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Abstract higher. This shows that hypothesis features are ei-

ther not discriminative enough, or that the reranking
Current re-ranking algorithms for machine model is too weak
translation rely on log-linear models, which This performance gap can be mainly attributed to
have the potential problem of underfitting the -, hrohlems: optimization error and modeling er-
training data. We presemfoostedMERT, a :

ror (see Figure 13. Much work has focused on de-

novel boosting algorithm that uses Minimum ) : Lo
Error Rate Training (MERT) as a weak learner veloping better algorithms to tackle the optimization

and builds a re-ranker far more expressive than ~ Problem (e.g. MERT (Och, 2003)), since MT eval-
log-linear models. BoostedMERT is easy to uation metrics such as BLEU and PER are riddled

implement, inherits the efficient optimization with local minima and are difficult to differentiate
properties of MERT, and can quickly boostthe  with respect to re-ranker parameters. These opti-
BLEU score on N-best re-ranking tasks. In  yjzation algorithms are based on the popular log-

this paper, we dgsprlbe the general algorithm linear model, which chooses the English translation
and present preliminary results on the IWSLT .
e of a foreign sentencg by the rule:

2007 Arabic-English task. P
arg max. p(e|f) = argmaxe Y ;. \pdr(e, f)

_ where ¢i(e, f) and )\, are the K features and
1 Introduction weights, respectively, and the argmax is over all hy-

N-best list re-ranking is an important component irpotheses in the N-best list.

many complex natural language processing applica-We believe that standard algorithms such as
tions (e.g. machine translation, speech recognitioff] ERT already achieve low optimization error (this

parsing). Re-ranking the N-best lists generated frofi based on experience where many random re-starts

a 1st-pass decoder can be an effective approach t?é—MERT give little gains); instead the score gap is

cause (a) additional knowledge (features) can be iﬁrjainly due to modeling errors. $tandard MT sys-
corporated, and (b) the search space is smaller (i.ttg.ms use a small SEt_Of features (E‘é?f 10) based
choose 1 out of N hypotheses). on language/translation modélsLog-linear mod-

Despite these theoretical advantages, we have &J-S on such fevy features are simply not expressive
enough to achieve the oracle score, regardless of

ten observed little gains in re-ranking machine tran% i th ot ) timized
lation (MT) N-best lists in practice. It has often ow well the weights{ A } are optimized.
been observgd that N-best list rescoirlng onIy erI !Note that we are focusing on closing the gap to the oracle
a moderate 'mprov_em_ent over the first-pass outputore on the training set (or the development set); if we were
although the potential improvement as measured Bycusing on the test set, there would be an additional term, the

the oracle-best hypothesis for each sentence is mug¢neralization error.
2In this work, we do not consider systems which utilize a

Work supported by an NSF Graduate Research Fellowshitarge smorgasbord of features, e.g. (Och and others, 2004).



BLEU=.56, achieved by

cclocting oradle hypotheses each boosting iteratioty MERT is called as as sub-
procedure to find the best feature weightson d;.
e nsuficiont? The sample weight for an N-best list is increased if
the currently selected hypothesis is far from the ora-
cle score, and decreased otherwise. Here, the oracle

I Qptimiationprovler: hypothesis for each N-best list is defined as the hy-

£ 40, acionetty pothesis with the best sentence-level BLEU. The fi-

re-ranking with MERT nal ranker is a combination of (weak) MERT ranker
outputs.

Figure 1: Both modeling and optimization problems in- . .
crease the (training set) BLEU score gap between MERT Algorithm 1 presents more detalled pseudocode.

re-ranking and oracle hypotheses. We believe that the’® US€ the fo!lqwing notati.on:i Lefx;} represent
modeling problem is more serious for log-linear model$he set of/ training N-bestlistsj = 1... M. Each
of around 10 features and focus on it in this work. N-best listx; containsN feature vectors (foV hy-

potheses). Each feature vector is of dimension
To truly achieve the benefits of re-ranking in MT’whlch is the same dimension as the number of fea-

one must go beyond the log-linear model. The relure weights\ obtained by MERT. Le{b;} be the

ranker should not be a mere dot product operatiofict Of BLEU statistics for each hypothesis{is; },

but a more dynamic and complex decision make\fthCh is used to train MERT or to compute BLEU

that exploits the structure of the N-best re—rankin&Cores for each hypothesis or oracle.

problem. :
We presenBoostedMERT, a general framework A!g0rithm 1 BoostedMERT

for learning such complex re-rankers using standaf@Put: N-best lists{x; }, BLEU scores{b; }

MERT as a building block. BoostedMERT is easy tdnput: Initialize sample distributiod; uniformly

implement, inherits MERT’s efficient optimization INPut: Initialize y° = (0], a constant zero vector

procedure, and more effectively boosts the trainin@utput: Overall Ranker: f

score. We describe the algorithm in Section 2, repofgr + — 1 to 7" do

experiment results in Section 3, and end with relatedy.  Weak ranker:\* = MERT({x;},{b; },d;)

work and future directions (Sections 4, 5). 3:

4 if(t>2): {y71} =PRED(f" !, {x;})

2 BoostedMERT 5 (it} = PR‘I{ED(XE{xi}) {xi}

The idea for BoostedMERT follows the boosting 6: o' = MERT([y"~';4],{b;})

philosophy of combining several weak classifiers7: ~ Overall ranker:f* = y'~1 + afy!

to create a strong overall classifier (Schapire and®:

Singer, 1999). In the classification case, boosting?: for i = 1to M do

maintains a distribution over each training sample10: a; = [BLEU of hypothesis selected bf/]
the distribution is increased for samples that are in- divided by [BLEU of oracle hypothesis]
correctly classified and decreased otherwise. In eadh: d; = exp(—a;)/normalizer

boosting iteration, a weak learner is trained to opti12: ~ end for

mize on the weighted sample distribution, atte#dptend for

ing to correct the mistakes made in the previous iter-

ation. The final classifier is a weighted combinatiorgPPlied on MT, RankBoost would maintain a weight for each

of weak learners. This simple procedure is ver eiQair of hypotheses and would optimize a pairwise ranking met-
’ pie p y ric, which is quite dissimilar to BLEU.

fective in reducing training and generalization error. 4thjs is done by scaling each BLEU statistic, €.g. n-gram
In BoostedMERT, we maintain a sample distribuprecision, reference length, by the appropriate sample weights
tion d;,i = 1...M over theM N-best lists®> In before computing corpus-level BLEU. Alternatively, one could
sample (with replacement) the N-best lists using the distribu-
3As such, it differs from RankBoost, a boosting-based ranktion and use the resulting stochastic sample as input to an un-
ing algorithm in information retrieval (Freund et al., 2003). If modified MERT procedure.




The pseudocode can be divided into 3 sections: of Lines 9-11 is recursive in the classification
case (i.e. d; = d; * exp(LossOfWeakLearner)),
%ut due to the non-decompositional properties of
frg max in re-ranking, we have a non-recursive
equation based on the overall learnef; (=
exp(LossOfOverallLearner)). This has deep impli-
2. Lines 4-7 create an overall ranker by combineations on the dynamics of boosting, e.g. the distri-

ing the outputs of the previous overall rankebution may stay constant in the non-recursive equa-

ft=1 and current weak rankex. PRED is a tion, if the new weak ranker gets a small

general function that takes a ranker and/a

N-best lists and generates a setidf N-dim

output vectory representing the predicted re-3 Experiments

ciprocal rank. Specifically, suppose a 3-best list

and a ranker predicts ranks (1,3,2) for the 1Stpe experiments are done on the IWSLT 2007
2nd, and 3rd hypotheses, respectively. TheRrapic.to-English task (clean text condition). We
y=(U1,1/3,1/2) = (1,03,0.9). used a standard phrase-based statistical MT system
Finally, using a 1-dimensional MERT, the (Kirchhoff and Yang, 2007) to generated N-best lists
scalar parametex! is optimized by maximiz- (N=2000) onDevelopment4 , Development5
ing the BLEU of the hypothesis chosen byand Evaluation  sub-sets. Development4 s
y!~T+alyt. Thisis analogous to the line searchused as the Train set; N-best lists that have the same
step in boosting for classification (Mason et al.sentence-level BLEU statistics for all hypotheses are
2000). filtered since they are not important in impacting
_ o training. Development5 is used as Dev set (in

3. Lines 9-11 update the sample distributian o icylar, for selecting the number of iterations in

such that N-best lists with low accuracies boosting), andEvaluation  (Eval) is the blind

are given higher emphasis in the next iterationyaiaset for final ranker comparison. Nine features
The per-list accuracy; is defined as the ratio of ;.0 \;sed in re-ranking.

selected vs. oracle BLEU, but other measures )
are possible: e.g. ratio of ranks, difference of W& compare MERT vs. BoostedMERT. MERT is

BLEU. randomly re-started 30 times, and BoostedMERT is

run for 30 iterations, which makes for a relatively

The final classifief " can be seen as a voting pro-fajr comparison. MERT usually does not improve
cedure among multiple log-linear models generategs Train BLEU score, even with many random re-
by MERT. The weighted vote for hypotheses in artarts (again, this suggests that optimization error
N-best listx; is represented by the N-dimensionalgs |ow). Table 1 shows the results, with Boosted-

o T t,t _ T t t <. .

vector g = >, o'y’ = >, o' PREDQ',x;i). MERT outperforming MERT 42.0 vs. 41.2 BLEU
We choose the hypothesis with the maximum valugn Eval. BoostedMERT has the potential to achieve

ing 43.7 BLEU, if a better method for selecting optimal
Finally, we stress that the above algorithmterations can be devised.

is an novel extension of boosting to re-ranking . .
problems.  There are many open questions a OIIt should be noted that the Train scores achieved

one can not always find a direct analog betwee y both MERT and BoostedMERT is still far from

boosting for classification and boosting for rank-the oracle (around 56). We found empirically that

. . o tedMERT is somewhat sensitive to the siB (
ing. For instance, the distribution update schem%OOS . .

97 P of the Train set. For small Train sets, BoostedMERT
There are other ways to define a ranking output that argan improve the training score quite drastically; for

worth exploring. For example, a hard argmax definition woul .
be (1,0,0); a probabilistic definition derived from the dot prod(ihe current Train set as well as other larger ones, the

uct values can also be used. It is the definition of PRED thdfProvement per iteration is much slower. We plan
introduces non-linearities in BoostedMERT. to investigate this in future work.

1. Line 2 finds the best log-linear feature weight
on distributiond;. MERT is invoked as a weak
learner, so this step is computationally efficien
for optimizing MT-specific metrics.



MERT | BOOST| A 5 Conclusions
Train, Best BLEU 40.3 41.0 | 0.7
Dev, Best BLEU 24.0 25.0 [ 1.0
Eval, Best BLEU 41.2 43.7 2.5
Eval, Selected BLEU 41.2 42.0 0.8

We argue that log-linear models often underfit the
training data in MT re-ranking, and that this is the
reason we observe a large gap between re-ranker and
oracle scores. Our solution, BoostedMERT, creates
Table 1: The first three rows show the BLEU score fo@ highly-expressive ranker by voting among multiple
Train, Dev, and Eval from 30 iterations of BoostedMERTMERT rankers.
or 30 random re-restarts of MERT. The last row shows Although BoostedMERT improves over MERT,
the actual BLEU on Eval when selecting the numbemore work at both the theoretical and algorithmic
of boosting iterations based on Dev. Last column injeye|s js needed to demonstrate even larger gains.
dicates absolute Improvements. BoostedMERT OUtPeEqy example, while standard boosting for classifica-
forms MERT by 0.8 points on Eval. . . . .

tion can exponentially reduce training error in the

number of iterations under mild assumptions, these
4 Related Work assumptions are frequently not satisfied in the algo-
apthm we described. We intend to further explore

Various methods are used to optimize log-line ! e id P N-best lists. drawing inspi
models in re-ranking (Shen et al., 2004; Venugopal ¢ 'Cca 01 oosting on W-best lis's, drawing inspi-

et al.,, 2005; Smith and Eisner, 2006). AIthougf{ation.s. fro_m the large body O.f work on boosting for

this line of work is worthwhile, we believe more classification whenever possible.

gain is possible if we go beyond log-linear models.
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