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MotivationMotivation

• Motivation: 
• Develop NLP tools/applications for resource-poor 

languages

• Resource-poor languages
• Lack annotated data (lexicon, treebank, labeled text)
• Examples: Arabic dialects, languages of India, China 

• Current supervised NLP methods are not adequate 
for resource-poor languages
• Too much reliance on availability of annotated data
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This workThis work

• Learning a POS lexicon for dialectal Arabic (a 
resource-poor language)

• Why POS lexicon?
• Essential resource in unsupervised tagging
• POS tagging is first step to many NLP systems

Bank: NN VB
Market: NN VB

Sale: NN
Of: PP
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ContributionsContributions

1. Problem formulation: Lexicon acquisition as 
transductive learning

2. Comparison of 3 transductive learning algorithms
• Transductive SVM
• Spectral Graph Transducer
• Transductive Clustering

3. Demonstrate tagging improvement in dialectal 
Arabic 
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Why is the lexicon important in 
unsupervised tagging?

Why is the lexicon important in 
unsupervised tagging?

• HMM tagger

• EM: Adjust parameters to maximize likelihood on raw text 
(many local optima)

• Lexicon adds knowledge to p(wordi|tagi), p(tagi|tagi-1)
• E.g.

• These zero probabilities add hard constraints and biases 
EM to avoid certain solutions

p(word1:N ,tag1:N ) = p(wordi | tagi )p(tagi | tagi−1)
i=1

N

∏

P(Bank|RB) = 0
P(Bank|PP) = 0
P(Bank|ADJ) = 0, …

Bank: NN VB
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Difference between good and bad 
lexicons is drastic

Difference between good and bad 
lexicons is drastic

• A good lexicon:
• Reduces parameter space, 
• Guides EM to better predictive distributions

• A poor lexicon:
• May never hypothesize correct tag
• May result in bad local optimum for EM

• English WSJ Results[Banko&Moore’04][Wang&Schuurmans’05]

• If lexicon doesn’t filter low frequency tags, unsupervised 
tagger accuracy decreases from 96% to 77%

Bank: NN VB

Bank: NN

Bank: NN VB RB
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OutlineOutline

1. Motivation & Importance of Lexicon in 
Unsupervised Tagging

2. Lexicon Learning
a) Problem Formulation
b) 3 Transductive Learning Algorithms

3. Experiments in Dialectal Arabic
4. Conclusions



Lexicon Acquisition using Transductive Learning 7

Lexicon Learning: 
Problem Formulation

Lexicon Learning: 
Problem Formulation

• How does one build a lexicon? 
1. Ask an expert to label all words, or collect labels from 

POS-annotated text (Resource-intensive!)
2. Ask an expert to label some words, use machine learning 

to learn the rest (Scalable to amount of effort)

{Xm}: labeled/training set

{Xu}: unlabeled/test set

Task: Given {Xm}, predict labels of {Xu} with low error

Bank: NN VB
Sale: NN

Market: NN VB
Of: NN

m { Bank: NN VB
Sale: NN
Market: ?

Of: ?
u {
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Lexicon learning is a 
transductive learning problem

Lexicon learning is a 
transductive learning problem

Test set is revealed in the 
future

Test set is available & 
fixed

Suitable 
Problems

Training set: 
(labeled,unlabeled,both) 
(supervised,un-/semi-supervised)

1. Labeled training set
2. Unlabeled test set

Resource

Learn a function to label 
any future test set

Label the test set, given 
during learning

Goal

Inductive LearningTransductive Learning

m { Bank: NN VB
Sale: NN
Market: ?

Of: ?
u {

Transductive learning
= take-home exam

Inductive learning 
= in-class exam
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Next up: 
3 Transductive Learning Algorithms

Next up: 
3 Transductive Learning Algorithms

1. Transductive Clustering

2. Transductive SVM
3. Spectral Graph Transducers
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A simple transductive algorithmA simple transductive algorithm
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ADJ
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• Assumption: Samples close together have the same label
• Corollary: Only 1 label is needed for all samples that form a cluster

• Basic algorithm: 
1. Cluster all data
2. Label test samples with majority (plurality) label of cluster
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A simple transductive algorithmA simple transductive algorithm

• Issue: How to decide the number of clusters?

NN
ADJ

NN

VB VB
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(NN,VB)
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Error boundError bound

• Solution: Use an error bound to choose # of 
clusters (different hypotheses)

• [Derbeko et. al., JAIR’04] proved a bound for 
transductive learning:
• With probability         , a hypothesis h has bound:

Rh (Xu ) ≤ R̂h (Xm ) +
m + u

u






u + 1

u






ln(1 p(h)) + ln(1 δ )

2m






1− δ

Test 
Risk

Empirical 
Risk

m: # labeled samples
u: # unlabeled samples

Prior probability 
of hypothesis h

A good hypothesis has low Empirical Risk and high Prior
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Transductive Clustering [El-Yaniv, 2005]Transductive Clustering [El-Yaniv, 2005]
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Rh2(Xu ) ≤ 0.43

Rh4(Xu ) ≤ 0.32

Rh3(Xu ) ≤ 0.25

Hypothesis: 2 clusters

Hypothesis: 3 clusters

Hypothesis: 4 clusters

Idea: Try all clusterings; pick the one with lowest bound



Lexicon Acquisition using Transductive Learning 14

Transductive Clustering: 
Pros & Cons

Transductive Clustering: 
Pros & Cons

• Pros:
• Theoretical guarantees
• Easy to implement
• Modular: 

• Use different clustering algorithms as input

• No hyper-parameters - no tuning required

• Cons:
• Accuracy is very dependent on cluster quality 

• But clustering may not be optimized for discrimination

• Bound may be loose in large multi-class problems
• A loose bound does not correlate well with test risk

Rh (Xu ) ≤ R̂h (Xm ) +
m + u

u






u + 1

u






ln(1 p(h)) + ln(1 δ )

2m





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Transductive Support Vector Machines 
(TSVM) [Joachims, 1999]

Transductive Support Vector Machines 
(TSVM) [Joachims, 1999]
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TSVM: maximize margin
between all samples

Inductive 
SVM (ISVM)
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Spectral Graph Transducer (SGT) 
[Joachims, 2003]

Spectral Graph Transducer (SGT) 
[Joachims, 2003]
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SGT cut
Objective: 
Minimize graph cut 
subject to constraints that labeled sample be in same cluster 

Begin with a data graph that encode similarities between samples
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OutlineOutline

1. Motivation & Importance of Lexicon in 
Unsupervised Tagging

2. Lexicon Learning
a) Problem Formulation
b) 3 Transductive Learning Algorithms

3. Experiments in Dialectal Arabic
1. Available Resources
2. Experimental Setup
3. Results

4. Conclusions
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Dialectal Arabic and 
Available Resources
Dialectal Arabic and 
Available Resources

Modern 
Standard 

Arabic (MSA)

Egyptian 
Arabic

North 
African 
Arabic

Gulf Arabic Levantine 
Arabic

Spoken dialects: Everyday use Written, formal use

Levantine raw text (LDC CallHome)
- train unsupervised tagger
- wordlist for lexicon

MSA Morphological Analyzer
(by Buckwalter, LDC)
- labels some Levantine words



Lexicon Acquisition using Transductive Learning 19

Experimental SetupExperimental Setup

Raw
Text

Bank: NN VB
Sale: NN
Market: ?

Of: ?

Partial Lexicon

1. Apply 
Analyzer Bank: NN VB

Sale: NN
Market: NN VB

Of: NN

Full Lexicon

2. Transductive
Learning

HMM Tagger

3. EM Training
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(Step 2) Lexicon Learning: 
Data & Features

(Step 2) Lexicon Learning: 
Data & Features

• Data:
• 23% of lexicon are unlabeled (4k of 16k words) 
• 20 tags in tagset, but ~200 labels (compound “NN-VB”)

• Features (~17k features for each word):
• Orthographic: matching prefix/suffix
• Contextual (counts from raw text): 

• Word bigram, POS bigram (if available)

• All algorithms use same feature set

Bank: NN VB
Sale: NN

Market: NN VB
Of: NN

Full Lexicon

Transductive
LearningBank: NN VB

Sale: NN
Market: ?

Of: ?
Partial Lexicon
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Results using taggers trained with 
different lexicons

Results using taggers trained with 
different lexicons

Tag AccuracyMethod for acquiring lexicon
Test set:
15k tokens 
POS-annotated
(Levantine Arabic 
CTS Treebank)

Baseline (All Tags) 55.6%

Baseline (Open Class) 57.4%

Spectral Graph Transducer 59.7%

Inductive SVM 61.5%

Transductive Clustering 62.9%

Transductive SVM 63.5%

1. All machine-learned lexicons outperform baseline
2. Transductive Clustering & TSVM perform best: 

- both are transductive and have few hyperparameters
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ConclusionsConclusions

1. Lexicon acquisition as transductive learning 
2. Compared 3 transductive algorithms

• TSVM, SGT, Transductive Clustering

3. Results on Dialectal Arabic:
• Using a machine-learned lexicon improves tagger

accuracy (6% over baseline)
• TSVM and Tranductive Clustering perform best

• Future Work:
• Dealing with noisy expert labels
• Improved Transductive Clustering

• Semi-supervised clustering using labeled data
• Error Bound for F-measure and other metrics
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Thanks! Thanks! 

• Questions?
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Comparison of LexiconsComparison of Lexicons

• 15k words in lexicon occur in Test Set
• Collect “oracle” POS for these words as reference
• Compute precision/recall of learned-lexicon

5.1798.553.3All tags

3.3996.754.0Open class

1.8782.654.0SGT

1.8788.458.1ISVM

1.8087.959.2TC

1.8988.858.1TSVM

POS sizeRecallPrecisionMethod



Lexicon Acquisition using Transductive Learning 25

Error Propagation: Preliminary Evaluation Error Propagation: Preliminary Evaluation 

• Fix errors from (Step 1) Morphological analysis
• Use “oracle” labels collected from Dev Set
• 1500 of labeled words occur in Dev Set
• Repair 1000 words

63.5NN

64.9NY

66.7YN

66.5YY

Tag 
Acc.
(TSVM)

Repair 
lexicon

Repair 
training 
data

Bank: NN VB
Sale: NN

Market: NN VB
Of: NN

Full Lexicon

Transductive
LearningBank: NN VB

Sale: NN
Market: ?

Of: ?
Partial Lexicon
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Comparisons: when more resources 
are available

Comparisons: when more resources 
are available

• Unsupervised training, full expert lexicon
• Collect “oracle” lexicon from Dev Set

• Supervised training (on Dev Set)

NOTE:
- TSVM results use

Train Set, not Dev Set


