events.

Tightness in PCFGs has also been extensively studied (Booth and Thompson, 1973; Chi and Geman,
1998; Cohen and Johnson, 2013; Chi, 1999; Nederhof and Satta, 2006). It is here that the techniques from
stochastic processes prove to be extensively useful. In Booth and Thompson (1973); Chi (1999); Chi and
Geman (1998), the theory of branching processes is used to obtain conditions of tightness in PCFGs. We
note that martingale theory is also useful in obtaining the main results in branching processes (Durrett,
2019, §4.3).

B Measure Theory Background

We put the definitions and background from measure-theoretic probability in this section and refer to it
when we encounter needed definitions in the main text.

[M1] Probability Space. A probability space is a triple (Ω,F , P ) where Ω is the sample space, F is a
σ-algebra over Ω and P is a probability measure over (Ω,F , P ).

[M2] Generated σ-algebra. Let C be a collection of subsets in Ω. The σ-algebra generated by C , denoted
by σ(C ), is the smallest σ-algebra over Ω containing C . We also often consider the generated
σ-algebra over a collection of random variables {Xt}t∈T in a probability space (Ω,F , P ). In this
case, σ({Xt}t∈T ) is taken to be the smallest σ-algebra in which all Xt are measurable with respect
to it.

[M3] Product σ-algebra. Let T be an arbitrary index set and let (Ω,F ) be a measurable space. The
product σ-algebra F T is a σ-algebra over ΩT and is the defined to be the σ-algebra generated by the
one-dimensional cylinder sets F T = σ({{ω ∈ ΩT : ωt ∈ H} : t ∈ T,H ∈ F}) (cf. [M2]). In our
discussion, Ω is taken to be a finite set and F is taken to be the power set of Ω. A caveat here is
that, F T is generally not equal to the power set of ΩT . To see why, one notes that the two sets have
different cardinalities (Folland, 1999, Proposition 1.23).

[M4] Natural/Canonical Filtration. In a stochastic process X1, X2, . . . in (Ω,F , P ), the natural filtration
or canonical filtration Ft is defined as Ft = σ({X1, . . . , Xt}) (cf. [M2]).

[M5] Kolmogorov Conditionals. Let G be a sub-σ-algebra in a probability space (Ω,F , P ). The Kol-
mogorov conditional expectation of a random variable X with E|X| < ∞ with respect to G
is denoted as E(X | G ), which is itself a random variable that is G measurable and satisfies

12It is possible to use the R-valued Kolmogorov Extension theorem for our purposes by embedding the discrete points over R,
resulting in atomic measures. These details are, however, missing from Dębowski (2020, §2.2).
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∫
AE(X | G )dP =

∫
AXdP for all A ∈ G . The Kolmogorov conditional probability P (A | G ) is

defined to be E(1A | G ).
[M6] Almost Sure Equality. In a probability space (Ω,F , P ), two random variables X and Y are almost

surely equal, denoted by X
a.s.
= Y , if P (X = Y )

def
= P ({X = Y }) = 1. Two events E and F are

almost surely equal, denoted by E
a.s.
= F , if P (1E = 1F ) = 1.

C Kolmogorov Extension Theorem Proof

Theorem 2.1 (Kolmogorov Extension Theorem). Let T be an arbitrary index set, and (Ω,F ) be a finite
measurable space where F is the discrete σ-algebra.13 Define F k and F T as in [M3]. Given a system
of measures {µ∗} where for each k-tuple (t1, . . . , tk) of distinct elements in T , µt1,...,tk is a measure over
(Ωk,F k) , and where for every choice of H1, . . . Hk ∈ F , these measures satisfy
(1) For all permutations π,

µt1,...,tk(H1 × · · · ×Hk) =

µtπ(1),...,tπ(k)
(Hπ(1) × · · · ×Hπ(k))

(1)

(2) For arbitrary distinct k-tuples (t1, . . . , tk),

µt1,...,tk−1
(H1 × · · · ×Hk−1) =

µt1,...,tk−1,tk(H1 × · · · ×Hk−1 × Ω).
(2)

Then, there is a unique probability measure P on (ΩT ,F T ) such that the coordinate random variables
{Xt : t ∈ T} have µt1,...,tk as their finite-dimensional distributions, i.e.,

P
(
(Xt1 , . . . , Xtk) ∈ A

)
= µt1,...,tk(A) (3)

for all A ∈ F k.

Proof. We adapt the strategy of the R-valued stochastic process proof in Billingsley (1995, Sec. 36): We
first define a pre-measure-like set function, which requires a proof that such a function is well-defined;
We then prove that this function is indeed a pre-measure, allowing us to apply the Carathéodory extension
theorem.

Definition of Pre-Measure. We first note that sets of the form

{x ∈ ΩT : (xt1 , . . . , xtk) ∈ H} (16)

for some H ∈ F k form an algebra (but not a σ-algebra). We call this algebra F T
0 . Here and afterwards,

we will abbreviate these kind of sets with the notation {(xt1 , . . . , xtk) ∈ H} since the underlying space is
always RT so there is no confusion of this notation. Recall that our goal is to try to define a probability
pre-measure P0 over (ΩT ,F T

0 ) and then apply the Carathéodory theorem. We define

P0({(xt1 , . . . , xtk) ∈ H}) = µt1,...,tk(H). (17)

Consistency of Pre-Measure. An immediate issue is whether the definition of P0 is consistent, i.e.,
whether it is well-defined. In other words, we need to show the following

Proposition C.1. If

{(xt1 , . . . , xtk) ∈ H} = {(xs1 , . . . , xsℓ) ∈ I}, (18)

then

µt1,...,tk(H) = µs1,...,sℓ(I). (19)
13That is, F is the power set of Ω.
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Proposition C.1 shows that P0 is a consistent function that maps the same input to the same output, and
hence is consistent.

Proof of Proposition C.1. Let (t1, . . . , tk), H and (s1, . . . , sℓ), I be such that {(xt1 , . . . , xtk) ∈ H} =
{(xs1 , . . . , xsℓ) ∈ I}. Then, we can find indices (r1, . . . , rm) such that {r1, . . . , rm} = {t1, . . . , tk} ∪
{s1, . . . , sℓ} and (r1, . . . , rk) = (t1, . . . , tk). Moreoever, we can find a permutation π ∈ Sym(m) such
that

(rπ(1), . . . , rπ(ℓ)) = (s1, . . . , sℓ). (20)

We begin by rewriting the LHS and RHS of Eq. (18). First, consider the more straightforward direction of
LHS

{(xt1 , . . . , xtk) ∈ H} (21)

= {(xr1 , . . . , xrk) ∈ H} (22)

= {(xr1 , . . . , xrk , xrk+1
, . . . , xrm) ∈ H × Ωm−k} (23)

= {(xr1 , . . . , xrm) ∈ H × Ωm−k} (24)

Next, we rewrite RHS,

{(xs1 , . . . , xsℓ) ∈ I} (25)

= {(xrπ(1)
, . . . , xrπ(ℓ)

) ∈ I} (26)

= {(xrπ(1)
, . . . , xrπ(ℓ)

, xrπ(ℓ+1)
, . . . , xrπ(m)

) ∈ I × Ωm−ℓ} (27)

= {(xrπ(1)
, . . . , xrπ(m)

) ∈ I × Ωm−ℓ} (28)

= {(xr1 , . . . , xrm) ∈ π−1(I × Ωm−ℓ)} (29)

The two sets are equal from Eq. (18), so their equivalent forms Eq. (24) and Eq. (29) are also equal (since
they are the same set), i.e.

{(xr1 , . . . , xrm) ∈ H × Ωm−k} = {(xr1 , . . . , xrm) ∈ π−1(I × Ωm−ℓ)} (30)

For this to be true, it must be the case that

H × Ωm−k = π−1(I × Ωm−ℓ) ∈ Fm. (31)

We now turn to showing our actual goal, which is µt1,...,tk(H) = µs1,...,sℓ(I). We start from the RHS

µs1,...,sℓ(I) (32)

= µrπ(1),...,rπ(ℓ)
(I) (by Eq. (20)) (33)

= µrπ(1),...,rπ(ℓ),rπ(ℓ+1),...,rπ(m)
(I × Ωm−ℓ) (consistency) (34)

= µr1,...,rm(π
−1(I × Ωm−ℓ)) (by permutation invaraince) (35)

= µr1,...,rm(H × Ωm−k) (by Eq. (31)) (36)

= µt1,...,tk,rk+1,...,rm(H × Ωm−k) (by definition of ri and ti) (37)

= µt1,...,tk(H) (by consistency) (38)

Note that, in the assumption, permutation invariance is only assumed for product of cylinder sets, so
we need to use Dynkin’s π-λ theorem to show that this property extends to all measurable sets in F k.
Combined, the above concludes the proof and shows that the definition of P0 is consistent.
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Proof of Pre-Measure. Before the application of Carathéodory extension theorem, the final step is to
show that P0 is indeed a pre-measure. A pre-measure is a set function that satisfies countable additivity in
an algebra (instead of a σ-algebra).14 A common strategy to show some set function is a pre-measure is to
show that its continuity at ∅ (Billingsley, 1995, Example 2.10), which we do so below.

Let An ↓ ∅ where An ∈ F T
0 , we need to show that P0(An) ↓ 0 to show P0 is countably additive.

Suppose to the contrary that P0(An)��↓0, then there exists some ϵ > 0 such that P0(An) > ϵ for all n. This
means that An ̸= ∅ for all n. We now set up to invoke Cantor’s intersection theorem. Equip Ω with the
discrete topology, then ΩT is compact by the Tychonoff theorem (Munkres, 2000, Ch. 37). Then {An}
where An ∈ F T

0 form a nested sequence of nonempty compact sets. Each An is also closed since it’s a
finite intersection of closed sets (F T

0 contains only finite-index sets). Since closed subsets of compact
space is compact, each An is also compact in the product discrete topology of ΩT . By Cantor’s intersection
theorem,

⋂
nAn ̸= ∅, contradicting our earlier assumption that P0(An)��↓0. Hence, P0(An) ↓ 0.

Extension. So far, we have shown that P0 is a probability pre-measure over (ΩT ,F T
0 ), which generates

F T . The claim then follows from Carathéodory’s Extension theorem, which includes uniqueness (by
Dynkin’s π-λ theorem).

D Stopping Time Proofs

Proposition D.1. The N ∪ {∞}-valued random variable τEOS defined as

τEOS
def
= inf{t : Xt = EOS}, (8)

is a stopping time.

Proof. To show τEOS is a stopping time is to show that {τEOS = t} ∈ Ft for all t ∈ N. By definition,

{τEOS = t} =
{
inf{t′ : Xt′ = EOS} = t

}
(39)

= {X1 ̸= EOS ∧ · · · ∧Xt−1 ̸= EOS ∧Xt = EOS} (40)

= {X1 ̸= EOS} ∩ · · · ∩ {Xt−1 ̸= EOS} ∩ {Xt = EOS} (41)

= X−1
1 (Σ)︸ ︷︷ ︸
∈F1

∩ · · · ∩X−1
t−1(Σ)︸ ︷︷ ︸
∈Ft−1

∩X−1
t ({EOS})︸ ︷︷ ︸

∈Ft

({Xt} is adapted) (42)

∈ Ft (F1 ⊆ F2 ⊆ · · · ) (43)

which concludes the proof.

Proposition D.2. Let At = {τEOS ≤ t}, then {At i.o.} = {τEOS < ∞}.

Proof.

{At i.o.} =
∞⋂

m=1

∞⋃

t≥m

At =
∞⋂

m=1

∞⋃

t≥m

{τEOS ≤ t} =
∞⋂

m=1

{τEOS < ∞} = {τEOS < ∞} (44)

E Tightness Proofs

Corollary 3.5 (Theorem 4.7 in Du et al., 2023). A language process is tight if and only if st = 1 for some
t or

∑
t st = ∞, where st is defined as

st
def
= P (τEOS ≤ t | τEOS > t− 1) (14)

=

∑
ω∈Σt−1 p(EOS | x)p(x)∑

ω∈Σt−1 p(x)
. (15)

14See, e.g., (Billingsley, 1995, §2, Sec. Probability Measures), who refers to a pre-measure as “a probability measure on a
field (algebra)”.
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That is, st is the probability that a prefix of length t− 1 that does not contain EOS will be immediately
followed by EOS.

Proof. As mentioned in §3.2, we define

Gt = σ({A1, . . . , At}). (45)

Then, apply Theorem 3.4 to {Gt} implies that

{τEOS < ∞} a.s.
=

{ ∞∑

t=1

P (At | Gt−1) = ∞
}
. (46)

To unpack this, we need to compute the quantity P (At | Gt−1) next. Since Gt’s are finitely generated, we
can use the finite case of evaluating the Kolmogorov conditionals (Billingsley, 1995, Sec. 33). Notice that,
At = {τEOS ≤ t} ⊆ {τEOS ≤ t+ 1} = At+1, so we have

A1 ⊆ A2 ⊆ A3 ⊆ · · · . (47)

This means that, if ω is in any of A1, . . . , At−1, then ω ∈ At and hence P (At | Gt−1)(ω) = 1. Hence, we
only need to consider the case where ω isn’t in any of A1, . . . , At−1, i.e., ω ∈ Ac

1 ∩ · · · ∩Ac
t−1 = Ac

t−1.
For ω ∈ Ac

t−1, we have

P (At | Gt−1)(ω) = P (At | Ac
t−1) = P (t ≤ t | τEOS > t− 1) (48)

=
P (τEOS ≤ t ∧ τEOS > t− 1)

P (τEOS > t− 1)

(
=

P (τEOS = t)

P (τEOS > t− 1)

)
(49)

=

∑
ω∈Σt−1 p(EOS | ω)p(ω)∑

ω∈Σt−1 p(ω)

def
= st. (50)

To summarize,

P (At | Gt−1)(ω) =

{
st ω ∈ Ac

t−1

1 otherwise
. (51)

We now use what we have calculated so far to prove the result.

(⇐). If st = 1, then P (τEOS ≤ t) = 1, hence P (τEOS < ∞) = 1. If
∑

t st = ∞, then, for all ω,

∞∑

t=1

P (At | Ac
t−1)(ω) ≥

∞∑

t=1

st = ∞. (52)

By Theorem 3.4, {τEOS < ∞} = Ω and hence P (τEOS < ∞) = P (Ω) = 1.

(⇒). Assume P (τEOS < ∞) = 1. If st = 1 for any t, then the result is true. So we assume st < 1 for
all t. Assume to the contrary that

∑
t st < ∞, then there exists m such that

∑
t≥m st < 1. Then,

P (τEOS = ∞) = P (τEOS > m ∧ τEOS > m+ 1 ∧ . . . ) (53)

= P (Ac
m ∩Ac

m+1 ∩ · · · ) (54)

= P (Ac
m+1 | Ac

m)P (Ac
m+2 | Ac

m+1) · · · (continuity of measure) (55)

≥ 1−
∑

t≥m

P (At+1 | Ac
t) (See footnote15) (56)

= 1−
∑

t≥m

st > 0 (57)

which contradicts our hypothesis that P (τEOS < ∞) = 1 since P (τEOS < ∞) = 1− P (τEOS = ∞).
15This is an abstract application of the union bound (aka sub-additivity). Abstractly, this is saying the fact of

∏
t pt ≥

1 −∑
t(1 − pt). If we imagine a sequence of independent events Et each with probability P (Et) = 1 − pt, then

∏
t pt =

P (
⋂

t E
c
t ) = 1− P (

⋃
t Et) ≥ 1−∑

t P (Et) = 1−∑
t(1− pt).
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Corollary 3.6 (Proposition 4.3 in Du et al., 2023). If p(EOS | x) ≥ f(t) for all t ≥ 1, x ∈ Σt−1, and∑∞
t=1 f(t) = ∞, then the language process induced by p is tight.

Proof. If p(EOS | t) ≥ f(t), then st ≥ f(t) for all t. This means that
∑

t st ≥ ∑
t f(t) = ∞. By

Cor. 3.5, the language process is tight.
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