Learning to Rank with Partially-Labeled Data Kevin Duh University of Washington (Joint work with Katrin Kirchhoff) ## Motivation - Machine learning can be an effective solution for ranking problems in IR - But success depends on quality and size of training data ## Problem Statement Can we build a better ranker by adding cheap, unlabeled data? ## **Outline** - 1. Problem Definition - 1. Ranking as a Supervised Learning Problem - 2. Two kinds of Partially-labeled Data - 2. Proposed Method - 3. Results and Analysis ### Ranking as Supervised Learning Problem #### Query: SIGIR #### Labels #### ACM SIGIR Special Interest Group on Information Retrieval Home Page-[翻譯此頁] "Addresses issues ranging from theory to user demands in the application of computers to the acquisition, organization, storage, retrieval, and distribution ... www.sigir.org/ - 10k - 頁庫存檔 - 類似網頁 **3** $x_1^{(1)} = [tfidf, pagerank,...]$ #### SIGIR 2004-[翻譯此頁] The 27th Annual International ACM SIGIR Conference will be held at The University of Sheffield, UK, from July 25 to July 29, 2004. www.sigir.org/sigir2004/ - 9k - 頁庫存檔 - 類似網頁 1 $$x_2^{(1)} = [tfidf, pagerank,...]$$ #### Special Inspector General for Iraq Reconstruction: SIGIR Homepage-[翻譯此頁] Welcome to the Office of the Special Inspector General for Iraq Reconstruction (SIGIR), a temporary federal agency serving the American public as a watchdog ... www.sigir.mil/ - 20k - 頁庫存檔 - 類似網頁 **2** $$x_3^{(1)} = [tfidf, pagerank,...]$$ #### Query: Hotels in Singapore Singapore Hotels | All Hotels in Singapore Reservation Service ...- [翻譯此頁] Singapore Hotels - Provides you with complete reservation services for hotels and resorts in Singapore. Sorted according to Price, Location, Class, Name. hotels.online.com.sg/ - 31k - 頁庫存檔 - 類似網頁 The Fullerton Hotel Singapore: Weekend Promotion Get away for the weekend and bask in the luxury of The Fullerton Hotel Singapore. Relax in your elegant guest room or by the outdoor infinity pool, \dots www.fullertonhotel.com/en/promotions/WeekendSpecial.html - 18k - <u>頁庫存檔</u> - <u>類似網頁</u> 2 $$x_1^{(2)} = [tfidf, pagerank,...]$$ 1 $$x_2^{(2)} = [tfidf, pagerank,...]$$ ## Ranking as Supervised Learning Problem Query: SIGIR **3** $$x_1^{(1)} = [tfidf, pagerank,...]$$ 1 $$x_2^{(1)} = [tfidf, pagerank,...]$$ **2** $$x_3^{(1)} = [tfidf, pagerank,...]$$ Train f(x) such that: $$f(x_1^{(1)}) > f(x_3^{(1)}) > f(x_2^{(1)})$$ $$f(x_1^{(2)}) > f(x_2^{(2)})$$ Test Query: Singapore Airport Welcome to Changi Airport- [翻譯此頁] With more than 300 retail outlets and F&B outlets in Changi Airport, indulge yourself ... 2006 Civil Aviation Authority of Singapore, All rights reserved. ... www.changiairport.com/changi/en/index.html? locale=en - 44k - 頁庫存檔 - 類似網頁 Query: Hotels in Singapore **2** $$x_1^{(2)} = [tfidf, pagerank,...]$$ 1 $$x_2^{(2)} = [tfidf, pagerank,...]$$ Singapore Changi Airport - Wikipedia, the free encyclopedia-[翻譯此頁] Growth in the global aviation transport was felt in Singapore, where Singapore International Airport at Paya Lebar, Singapore's third main civilian airport ... en.wikipedia.org/wiki/Singapore_Changi_Airport - 292k - 頁庫存檔 - 類似網頁 Don't waste money on a taxi – instant confirmation on Sinagpore Airport Hotels from \$165/night. Online bookings. Fast & secure site, and backed by a 24/7 ... www.wotif.com/hotels/singapore-singapore-airport-east-coast-hotels.html - 14k - ## Two kinds of Partially-Labeled Data ## 1. Lack of labels for some documents (depth) Query1 Doc1 Label Doc2 Label Doc3 ? Query2 Doc1 Label Doc2 Label Doc3 ? Query3 Doc1 Label Doc2 Label Doc3 ? Some references: Amini+, SIGIR'08 Agarwal, ICML'06 Wang+, MSRA TechRep'05 Zhou+, NIPS'04 He+, ACM Multimedia '04 ## 2. Lack of labels for some queries (breadth) Query1 Doc1 Label Doc2 Label Doc3 Label Query2 Doc1 Label Doc2 Label Doc3 Label Query3 Doc1 ? Doc2 ? Doc3 ? This paper Truong+, ICMIST'06 # Focus of this work: Transductive Learning - Unlabeled data = Test data - → Transductive Learning Query1Query2Test QueryDoc1 Label
Doc2 Label
Doc3 LabelDoc1 !
Doc2 Label
Doc3 LabelDoc2 !
Doc3 ? Main question: How can knowledge of the test list help our learning algorithm? ## Why transductive learning? #### <u>Inductive (semi-supervised) learning:</u> Need to generalize to new data ## **Outline** - 1. Problem Definition - 2. Proposed Method - 1. Intuition - 2. Details of proposed algorithm - 3. Results and Analysis # Thought Experiment: What information does unlabeled data provide? ## Good results can be achieved by: Ranking Query 1 by BM25 only Ranking Query 2 by HITS only ## Proposed Method: Main Ideas #### **Main Assumptions:** - 1. Different queries are best modeled by different features - 2. Unlabeled data can help us discover this representation #### Two-Step Algorithm: #### Requires: - DISCOVER(): unsupervised method for finding useful features - LEARN(): supervised method for learning to rank #### For each Test List: - Run DISCOVER() - Augment Feature Representation - Run LEARN() and Predict ## Proposed Method: Illustration **z=A'x**: new feature representation # DISCOVER() Component - Goal of DISCOVER(): Find useful patterns on the test list - Principal Components Analysis (PCA) - Discovers direction of maximum variance - View low variance directions as noise - Kernel PCA [Scholkopf+, Neural Computation 98] - Non-linear extension to PCA via the Kernel Trick - 1. Maps inputs non-linearly to high-dimensional space. - 2. Performs PCA in that space ## Kernels for Kernel PCA #### Linear ## **Polynomial** #### Gaussian $$K(x, x') = \exp(-\beta ||x - x'||)$$ #### **Diffusion** $$K(x, x') =$$ Random walk between x, x' on graph # LEARN() Component - Goal of LEARN(): - Optimize some ranking metric on labeled data - RankBoost [Freund+, JMLR 2003] - Inherent Feature Selection - Few parameters to tune - Other supervised ranking methods are possible: - RankNet, Rank SVM, ListNet, FRank, SoftRank, etc. # Summary of Proposed Method - Relies on unlabeled test data to learn good feature representation - "Adapts" the supervised learning process to each test list #### Caveats: - DISCOVER() may not always find features that are helpful for LEARN() - Run LEARN() at query time → Computational speedup is needed in practical application ## **Outline** - 1. Problem Definition - 2. Proposed Method - 3. Results and Analysis - 1. Experimental Setup - 2. Main Results - 3. Deeper analysis into where things worked and failed # Experiment Setup (1/2) LETOR Dataset [Liu+, LR4IR 2007]: | | TREC03 | TREC04 | OHSUMED | |------------------------------|--------|--------|---------| | # of queries | 50 | 75 | 106 | | Average # of documents/query | 1000 | 1000 | 150 | | # of original features | 44 | 44 | 25 | - Additional features generated by Kernel PCA: - 5 kernels: Linear, Polynomial, Gaussian, Diffusion 1, Diffusion 2 - Extract 5 principal components for each # Experiment Setup (2/2) - Comparison of 3 systems: - Baseline: Supervised RankBoost - Transductive: Proposed method: Kernel PCA + Supervised RankBoost Combined: Average of Baseline, Transductive outputs $$f(x^{(i)}) = sort\{f_{baseline}(x_n^{(i)}) + f_{transductive}(x_n^{(i)})\}$$ - Evaluation: - Mean Averaged Precision (MAP) - Normalized Discount Cumulative Gain (NDCG) ← see the paper # Overall Results (MAP) # Did improvements come from Kernel PCA per se, or its transductive use? # Do results vary by query? ## What kernels are most useful? Answer: There is a diversity of kernels that lead to good performance. Different test list have different structure ## Conclusion - Unlabeled data can be useful for ranking problems - Two-step transductive algorithm: - Adapts the supervised component using a feature representation that better models the test list - Overall results are positive - but results vary at the query-level - Future work: - Computational speed-up - Different LEARN() and DISCOVER() components - Other ways to exploit unlabeled data # Thanks for your attention! ## **Acknowledgments:** - U.S. National Science Foundation Graduate Fellowship - Travel Grant supported by: - SIGIR - Dr. Amit Singhal (made in honor of Donald B. Crouch) - Microsoft Research (in honor of Karen Spark Jones) ## The time is ripe for Semi-supervised Ranking! Both Semi-supervised Classification and Learning to Rank have become well-established sub-fields with many techniques # Computation Time (OHSUMED) - On Intel x86-32 (3GHz CPU) - Kernel PCA (Matlab/C-Mex): 4.3sec/query - Rankboost (C++): 0.7sec/iteration - Total time (Assuming 150 iterations): 109sec/query (233sec/query for TREC) - Kernel PCA: O(n^3) for n documents - Sparse KPCA: O(n)