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MotivationMotivation

• Machine learning can be an effective solution for 
ranking problems in IR
• But success depends on quality and size of training data
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Problem StatementProblem Statement

Labeled
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Supervised 
Learning Algorithm

Ranking function f(x)

Labeled
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Semi-supervised 
Learning Algorithm

Ranking function f(x)

Can we build a better ranker by adding cheap, unlabeled data?
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OutlineOutline

1. Problem Definition
1. Ranking as a Supervised Learning Problem
2. Two kinds of Partially-labeled Data

2. Proposed Method
3. Results and Analysis

Problem Definition | Proposed Method | Result and Analysis
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Query: SIGIR

Query: Hotels in Singapore

Ranking as Supervised Learning ProblemRanking as Supervised Learning Problem
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Query: SIGIR
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Two kinds of Partially-Labeled DataTwo kinds of Partially-Labeled Data

1. Lack of labels for some documents (depth)

2. Lack of labels for some queries (breadth)
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This paper 
Truong+, ICMIST’06 

Some references:
Amini+, SIGIR’08
Agarwal, ICML’06
Wang+, MSRA TechRep’05
Zhou+, NIPS’04
He+, ACM Multimedia ‘04

Problem Definition | Proposed Method | Result and Analysis
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Focus of this work: 
Transductive Learning

Focus of this work: 
Transductive Learning

• Unlabeled data = Test data 

� Transductive Learning

• Main question: How can knowledge of the test list 
help our learning algorithm?
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Why transductive learning?Why transductive learning?
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Transductive learning:
Test data is fixed and observed during learning;
Arguably, transduction is easier than induction
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Inductive (semi-supervised) learning:
Need to generalize to new data

f(x)

Inductive learning
= closed-book exam

Transductive learning
= open-note exam
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OutlineOutline

1. Problem Definition

2. Proposed Method
1. Intuition
2. Details of proposed algorithm

3. Results and Analysis

Problem Definition | Proposed Method | Result and Analysis
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Thought Experiment: What information 
does unlabeled data provide?

Thought Experiment: What information 
does unlabeled data provide?

Query 1 & Documents
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Observation: 
Direction of variance differs according to query

Implication: Different feature representations 
are optimal for different queries

Problem Definition | Proposed Method | Result and Analysis
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Good results can be achieved by:
Ranking Query 1 by BM25 only
Ranking Query 2 by HITS only

Good results can be achieved by:
Ranking Query 1 by BM25 only
Ranking Query 2 by HITS only
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Proposed Method: Main IdeasProposed Method: Main Ideas

Main Assumptions: 
1. Different queries are best modeled by different features
2. Unlabeled data can help us discover this representation

Requires: 
- DISCOVER(): unsupervised method for finding useful features
- LEARN(): supervised method for learning to rank

For each Test List:
- Run DISCOVER() 
- Augment Feature Representation
- Run LEARN() and Predict

Two-Step Algorithm:

Problem Definition | Proposed Method | Result and Analysis



14

Proposed Method: IllustrationProposed Method: Illustration
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x: initial feature representation Unsupervised learning outputs
projection matrix A

z=A’x : new feature representation 
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Supervised learning 
of ranking function

predict
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DISCOVER( ) ComponentDISCOVER( ) Component

• Goal of DISCOVER( ):
Find useful patterns on the test list

• Principal Components Analysis (PCA)
• Discovers direction of maximum variance
• View low variance directions as noise

• Kernel PCA [Scholkopf+, Neural Computation 98]

• Non-linear extension to PCA via the Kernel Trick
1. Maps inputs non-linearly to high-dimensional space.
2. Performs PCA in that space

Problem Definition | Proposed Method | Result and Analysis
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Kernels for Kernel PCAKernels for Kernel PCA

)( ,,K x x x x′ =< ′ > ) exp( || ||)( ,K xx x xβ′ = − − ′

) (1( , ), dK xx x x′ = + < ′ >

Linear

Polynomial

Gaussian

Diffusion
Random walk 
between x, x’ on graph

( , )K x x′ =
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LEARN( ) ComponentLEARN( ) Component

• Goal of LEARN( ):
• Optimize some ranking metric on labeled data

• RankBoost [Freund+, JMLR 2003]

• Inherent Feature Selection
• Few parameters to tune

• Other supervised ranking methods are possible:
• RankNet, Rank SVM, ListNet, FRank, SoftRank, etc.

Problem Definition | Proposed Method | Result and Analysis
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Summary of Proposed MethodSummary of Proposed Method

• Relies on unlabeled test data to learn good feature 
representation

• “Adapts” the supervised learning process to each 
test list

• Caveats: 
• DISCOVER() may not always find features that are 

helpful for LEARN() 
• Run LEARN() at query time � Computational speedup is 

needed in practical application

Problem Definition | Proposed Method | Result and Analysis
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OutlineOutline

1. Problem Definition

2. Proposed Method
3. Results and Analysis

1. Experimental Setup
2. Main Results
3. Deeper analysis into where things worked and failed

Problem Definition | Proposed Method | Result and Analysis
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Experiment Setup (1/2)Experiment Setup (1/2)

• LETOR Dataset [Liu+, LR4IR 2007]: 

• Additional features generated by Kernel PCA:
• 5 kernels: Linear, Polynomial, Gaussian,  Diffusion 1, Diffusion 2
• Extract 5 principal components for each 

254444# of original features

15010001000Average # of documents/query

1067550# of queries

OHSUMEDTREC04TREC03

Problem Definition | Proposed Method | Result and Analysis
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Experiment Setup (2/2)Experiment Setup (2/2)

• Comparison of 3 systems:
• Baseline: Supervised RankBoost
• Transductive: Proposed method: 

Kernel PCA + Supervised RankBoost
• Combined: Average of Baseline, Transductive outputs

• Evaluation:
• Mean Averaged Precision (MAP)
• Normalized Discount Cumulative Gain (NDCG) � see the paper

( ) ( ) ( )) { ( ( )}( )i i i
baseline n transductive nf x sort f x f x= +

Problem Definition | Proposed Method | Result and Analysis
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Overall Results (MAP)Overall Results (MAP)
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1. Transductive outperforms Baseline 
2. Combined give extra improvements 

(2 datasets) 
� The rankers make complementary 
mistakes

Problem Definition | Proposed Method | Result and Analysis
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Did improvements come from Kernel PCA per se, 
or its transductive use?

Did improvements come from Kernel PCA per se, 
or its transductive use?
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Answer: Transductive use
- Running KPCA on the training set 

(traditional feature extraction) gives little gains
- Gains are a result of test-specific rankers

Problem Definition | Proposed Method | Result and Analysis
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Do results vary by query?Do results vary by query?

Answer: 
- Yes. For some queries, it is better
not to use the transductive method

TREC 2003. MAP by query

Transductive
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What kernels are most useful?What kernels are most useful?

Problem Definition | Proposed Method | Result and Analysis
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Original+Gaussian+Diffusion
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Original only

Answer:  There is a diversity of kernels that lead to good performance.
Different test list have different structure

1. Pick top 25 rankers where MAP
improved by over 20% (TREC04)

2. Plot histogram of the most 
important five features
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ConclusionConclusion

• Unlabeled data can be useful for ranking problems

• Two-step transductive algorithm:
• Adapts the supervised component using a feature 

representation that better models the test list

• Overall results are positive
• but results vary at the query-level

• Future work:
• Computational speed-up
• Different LEARN() and DISCOVER() components
• Other ways to exploit unlabeled data

Problem Definition | Proposed Method | Result and Analysis
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Thanks for your attention!Thanks for your attention!
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The time is ripe for Semi-supervised Ranking!The time is ripe for Semi-supervised Ranking!

• Both Semi-supervised Classification and Learning to Rank have 
become well-established sub-fields with many techniques
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Computation Time (OHSUMED)Computation Time (OHSUMED)

• On Intel x86-32 (3GHz CPU)
• Kernel PCA (Matlab/C-Mex): 4.3sec/query
• Rankboost (C++): 0.7sec/iteration
• Total time (Assuming 150 iterations): 109sec/query 

(233sec/query for TREC)

• Kernel PCA: O(n^3) for n documents
• Sparse KPCA: O(n)


