Learning to Rank with Partially-Labeled Data

Kevin Duh
University of Washington

The Ranking Problem

Definition: Given a set of objects, sort them by preference.

Application: Web Search

You enter "uw" into the searchbox...

All webpages containing the term "uw":

University of Wyoming - New Thinking

Official web site of the **University of Wyoming**, located in Laramie, Wyoming. Colleges, libraries, directories, faculty, student information and news. www.uwyo.edu/ - 15k - Cached - Similar pages - Note this

UW Athletics - Official Site

Badgers news, team links, tickets, and facilities information. www.uwbadgers.com/ - 14k - Cached - Similar pages - Note this

University of Wisconsin-Madison

Skip to menu for main topics about the **University of Wisconsin**; Skip to search; Skip to news ... 2008 Board of Regents of the **University of Wisconsin** System.

www.wisc.edu/ - 14k - Cached - Similar pages - Note this

refresh.uw.hu::

refresh. uw.hu - Gitáros Fórum. Gy.IK Gy.IK Keresés Keresés Taglista Taglista Csoportok Csoportok Regisztráció Regisztráció Profil ...

refresh. uw. hu/viewtopic.php?p=120127 - 10k - Cached - Similar pages - Note this

University of Washington

Offers information and news for prospective and current students, faculty, and staff. Highlights academic departments and athletics, serves as directory for \dots

www.washington.edu/ - 15k - Cached - Similar pages - Note this

Results presented to user, after ranking:

University of Washington

St Offers information and news for prospective and current students, faculty, and staff. Highlights academic departments and athletics, serves as directory for ...

www.washington.edu/ - 15k - Cached - Similar pages - Note this

University of Wisconsin-Madison

2nd Skip to menu for main topics about the University of Wisconsin; Skip to search; Skip to news ... 2008 Board of Regents of the University of Wisconsin System. www.wisc.edu/ - 14k - Cached - Similar pages - Note this

University of Wyoming - New Thinking

3rd Official web site of the **University of Wyoming**, located in Laramie, Wyoming. Colleges, libraries, directories, faculty, student information and news.

www.uwyo.edu/ - 15k - Cached - Similar pages - Note this

UW Athletics - Official Site

Badgers news, team links, tickets, and facilities information. www.uwbadgers.com/ - 14k - <u>Cached</u> - <u>Similar pages</u> - <u>Note this</u>

refresh.uw.hu::

75th refresh.uw.hu - Gitáros Fórum. Gy.IK Gy.IK Keresés Keresés Taglista Taglista Csoportok Csoportok Regisztráció Regisztráció Profil ...
refresh.uw.hu/viewtopic.php?p=120127 - 10k - Cached - Similar pages - Note this

Application: Machine Translation

Application: Protein Structure Prediction

Amino Acid Sequence:

MMKLKSNQTRTYDGDGYKKRAACLCFSE

various protein folding simulations

Goal of this thesis

Can we build a better ranker by adding cheap, unlabeled data?

Emerging field

Semi-supervised Ranking

Outline

- 1. Problem Setup
 - 1. Background in Ranking
 - 2. Two types of partially-labeled data
 - 3. Methodology
- 2. Manifold Assumption
- 3. Local/Transductive Meta-Algorithm
- 4. Summary

Ranking as Supervised Learning Problem

Query: UW

Labels

University of Washington

Offers information and news for prospective and current students, faculty, and staff. Highlights academic departments and athletics, serves as directory for ...

www.washington.edu/ - 15k - Cached - Similar pages - Note this

University of Wyoming - New Thinking

Official web site of the **University of Wyoming**, located in Laramie, Wyoming. Colleges, libraries, directories, faculty, student information and news.

www.uwyo.edu/ - 15k - Cached - Similar pages - Note this

1
$$x_2^{(i)} = [tfidf, pagerank,...]$$

3 $x_1^{(i)} = [tfidf, pagerank,...]$

University of Wisconsin-Madison

Skip to menu for main topics about the **University of Wisconsin**; Skip to search; Skip to news ... 2008 Board of Regents of the **University of Wisconsin** System. www.wisc.edu/ - 14k - Cached - Similar pages - Note this

2 $x_3^{(i)} = [tfidf, pagerank,...]$

Query: Seattle Traffic

WSDOT Seattle Area Traffic - Traffic Conditions and Travel Alerts

A map of current freeway **traffic** conditions for **Seattle** and surrounding areas; includes links to **traffic** cams, incident reports, mountain pass reports, ...

www.wsdot.wa.gov/Traffic/seattle/ - 38k - Cached - Similar pages - Note this

links

$$2 x_1^{(j)} = [tfidf, pagerank, ...]$$

Seattle Praised for Traffic Efficiency: NPR

Seattle and Tacoma's program to ease **traffic** flows is cited as the nation's most effective by the Texas Transportation Institute.

www.npr.org/templates/story/story.php?storyId=3905008 - Similar pages - Note this

1
$$x_2^{(j)} = [tfidf, pagerank,...]$$

Ranking as Supervised Learning Problem

Query: UW

3
$$x_1^{(i)} = [tfidf, pagerank,...]$$

1
$$x_2^{(i)} = [tfidf, pagerank,...]$$

2
$$x_3^{(i)} = [tfidf, pagerank,...]$$

Query: Seattle Traffic

2
$$x_1^{(j)} = [tfidf, pagerank,...]$$

1
$$x_2^{(j)} = [tfidf, pagerank,...]$$

Train F(x) such that

$$F(x_1^{(1)}) > F(x_3^{(1)}) > F(x_2^{(1)})$$

$$F(x_1^{(2)}) > F(x_2^{(2)})$$

Test Query: MSR

MSR | MX Gear | One Brand Fits All...

Motocross gear, off road gear, and hard parts. www.msracing.com/ - 2k - <u>Cached</u> - <u>Similar pages</u> - <u>Note this</u>

Microsoft Research Home

Corporate research division. Includes projects and publications, news and history, and job opportunities.

research.microsoft.com/ - 25k - Cached - Similar pages - Note this

MSR Mountain Safety Research

This is the home page for **Mountain Safety Research** ® , manufacturers of the most reliable and functional backcountry gear in the world.

www.msrgear.com/ - 11k - Cached - Similar pages - Note this

Semi-supervised Data: Some labels are missing

Query: UW

Labels

$3 x_1^{(i)} = [tfidf, pagerank,...]$

University of Washington

Offers information and news for prospective and current students, faculty, and staff. Highlights academic departments and athletics, serves as directory for ...

www.washington.edu/ - 15k - Cached - Similar pages - Note this

University of Wyoming - New Thinking

Official web site of the **University of Wyoming**, located in Laramie, Wyoming. Colleges, libraries, directories, faculty, student information and news.

www.uwyo.edu/ - 15k - Cached - Similar pages - Note this

1
$$x_2^{(i)} = [tfidf, pagerank,...]$$

University of Wisconsin-Madison

Skip to menu for main topics about the **University of Wisconsin**; Skip to search; Skip to news ... 2008 Board of Regents of the **University of Wisconsin** System.

www.wisc.edu/ - 14k - Cached - Similar pages - Note this

$$\chi x_3^{(i)} = [tfidf, pagerank,...]$$

Query: Seattle Traffic

WSDOT Seattle Area Traffic - Traffic Conditions and Travel Alerts

A map of current freeway **traffic** conditions for **Seattle** and surrounding areas; includes links to **traffic** cams, incident reports, mountain pass reports, ...

www.wsdot.wa.gov/Traffic/seattle/ - 38k - Cached - Similar pages - Note this

$$\chi x_1^{(j)} = [tfidf, pagerank,...]$$

Seattle Praised for Traffic Efficiency: NPR

Seattle and Tacoma's program to ease **traffic** flows is cited as the nation's most effective by the Texas Transportation Institute.

www.npr.org/templates/story/story.php?storyId=3905008 - Similar pages - Note this

$$X_2^{(j)} = [tfidf, pagerank,...]$$

Two kinds of Semi-supervised Data

1. Lack of labels for some documents (depth)

Query1

Doc1 Label Doc2 Label Doc3 ? Query2

Doc1 Label Doc2 Label Doc3 ? Query3

Doc1 Label Doc2 Label Doc3 ? Some references:

Amini+, SIGIR'08 Agarwal, ICML'06 Wang+, MSRA TechRep'05 Zhou+, NIPS'04 He+, ACM Multimedia '04

2. Lack of labels for some queries (breadth)

Query1

Doc1 Label Doc2 Label Doc3 Label Query2

Doc1 Label Doc2 Label Doc3 Label Query3

Doc1 ? Doc2 ? Doc3 ? This thesis
Duh&Kirchhoff, SIGIR'08
Truong+, ICMIST'06

Why "Breadth" Scenario

Information Retrieval: Long tail of search queries

"20-25% of the queries we will see today, we have never seen before"

- Udi Manber (Google VP), May 2007
- Machine Translation and Protein Prediction:
 - Given references (costly), computing labels is trivial

candidate 1 similarity=0.3

candidate 2 similarity=0.9

Methodology of this thesis

- Make an assumption about how can unlabeled lists be useful
 - Borrow ideas from semi-supervised classification
- 2. Design a method to implement it
 - 4 unlabeled data assumptions & 4 methods
- 3. Test on various datasets
 - Analyze when a method works and doesn't work

Datasets

Information Retrieval datasets

- from LETOR distribution [Liu'07]
- TREC: Web search / OHSUMED: Medical search
- Evaluation: MAP (measures how high relevant documents are on list)

	TREC 2003	TREC 2004	OHSUMED	Arabic translation	Italian translation	Protein prediction
# lists	50	75	100	500	500	100
label type	2 level	2 level	3 levels	conti- nuous	conti- nuous	conti- nuous
avg # objects per list	1000	1000	150	260	360	120
# features	44	44	25	9	10	25

Datasets

Machine Translation datasets

- from IWSLT 2007 competition, UW system [Kirchhoff'07]
- translation in the travel domain
- Evaluation: BLEU (measures word match to reference)

	TREC 2003	TREC 2004	OHSUMED	Arabic translation	Italian translation	Protein prediction
# lists	50	75	100	500	500	100
label type	2 level	2 level	3 levels	conti- nuous	conti- nuous	conti- nuous
avg # objects per list	1000	1000	150	260	360	120
# features	44	44	25	9	10	25

Datasets

Protein Prediction dataset

- from CASP competition [Qiu/Noble'07]
- Evaluation: GDT-TS (measures closeness to true 3-D structure)

	TREC 2003	TREC 2004	OHSUMED	Arabic translation	Italian translation	Protein prediction
# lists	50	75	100	500	500	100
label type	2 level	2 level	3 levels	conti- nuous	conti- nuous	conti- nuous
avg # objects per list	1000	1000	150	260	360	120
# features	44	44	25	9	10	25

Outline

- 1. Problem Setup
- 2. Manifold Assumption
 - Definition
 - Ranker Propagation Method
 - List Kernel similarity
- 3. Local/Transductive Meta-Algorithm
- 4. Summary

Manifold Assumption in Classification

- -Unlabeled data can help discover underlying data manifold
- -Labels vary smoothly over this manifold

Prior work:

- 1. How to give labels to test samples?
 - Mincut [Blum01]
 - Label Propagation [Zhu03]
 - Regularizer+Optimization [Belkin03]
- 2. How to construct graph?
 - k-nearest neighbors, eps-ball
 - data-driven methods[Argyriou05,Alexandrescu07]

Manifold Assumption in Ranking

Ranking functions vary smoothly over the manifold

Ranker Propagation

Algorithm:

1. For each train list, fit a ranker

$$F(x) = w^T x \qquad w \in R^d, x \in R^d$$

2. Minimize objective:

$$\sum_{ij \in edges} K^{(ij)} \| w^{(i)} - w^{(j)} \|^{2}$$
Ranker for list i

Similarity between list i,j

$$W^{(u)} = -inv(L^{(uu)})L^{(ul)}W^{(l)}$$

Similarity between lists: Desirable properties

Maps two lists of feature vectors to scalar

$$K(\frac{1}{2})$$
 $\frac{1}{2}$ \frac

- Work on variable length lists (different N in N-best)
- Satisfy symmetric, positive semi-definite properties
- Measure rotation/shape differences

List Kernel

Step 3: Maximum
$$K^{(ij)} = \sum_{m=1}^{M} \lambda_{m}^{(i)} \lambda_{a(m)}^{(j)} |< \nu_{m}^{(i)}, \nu_{a(m)}^{(j)} |>_{||\lambda^{(i)}|| \cdot ||\lambda^{(j)}||}$$
Bipartite Matching $K^{(ij)} = \sum_{m=1}^{M} \lambda_{m}^{(i)} \lambda_{a(m)}^{(j)} |< \nu_{m}^{(i)}, \nu_{a(m)}^{(j)} >_{||\mu|} \lambda^{(i)} ||\cdot||\lambda^{(i)}||$

Evaluation in Machine Translation & Protein Prediction

Ranker Propagation (with List Kernel) outperforms Supervised Baseline (MERT linear ranker)

^{*} Indicates statistically significant improvement (p<0.05) over baseline

Evaluation in Information Retrieval

- 1. List Kernel did not give good similarity
- 2. Feature selection is needed

Summary

3. Ranker Propagation computes rankers that are smooth over manifold

2. Edge similarity = List Kernel

Outline

- 1. Problem Setup
- 2. Manifold Assumption
- 3. Local/Transductive Meta-Algorithm
 - 1. Change of Representation Assumption
 - 2. Covariate Shift Assumption
 - 3. Low Density Separation Assumption
- 4. Summary

Local/Transductive Meta-Algorithm

Step2:

Train with extracted unlabel info as bias

Local/Transductive Meta-Algorithm

- Rationale: Focus only on one unlabeled (test) list each time
 - Ensure that the information extracted from unlabeled data is directly applicable
- The name:
 - Local = ranker is targeted at a single test list
 - Transductive = training doesn't start until test data is seen
- Modularity:
 - We will plug-in 3 different unlabeled data assumptions

RankBoost [Freund03]

Query: UW

Objective: maximize pairwise accuracy

3
$$x_1^{(i)} = [tfidf, pagerank,...]$$

2 $x_2^{(i)} = [tfidf, pagerank,...]$

$$\mathbf{2} \quad x_2^{(i)} = [tfidf, pagerank, ...]$$

1
$$x_3^{(i)} = [tfidf, pagerank,...]$$

$$F(x_1^{(i)}) > F(x_2^{(i)})$$

$$F(x_2^{(i)}) > F(x_3^{(i)})$$

$$F(x_1^{(i)}) > F(x_3^{(i)})$$

Initialize distribution over pairs $D_0(p,q) \ \forall x_n$ ranked-above x_q For t=1...T

Train weak ranker h_t to maximize $D_t(p,q) \cdot I_{\{F(x_n) > F(x_n)\}}$ Update distribution $D_{t+1}(p,q) = D_t(p,q) \exp{\{\alpha_t(h_t(x_p) - h_t(x_q))\}}$ Final ranker

$$F(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$

Change of Representation Assumption

"Unlabeled data can help discover better feature representation"

Feature Generation Method

z=A'x: new feature representation

Evaluation (Feature Generation)

-But degrades for other datasets

Analysis: Why didn't it work for Machine Translation?

- 40% of weights are for Kernel PCA features
- Pairwise Training accuracy actually improves:
 - 82% (baseline) → 85% (Feature Generation)

- We're increasing the model space and optimizing on the wrong loss function
- Feature Generation more appropriate if pairwise accuracy correlates with evaluation metric

Covariate Shift Assumption in Classification (Domain Adaptation)

If training & test distributions differ in marginals p(x), optimize on weighted data to reduce bias

$$F_{ERM} = \arg\min_{F} \frac{1}{n} \sum_{i=1}^{n} Loss(F, x_i, y_i)$$

$$F_{IW} = \operatorname{arg\,min}_{F} \frac{1}{n} \sum_{i=1}^{n} \frac{p_{test}(x_i)}{p_{train}(x_i)} Loss(F, x_i, y_i)$$

KLIEP method [Sugiyama08] for generating importance weights r $\min_{r} KL(p_{test}(x) || r(x) p_{train}(x))$

Covariate Shift Assumption in Ranking

- Each test list is a "different domain"
- Optimize weighted pairwise accuracy

3
$$x_1^{(i)} = [tfidf, pagerank,...]$$
 $F(x_1^{(i)}) > F(x_2^{(i)})$
2 $x_2^{(i)} = [tfidf, pagerank,...]$ $F(x_2^{(i)}) > F(x_3^{(i)})$
1 $x_3^{(i)} = [tfidf, pagerank,...]$ $F(x_1^{(i)}) > F(x_3^{(i)})$

Define density on pairs

$$p_{train}(x) \rightarrow p_{train}(s)$$
 $s = x_p^{(i)} - x_q^{(i)}$

Importance Weighting Method

Training data, with importance weights on each document-pair

Evaluation (Importance Weighting)

Stability Analysis

How many lists are improved/degraded by the method? Importance Weighting is most conservative and rarely degrades in low data scenario

PROTEIN	% lists
PREDICTION	changed
Importance Weighting	32%
Feature Generation	45%
Pseudo Margin (next)	70%

Low Density Separation Assumption in Classification

Classifier cuts through low density region, revealed by clusters of data

Algorithms:

Transductive SVM [Joachim'99]
Boosting with Pseudo-Margin [Bennett'02]

Low Density Separation in Ranking

Test Query1

Doc1?
Doc2?
Doc3?

- 1 vs 2: F(Doc1)>>F(Doc2) or F(Doc2)>>F(Doc1)
- 2 vs 3: F(Doc2)>>F(Doc3) or F(Doc3)>>F(Doc2)
- 1 vs 3: F(Doc1)>>F(Doc3) or F(Doc3)>>F(Doc1)
- Define Pseudo-Margin on unlabeled document pairs $\sum_{\text{exp}(-(F(x_i) F(x_j))) + \sum_{\text{exp}(-|F(x_i) F(x_j)|)}} \exp(-|F(x_i) F(x_j)|)$

 $(i,j) \in labeled$

Pseudo Margin Method

Expanded Training Data containing unlabeled pairs

Evaluation (Pseudo Margin)

Analysis: Tied Ranks and Low Density Separation

Test Query1

Doc1 ? Doc2 ? Doc3 ?

- 1 vs 2: F(Doc1)>>F(Doc2) or F(Doc2)>>F(Doc1)
- Ignores the case F(Doc1)=F(Doc2)
- But most documents are tied in Information Retrieval!
- If tied pairs are eliminated from semi-cheating experiment,
 Pseudo Margin improves drastrically

Outline

- 1. Problem Setup
- Investigating the Manifold Assumption
- 3. Local/Transductive Meta-Algorithm
 - 1. Change of Representation Assumption
 - 2. Covariate Shift Assumption
 - 3. Low Density Separation Assumption
- 4. Summary

Contribution 1

Investigated 4 assumptions on how unlabeled data helps ranking

- Ranker Propagation:
 - assumes ranker vary smoothly over manifold on lists
- Feature Generation method:
 - use on unlabeled test data to learn better features
- Importance Weighting method:
 - select training data to match the test list's distribution
- Pseudo Margin method:
 - assumes rank differences are large for unlabeled pairs

Contribution 2

Comparison on 3 applications, 6 datasets

	Information Retrieval	Machine Translation	Protein Prediction
Ranker Propagation	=	IMPROVE	BEST
Feature Generation	IMPROVE	DEGRADE	=
Importance Weighting	BEST	=	=
Pseudo Margin	=	BEST	=

Future Directions

- Semi-supervised ranking works! Many future directions are worth exploring:
 - Ranker Propagation with Nonlinear Rankers
 - Different kinds of List Kernels
 - Speed up Local/Transductive Meta-Algorithm
 - Inductive semi-supervised ranking algorithms
 - Statistical learning theory for proposed methods

Thanks for your attention!

- Questions? Suggestions?
- Acknowledgments:
 - NSF Graduate Fellowship (2005-2008)
 - RA support from my advisor's NSF Grant IIS-0326276 (2004-2005) and NSF Grant IIS-0812435 (2008-2009)
- Related publications:
 - Duh & Kirchhoff, Learning to Rank with Partially-Labeled Data, ACM SIGIR Conference, 2008
 - Duh & Kirchhoff, Semi-supervised Ranking for Document Retrieval, under journal review

Machine Translation: Overall Results

Protein Prediction: Overall Results

OHSUMED: Overall Results

TREC: Overall Results

Supervised Feature Extraction for Ranking

Linear Discriminant Analysis (LDA)

$$\arg\max_{\alpha} \frac{\alpha^T B \alpha}{\alpha^T W \alpha}$$

B: between-class scatter

W: within-class scatter

 $\underline{\mathsf{RankLDA}} \quad \mathrm{arg\,max}_{\alpha} \, \tfrac{\alpha^T \tilde{B} \alpha}{\alpha^T W \alpha}$

s.t. $\alpha^T B_{13} \alpha > \alpha^T B_{12} \alpha$

 $\alpha^T B_{13} \alpha > \alpha^T B_{23} \alpha$

OHSUMED

Baseline: 44.2

Feature Generation:44.4

w/ RankLDA: 44.8

KLIEP Optimization

$$KL(p_{test}(x)//w(x) * p_{train}(x)) = \int p_{test}(x) \log \frac{p_{test}(x)}{w(x) * p_{train}(x)} dx$$

$$= \int p_{test}(x) \log \frac{p_{test}(x)}{p_{train}(x)} dx - \int p_{test}(x) \log w(x) dx$$

$$\approx \frac{1}{U_{pair}} \sum_{u=1}^{U_{pair}} \log w(x_u)$$

$$= \frac{1}{U_{pair}} \sum_{u=1}^{U_{pair}} \log \sum_{b=1}^{B} \beta_b \psi_b(x_u)$$

$$= \int w(x) p_{train}(x) dx \approx \frac{1}{U_{pair}} \sum_{u=1}^{L_{pair}} \sum_{x=1}^{B} \beta_b \psi(x_l)$$

List Kernel Proof: Symmetricity

Proposition 8.3.1. The function K(x,y) in Algorithm 10 is symmetric, i.e. K(x,y) = K(y,x).

Proof.

$$K(x,y) = \frac{\sum_{m=1}^{M} \lambda_{x}^{m} \lambda_{y}^{a(m)} \cdot | \langle u_{x}^{m}, u_{y}^{a(m)} \rangle |}{(||\lambda_{x}|| \cdot ||\lambda_{y}||)}$$

$$= \frac{\sum_{m=1}^{M} \lambda_{y}^{a(m)} \lambda_{x}^{m} \cdot | \langle u_{y}^{a(m)}, u_{x}^{m} \rangle |}{(||\lambda_{y}|| \cdot ||\lambda_{x}||)}$$

$$= \frac{\sum_{m=1}^{M} \lambda_{y}^{m} \lambda_{x}^{a^{-1}(m)} \cdot | \langle u_{y}^{m}, u_{x}^{a^{-1}(m)} \rangle |}{(||\lambda_{y}|| \cdot ||\lambda_{x}||)}$$

$$= K(y,x)$$

List Kernel Proof: Cauchy-Schwartz Inequality

Proposition 8.3.2. The function K(x,y) in Algorithm 10 is satisfies the Cauchy-Schwartz Inequality, i.e. $K(x,y)^2 \le K(x,x)K(y,y)$.

Proof. First, we show that K(x,x) = 1:

$$K(x,x) = \frac{\sum_{m=1}^{M} \lambda_{x}^{m} \lambda_{x}^{a(m)} \cdot |\langle u_{x}^{m}, u_{x}^{a(m)} \rangle|}{(||\lambda_{x}|| \cdot ||\lambda_{x}||)}$$

$$= \frac{\sum_{m=1}^{M} \lambda_{x}^{m} \lambda_{x}^{m} \cdot |\langle u_{x}^{m}, u_{x}^{m} \rangle|}{(||\lambda_{x}|| \cdot ||\lambda_{x}||)}$$

$$= \frac{\sum_{m=1}^{M} \lambda_{x}^{m} \lambda_{x}^{m}}{(||\lambda_{x}|| \cdot ||\lambda_{x}||)}$$

$$= \frac{||\lambda||^{2}}{(||\lambda_{x}|| \cdot ||\lambda_{x}||)} = 1$$

The second step follows from the fact that maximum bipartite matching would achieve $a(m) = m \ \forall m$ since $\langle u_x^m, u_x^m \rangle = 1$ and $\langle u_x^m, u_x^{m'} \rangle = 0$ for any $m \neq m'$. The third step is a result of $\langle u_x^m, u_x^m \rangle = 1$.

Next we show that $K(x,y)^2$ is bounded by 1. Note that $< u_x^m, u_y^{a(m)} > \le 1$, so that $K(x,y) \le \frac{\sum_{m=1}^M \lambda_x^m \lambda_y^{a(m)}}{(||\lambda_x||\cdot||\lambda_y||)} \le 1$ where the last inequality follows from applying Cauchy-Schwartz to the vectors of

List Kernel Proof: Mercer's Theorem

Theorem 8.3.3 (Mercer's Theorem, c.f. [123]). Every positive (semi) definite, symmetric function is a kernel: i.e., there exists a feature mapping ϕ such that it is possible to write: $K(x,y) = \langle \phi(x), \phi(y) \rangle$.

Proposition 8.3.4. The function K(x,y) in Algorithm 10 satisfies the Mercer Theorem.

Proof. We have already proved that K(x,y) is symmetric. To see that it is positive semi-definite, we just need to observe that $K(x,y) \geq 0$ for any x,y. We prove this by contradiction: Suppose K(x,y) < 0 for some x,y. This implies that $\sum_{m=1}^{M} \lambda_x^m \lambda_y^{a(m)} \cdot | < u_x^m, u_y^{a(m)} > |$ is negative. However, by construction, we will only obtain non-negative eigenvalues λ_x from PCA. Further, the absolute value operation $| < u_x^m, u_y^{a(m)} > |$ ensures non-negativity. Thus, the statement that K(x,y) < 0 for some x,y is false.

Invariance Properties for Lists

Shift-invariance

Scale-invariance

Rotation-invariance

