# Lexicon Acquisition for Dialectal Arabic using Transductive Learning

Kevin Duh and Katrin Kirchhoff
University of Washington



#### **Motivation**

- Motivation:
  - Develop NLP tools/applications for resource-poor languages
- Resource-poor languages
  - Lack annotated data (lexicon, treebank, labeled text)
  - Examples: Arabic dialects, languages of India, China
- Current supervised NLP methods are not adequate for resource-poor languages
  - Too much reliance on availability of annotated data



#### This work

Learning a POS lexicon for dialectal Arabic (a resource-poor language)

Bank: NN VB

Market: NN VB

Sale: NN

Of: PP

- Why POS lexicon?
  - Essential resource in unsupervised tagging
  - POS tagging is first step to many NLP systems



#### Contributions

- Problem formulation: Lexicon acquisition as transductive learning
- 2. Comparison of 3 transductive learning algorithms
  - Transductive SVM
  - Spectral Graph Transducer
  - Transductive Clustering
- Demonstrate tagging improvement in dialectal Arabic



## Why is the lexicon important in unsupervised tagging?

HMM tagger

$$p(word_{1:N}, tag_{1:N}) = \prod_{i=1}^{N} p(word_i \mid tag_i) p(tag_i \mid tag_{i-1})$$

- EM: Adjust parameters to maximize likelihood on raw text (many local optima)
- Lexicon adds knowledge to p(word<sub>i</sub>|tag<sub>i</sub>), p(tag<sub>i</sub>|tag<sub>i-1</sub>)



 These zero probabilities add hard constraints and biases EM to avoid certain solutions

## Difference between good and bad lexicons is drastic

- A good lexicon:
  - Reduces parameter space,
  - Guides EM to better predictive distributions

Bank: NN VB

- A poor lexicon:
  - May never hypothesize correct tag
  - May result in bad local optimum for EM

Bank: NN

Bank: NN VB RB

- English WSJ Results[Banko&Moore'04][Wang&Schuurmans'05]
  - If lexicon doesn't filter low frequency tags, unsupervised tagger accuracy decreases from <u>96% to 77%</u>



#### **Outline**

- Motivation & Importance of Lexicon in Unsupervised Tagging
- 2. Lexicon Learning
  - a) Problem Formulation
  - b) 3 Transductive Learning Algorithms
- 3. Experiments in Dialectal Arabic
- 4. Conclusions



## Lexicon Learning: Problem Formulation

- How does one build a lexicon?
  - 1. Ask an expert to label all words, or collect labels from POS-annotated text (Resource-intensive!)
  - Ask an expert to label some words, use machine learning to learn the rest (Scalable to amount of effort)



Task: Given {X<sub>m</sub>}, predict labels of {X<sub>II</sub>} with low error



Lexicon learning is a transductive learning problem

|                      | Transductive Learning                                                | Inductive Learning                                                      |
|----------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------|
| Goal                 | Label the test set, given during learning                            | Learn a function to label any future test set                           |
| Resource             | <ol> <li>Labeled training set</li> <li>Unlabeled test set</li> </ol> | Training set: (labeled,unlabeled,both) (supervised,un-/semi-supervised) |
| Suitable<br>Problems | Test set is available & fixed                                        | Test set is revealed in the future                                      |

Transductive learning = take-home exam



Inductive learning = in-class exam

m {

u {

Bank: NN VB

Sale: NN

Market: ?

Of: ?



### Next up:

### 3 Transductive Learning Algorithms

- 1. Transductive Clustering
- 2. Transductive SVM
- 3. Spectral Graph Transducers



### A simple transductive algorithm

- Assumption: Samples close together have the same label
  - Corollary: Only 1 label is needed for all samples that form a cluster
- Basic algorithm:
  - 1. Cluster all data
  - 2. Label test samples with majority (plurality) label of cluster





### A simple transductive algorithm

Issue: How to decide the number of clusters?





#### Error bound

- Solution: Use an error bound to choose # of clusters (different hypotheses)
- [Derbeko et. al., JAIR'04] proved a bound for transductive learning:
  - With probability  $1 \delta$ , a <u>hypothesis h</u> has bound:

$$R_h(X_u) \le \hat{R}_h(X_m) + \sqrt{\left(\frac{m+u}{u}\right)\left(\frac{u+1}{u}\right)\left(\frac{\ln(1/p(h)) + \ln(1/\delta)}{2m}\right)}$$
Test Empirical m: # labeled samples Prior probability Risk Risk u: # unlabeled samples of hypothesis h
A good hypothesis has low Empirical Risk and high Prior

### Transductive Clustering [EI-Yaniv, 2005]

Idea: Try all clusterings; pick the one with lowest bound



Hypothesis: 2 clusters

$$R_{h2}(X_u) \le 0.43$$



Hypothesis: 3 clusters

$$R_{h3}(X_u) \le 0.25$$



Hypothesis: 4 clusters

$$R_{h4}(X_u) \le 0.32$$



## Transductive Clustering: Pros & Cons

#### Pros:

- Theoretical guarantees
- Easy to implement
- Modular:
  - Use different clustering algorithms as input
- No hyper-parameters no tuning required

#### Cons:

- Accuracy is very dependent on cluster quality
  - But clustering may not be optimized for discrimination
- Bound may be loose in large multi-class problems
  - A loose bound does not correlate well with test risk

$$R_h(X_u) \le \hat{R}_h(X_m) + \sqrt{\left(\frac{m+u}{u}\right) \left(\frac{u+1}{u}\right) \left(\frac{\ln(1/p(h)) + \ln(1/\delta)}{2m}\right)}$$



## Transductive Support Vector Machines (TSVM) [Joachims, 1999]

Inductive TSVM: maximize margin SVM (ISVM) between all samples



## Spectral Graph Transducer (SGT)

[Joachims, 2003]

Begin with a data graph that encode similarities between samples



Objective: Minimize graph cut

subject to constraints that labeled sample be in same cluster



#### **Outline**

- Motivation & Importance of Lexicon in Unsupervised Tagging
- 2. Lexicon Learning
  - a) Problem Formulation
  - b) 3 Transductive Learning Algorithms
- 3. Experiments in Dialectal Arabic
  - 1. Available Resources
  - 2. Experimental Setup
  - 3. Results
- 4. Conclusions



## Dialectal Arabic and Available Resources

Spoken dialects: Everyday use



Written, formal use

Modern Standard Arabic (MSA)

Levantine raw text (LDC CallHome)

- train unsupervised tagger
- wordlist for lexicon

MSA Morphological Analyzer (by Buckwalter, LDC)

- labels some Levantine words



### **Experimental Setup**





## (Step 2) Lexicon Learning: Data & Features



- Data:
  - 23% of lexicon are unlabeled (4k of 16k words)
  - 20 tags in tagset, but ~200 labels (compound "NN-VB")
- Features (~17k features for each word):
  - Orthographic: matching prefix/suffix
  - Contextual (counts from raw text):
    - Word bigram, POS bigram (if available)
  - All algorithms use same feature set



## Results using taggers trained with different lexicons

| Method for acquiring lexicon | Tag Accuracy |  |
|------------------------------|--------------|--|
| Baseline (All Tags)          | 55.6%        |  |
| Baseline (Open Class)        | 57.4%        |  |
| Spectral Graph Transducer    | 59.7%        |  |
| Inductive SVM                | 61.5%        |  |
| Transductive Clustering      | 62.9%        |  |
| Transductive SVM             | 63.5%        |  |

Test set:
15k tokens
POS-annotated
(Levantine Arabic
CTS Treebank)

- 1. All machine-learned lexicons outperform baseline
- 2. Transductive Clustering & TSVM perform best:
  - both are transductive and have few hyperparameters



#### Conclusions

- 1. Lexicon acquisition as transductive learning
- 2. Compared 3 transductive algorithms
  - TSVM, SGT, Transductive Clustering
- 3. Results on Dialectal Arabic:
  - Using a machine-learned lexicon improves tagger accuracy (6% over baseline)
  - TSVM and Tranductive Clustering perform best
- Future Work:
  - Dealing with noisy expert labels
  - Improved Transductive Clustering
    - Semi-supervised clustering using labeled data
    - Error Bound for F-measure and other metrics



### Thanks!

• Questions?



### Comparison of Lexicons

- 15k words in lexicon occur in Test Set
  - Collect "oracle" POS for these words as reference
  - Compute precision/recall of learned-lexicon

| Method     | Precision | Recall | POS size |
|------------|-----------|--------|----------|
| TSVM       | 58.1      | 88.8   | 1.89     |
| TC         | 59.2      | 87.9   | 1.80     |
| ISVM       | 58.1      | 88.4   | 1.87     |
| SGT        | 54.0      | 82.6   | 1.87     |
| Open class | 54.0      | 96.7   | 3.39     |
| All tags   | 53.3      | 98.5   | 5.17     |



### Error Propagation: Preliminary Evaluation

- Fix errors from (Step 1) Morphological analysis
  - Use "oracle" labels collected from Dev Set
  - 1500 of labeled words occur in Dev Set





**Partial Lexicon** 

**Full Lexicon** 

## Comparisons: when more resources are available

- Unsupervised training, full expert lexicon
  - Collect "oracle" lexicon from Dev Set
- Supervised training (on Dev Set)



#### **NOTE:**

TSVM results use
 Train Set, not Dev Set

