Learning to Rank with Partially-Labeled Data

Kevin K. Duh

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

University of Washington

2009

Program Authorized to Offer Degree: Electrical Enginegrin

University of Washington
Graduate School

This is to certify that | have examined this copy of a doctaliakertation by

Kevin K. Duh

and have found that it is complete and satisfactory in apeets,
and that any and all revisions required by the final
examining committee have been made.

Chair of the Supervisory Committee:

Katrin Kirchoff

Reading Committee:

Katrin Kirchhoff

Mari Ostendorf

Jeffrey A. Bilmes

Date:

In presenting this dissertation in partial fulfillment okthequirements for the doctoral degree at
the University of Washington, | agree that the Library shmlke its copies freely available for
inspection. | further agree that extensive copying of tigsertation is allowable only for scholarly
purposes, consistent with “fair use” as prescribed in tHe. Qopyright Law. Requests for copying
or reproduction of this dissertation may be referred to Best Information and Learning, 300
North Zeeb Road, Ann Arbor, Ml 48106-1346, 1-800-521-06@0whom the author has granted
“the right to reproduce and sell (a) copies of the manusamipdicroform and/or (b) printed copies
of the manuscript made from microform.”

Signature

Date

University of Washington

Abstract

Learning to Rank with Partially-Labeled Data

Kevin K. Duh

Chair of the Supervisory Committee:
Professor Katrin Kirchoff
Electrical Engineering

Ranking is a key problem in many applications. In web seafehjnstance, webpages are
ranked such that the most relevant ones are presented taséhditst. In machine translation,
a set of hypothesized translations are ranked so that threotasne is chosen. Abstractly, the
problem of ranking is to predict an ordering over a set of cisjeGiven the importance of ranking
in many applications, “Learning to Rank” has risen as arvagtsearch area, crossing disciplines
such as machine learning and information retrieval. Theaagqh is to adapt machine learning
techniques developed for classification and regressiohlgmms to problems with rank structure.
However, so far the majority of research has focused on thersised learning setting. Supervised
learning assumes that the ranking algorithm is provided iaibeled data indicating the rankings or
permutations of objects. Such labels may be expensive toroiot practice.

The goal of this dissertation is to investigate the probldmanking in the framework of semi-
supervised learning. Semi-supervised learning assuraesi#ita is only partially labeled, i.e. for
some sets of objects, labels are not available. This kinchofiéwork seeks to exploit the potentially
vast amount of cheap unlabeled data in order to improve uppersised learning. While both
supervised learning for rankingndsemi-supervised learning for classificatibave become active
research themes, the combinati@emi-supervised learning for rankinbas been less examined.
This thesis aims to fill the gap.

The contribution of this thesis is an examination of severays to exploit unlabeled data in

ranking. In particular, four assumptions commonly used lassification (Change of Represen-

tation, Covariate Shift, Low Density Separation, Manifjoltte extended to the ranking setting.
Their implementations are tested on six real-world dasafem Information Retrieval, Machine
Translation, and Computational Biology. The algorithmantributions of this work include (a) a
Local/Transductive meta-algorithm, which allows one tagpin different unlabel data assumptions
with relative ease, and (b) a kernel defined on lists, whitdwabne to extend methods which work
with samples (i.e. classification, regression) to methokishwvork with lists of samples (i.e. rank-
ing). We demonstrate that several assumptions about habeleld data helps in classification can
be successfully applied to the ranking problem, showingawpments over the supervised baseline

under different dataset-method combinations.

TABLE OF CONTENTS

Listof Figures e
Listof Tables
Glossary e e

Chapter 1: Introduction

1.1 Motivation

1.2 Problem Formulation
1.3 Example Applications
1.4 Contributions
15 OutlineofThesis

Chapter 2: RelatedWork
2.1 Supervised Learning forRanking

2.2 Semi-supervised Learning for Classification

2.3 Semi-supervised learning for Ranking

2.4 Relations to Domain Adaptation

2.5 Related Work in Statistics and Economics

Chapter 3: Applications and Datasets
3.1 Ranking in Information Retrieval

3.2 Ranking in Machine Translation

3.3 Ranking in Computational Biology (Protein Structurediction)

Chapter 4: A Local/Transductive Framework for Ranking . .

4.1 Description of Local/Transductive Framework

4.2 RankBoost: a supervised ranking algorithm
4.3 Modifications to RankBoost for continuous-level judgrse

Page
iii

Vi

o O w NP

oo 0o

11
16
19
20

24

24

29
33

38
38
42

Chapter 5: Investigating the Change of RepresentationrAggan 47

5.1 Feature Generation Approach e 47
5.2 RankLDA: Supervised feature transformation for Ragkin 52
5.3 Information Retrieval Experiments 56
5.4 Machine Translation Experiments e 65
5.5 Protein Structure Prediction Experiments 68
Chapter 6: Investigating the Covariate Shift Assumption 73
6.1 Importance Weighting Approach 73
6.2 Combining Feature Generation and Importance Weighting. 77
6.3 Information Retrieval Experiments, 78
6.4 Machine Translation Experiments e 84
6.5 Protein Structure Prediction Experiments 85
Chapter 7: Investigating the Low Density Separation Assionp 90
7.1 Pseudo Margin Approach 90
7.2 Information Retrieval Experiments 93
7.3 Machine Translation Experiments e 96
7.4 Protein Structure Prediction Experiments 96
Chapter 8: KernelsonLists i 101
8.1 Motivation 101
8.2 Related WorkonKernels e 102
8.3 Formulation ofaListKernel 104
8.4 Importance Weighting with ListKernels 109
8.5 Graph-based Methods with ListKernels 115
Chapter 9: Overall Comparisons and Conclusions 121
9.1 Cross-Method Comparisons o i e 121
9.2 Summary of Contributions e 125
9.3 FutureWork e 127
Bibliography e e 132
Appendix A: Ranker Propagation Objective Function 144

LIST OF FIGURES

Figure Number Page

2.1

3.1
3.2
3.3

4.1

4.2

51

5.2

5.3

5.4

55

Two partially-labeled data problems in ranking. We fobere on semi-supervised
rank learning, where labels are entirely lacking for somergs. A different prob-
lem is that of “missing labels”, where not all documentsiested by a query are

labeled. Note that these two problems are not mutuallyusked. 18
Example TREC queryandwebpages 27
Example OHSUMED query and document.. 28
lllustration of Top-k BLEU oracle score. Top-1 oracles;. Top-2 oracle=.53, Top-3
oracle=.54, Top-4 oracle=1.0, Top-50oracle=1.0. 33

Supervised learning, inductive semi-supervised iegrand transductive learning:
here we focus on the transductive setting, where test gaeryserved during training. 39

Pair extraction example. The quantization approach disgretize all labels with
BLEU>0.45to 1 and all labels with BLEW: 0.45 to 0, leading to the pairs (1,4),
(1,5), (2,4), (2,5), (3,4). On the other hand, pair extactvith threshold (t=0.3)

will extract entirely different pairs: (1,2),(1,3),(1,8,5),(2,5). 45

Plots of documents for 2 different queries in TREC'04afys = BM25, x-axis =
HITS score). Relevant documents are dots, irrelevant amesrasses. Note that (a)
varies on the y-axis whereas (b) varies on the x-axis, impglyhat query-specific
rankers would be beneficial. o oo o o 49
An example where LDA fails at ranking. Projecting on thaxys will optimize Eq.

5.1 but doing so will reverse ranks 2 and 3. The x-axis is aebeitojection that
respects the properties of linear ordering amongranks. 54

Pie chart showing the distribution of feature-type corations for the 25 best
rankers in the TREC’04 dataset. The number in the parestiredicates the count.
For example, 3 of 25 rankers use a combination original arehl kernel features.
The chart shows a diversity of feature combinations. 61

Query-level changes in MAP: We show the numberofquelnd?aeat ure Generation)
that improved/degraded comparedo@sel i ne. In TREC'03 (a), the majority of
gueries improved, but in TREC’'04 (b) and OHSUMED (c) a sigaifit proportion
degraded. See text for more explanation. 62
Scatterplot of TREC'03 MAP results féteat ure Gener ati on (x-axis) vs.
baseline(y-axis). e 64

5.6

5.7

5.8

5.9

Sentence-level BLEU analysis for Feature Generation RankBoost Baseline.
While the corpus-level BLEU result for RankBoost is 1 poimtter, there does
not appear to be significant differences on the sentenck leve.

The percentage of total weight in RankBoost belongingeimel PCA features, in
histogram (Arabic-English Translation Task)

Scatterplot of GDT-TS values: Feature Generation (&&8age GDT-TS) vs. Base-
line (.581 average GDT-TS). The majority of lists are noeeféd by Feature Gen-
eration; 19% of the lists are improved by 0.01, 26% of thes lege degraded. Cor-

66

68

relation coefficient=.9717 70

There is little correlation between the amount of KeR@A usage in Feature Gen-
eration vs. the GDT-TS score. (Protein Structure Predigtio

5.10 Percentage of total weight in RankBoost belonging tm&lePCA features for Pro-

6.1

6.2

6.3

6.4

6.5

7.1
7.2

tein Prediction. Here, on average we have 17% of the weighésented by KPCA.
Compare this to Machine Translation (Figure), which on agerhas 40% of weight
dedicated to KPCA.

Combining Feature Generation with Importance Weighaitiows for soft selecting
of the projected training data. Combined results improvégNbr all three datasets
(a) OHSUMED, (b) TREC’03, and (c) TREC'04. Results are mif@dNDCG. . .

Comparison of importance weights extracted with atl pegrs (current implemen-
tation) or oracle test pairs (cheating experiment). (a) OME&D shows a smaller
gap, while (b) TREC’03 implies more chance for improvemeart be achieved. . .

Importance weight histogram from some OHSUMED queri€be x-axis is the
importance weight value; y-axis is the histogram count. [Binge variety in distri-
bution implies that the target test statistics differdcadly.

Data ablation results (MAP and NDCG@10) of (a) OHSUMHBL,TREC’'03, (c)
TREC'04 for 40%, 60%, and 80% subsets of training data. Intamoe Weight-
ing consistently improves over the Baseline. Feature Geioerperforms well for
larger data but poorly inthe 40% and 60% cases.

Scatterplot of GDT-TS values: Importance Weights (.888rage GDT-TS) vs.
Baseline (.581 average GDT-TS). The majority of lists areaffected by Impor-
tance Weights; 12% of the lists are improved by 0.01, 20% efitis are degraded.
Correlation coefficient =.9827 oo

Example translation outputs for Baseline vs. Pseudmida.

Scatterplot of GDT-TS values: Pseudo Margin (.574 @yee@DT-TS) vs. Baseline
(.581 average GDT-TS). In contrast to Importance Weightirege the majority of
lists are affected by the Pseudo Margin Approach: 37% ofiite &re improved by
0.01, 33% of the lists are degraded. Correlation coeffice®681

iv

71

80

82

82

88

89

98

8.1 lllustration of list kernel. The top data is charactedz [.9 .3] vector as its first
principal axes (large eigenvalue 5.2) and a [.3 -.9] vectoitsasecond axes (small
eigenvalue 0.1). The second and third datasets are ratatiothe the first by 25
and 90 degrees, respectively. In the second dataset, thprfirsipal axis is a [1 0]
vector. In the third dataset, the first principal axis is &[98 vector. The principal
angles kernel would therefore find that the first and thirdda¢ close. However, the
list kernel would successively discover via the maximumghtd bipartite match-
ing procedure that the second dataset (which has lessomjtégicloser to the first: it
would match the axes that have both small cosine distancelaasiarge eigenvalues.107

8.2 Manifold Assumption and Ranker Propagation. 117

LIST OF TABLES

Table Number Page
1.1 Example applications and their relation to semi-supeds/ranking 5
3.1 Examplesof TRECfeatures 26
3.2 IRDatacharacteristics e 29
3.3 MTDatacharacteristics e 31
3.4 Protein Prediction Data characteristics 35
3.5 Summary of all datasets used inthiswork. 37
4.1 Dev set BLEU of various pair extractionschemes 46
5.1 Main result for Feature Generation (FG). In general, F@ides improvements

over baseline. Statistically significant improvementstariel-fonted. 58
5.2 Feature Generation (transductive) outperforms KPC#ain (inductive); adapting

totest queriesisauseful strategy. Lo 59
5.3 Some examples of original features that correlate ighth Kernel PCA features

54

5.5
5.6
5.7
5.8

6.1
6.2

(coeff. of determination in parentheses). However, mastufes (not listed) have
low correlation due to their non-linear relationship. 60

Performance of single features. RankLDA and LDA are #mkings derived from
the first projection vectoar. The Original column presents the minimum and maxi-

mum test performance among the 25 original features. 64
Arabic-English MTresults e 65
ltalian-English MTresults e 66
Protein Prediction GDT-TSresults 69
Protein Prediction z-scoreresults oL 69
Comparison of Covariate Shift Assumption for Classificaand Ranking 73

Importance Weighting Results on Information Retrievainportance Weighting
(IW) outperforms the Baseline in various metrics. The comabi Feature Gener-
ation (FG) and IW method gave further improvements. 79

Vi

6.3

6.4
6.5
6.6
6.7

7.1

7.2
7.3

7.4

7.5
7.6

8.1

8.2

8.3

8.4
8.5
8.6

8.7

Importance weight statistics. Median represent theageemedian value of im-
portance weights, across all test lists. Similarly, the l2Z5Bh quantile capture the
value of the 25th and 75th portion of the weight's cumulatis&ribution function
(CDF). Standard deviation and entropy show how much the itapoe weight dis-
tribution differs from the uniform distribution. Uniformistribution would achieve
an entropy of 2.48 (entropy is calculated discretely bydiig the weight histogram

N0 12 bINS). e e 83
Arabic-English MTresults 85
ltalian-English MT results e 85
Protein Prediction GDT-TSresults uu. 86
Protein Prediction z-scoreresults oo 86

Pseudo Margin Results. The Pseudo Margin approachrperfbequal to or worse
than the Baseline due to violation of the low density sejamaassumption. Most
unlabeled document pairs are in practice tied in rank andldhwt be encouraged
to have large margins. Once these tied pairs are removed e Pairs result
show dramatic improvements for all datasets. B - 7

Breakdown comparison of BLEU for Baseline (MERT) vs. leeMargln Coe .97

Arabic-English MT results. The Pseudo Margin Approaatperforms the Base-
line in all metrics. Boldface represents statisticallyndfigant improvement via the

bootstrapping approach [167] e 97
Italian-English MT results. The Pseudo Margin Approacdikperforms the Base-
line in all metrics. Boldface represents statisticallyndigant improvement via the
bootstrapping approach [167] e 97
Protein Prediction GDT-TSresults 0w 98
Protein Prediction z-scoreresults 0oL 99
A summary of properties of kernels on sets of vectorst Kégsnel is proposed in

Section 8.3 . . . L 104
Arabic-English MT results with Importance Weightinged results are underlined

(no results were statistically significantly better). 111
Italian-English MT results with Importance Weightirgest results are underlined

(no results were statistically significantly better). 112
Protein Prediction GDT-TSresults 112
Protein Prediction z-scoreresults oL 113

Information Retrieval Results for List Kernel ImportanWeighting. List Kernel
and Principal Angles Kernel give virtually the same ressliBaseline, due to the
lack of deviation in the importance weights in practice. 114

Comparison of Manifold Assumption for Classificatiomdanking 115

Vii

8.8

8.9

Arabic-English MT results with Ranker Propagation. tiStally significant im-
provements are boldfaced; best but not statistically > results are underlined. 118

Italian-English MT results with Ranker PropagationatiStically significant im-
provements are boldfaced; best but not statistically 8ggmt results are underlined. 118

8.10 Protein Prediction GDT-TS results. Ranker Propagagives statistically signif-

8.11 Protein Prediction z-score results

icant improvements over baseline supervised algorithrati€dital significance is
judged by the Wilcoxon signed rank test). 119

8.12 Ranker Propagation for Information Retrieval. RariRempagation with Feature

9.1

9.2
9.3
9.4
9.5
9.6
9.7

Selection outperforms both baseline and Ranker Prop wifeatore selection. The
Oracle result shows the accuracy if using Rank SVMs trairiegtly on the test lists. 120

Overall results for TREC. FG and IW approaches generallyoved for all datasets.
RankerProp outperformed the RankSVM baseline of which litaised (see Table

8.12) but does not always outperform the RankBoost baseline. 122
Overall results for OHSUMED. 123
Overall Arabic-English MTresults. 123
Overall ltalian-English MTresults. 124
Overall GDT-TS Results for Protein Prediction 124
Overall z-score Results for Protein Prediction 125
Summary of Results. + indicates improvement over haseliindicates degrada-

tion. = indicates similar results. ++ indicates the besthoétfor a given dataset. . 126

viii

GLOSSARY

BLEU: A popular machine translation evaluation metric, see Glrapt

EM: Expectation-Maximization Algorithm

FG: Feature Generation approach for local/transductive reniChapter 5)

FG+w: Combined Feature Generation and Importance Weightingpéaiftransductive ranking

(Chapter 6)

GDT-TS: Evaluation metric for Protein Structure Prediction (se@4{}

Iw: Importance Weighting approach for local/transductivekiiagn (Chapter 5)

LETOR: Learning to Rank dataset, published by Microsoft Researsia. AConsists of TREC
and OHSUMED subsets.

MT: Machine translation

MAP: Mean average precision; A popular information retrievalleation metric, see Chapter 3

MERT: Minimum Error Rate Training algorithm. A standard algomittfor training Machine

Translation systems (see [119]).

NDCG: Normalized discount cumulative gain; A popular informatietrieval evaluation metric,

see Chapter 3

OHSUMED: Information Retrieval dataset (medical search task)

iX

PM: Pseudo Margin approach for local/transductive rankingafitér 7)

IR: Information retrieval

RANKBOOST: A supervised ranking algorithm, see Section 5.1.2

SVM: Support vector machine

TREC: Information Retrieval dataset (webpage ranking task)

ACKNOWLEDGMENTS

I am enormously grateful to my advisor Katrin Kirchoff foratghing me how to do research.
More than anyone, she taught me how to frame a problem, howvisel my experiments, how to
think about the results, and finally, how to present it cletrithe research community. Furthermore,
| thank her for always being very supportive—I think | woulot have endured graduate school while

having a family without her encouragement and understgndin

I would also like to thank all the professors at the Univgramho have had an important impact
on me: Jeff Bilmes, for exciting my interest in new researthdions (e.g. structured prediction,
graphical models, social choice theory). Mari Ostendanf,giving me the opportunity to co-teach
with her, and for giving me encouragement when | need it thetmblarina Meila, whose clear
lectures gave me a grounding in optimization and math. BibMN, who was ever so helpful in
teaching me about computational biology. Efthi Eftimiadiis his huge smile, which made me feel
at home when | was new to IR conferences. Les Atlas, for beipgmantor and showing me the
inside workings of an academic career. Maya Gupta, for beitfing to listen to my half-baked
ideas and to give me feedback at various occasions. Jeng4eang, who is always so nice as to
“adopt” our family during Thanksgiving and other times.fJ&fari, Marina, Bill, and Efthi are also

on my thesis committee—I thank them for their time and effort

| was also very fortunate to work with many colleagues oetsilUW. Whether it be interning
in industry or organizing a workshop, these experiences baxen me new perspectives, new skills,
and new connections. Sumit Basu, Marine Carpuat, Hal Dadotey Dunagan, Simon Corston-
Oliver, Mo Corston-Oliver, Jianfeng Gao, Rebecca Hwa, &ihif, Dekang Lin, Bob Moore, Patrick
Nguyen, John Platt, Chris Quirk, Eric Ringger, Mike Schulizsami Suzuki, Qin Wang-I enjoyed
every minute working with you and hope we can continue kegpintouch. Sanjeev Khudanpur
gave me the best advice at the beginning of my grad schoaadogparaphrase: “Go to many talks

andalwaysask questions. If you don’t understand the talk, you shoefthdely ask a question. If

Xi

you understood the talk, you will naturally have questibhfind this advice useful even now.

Many friends have accompanied me along the way. SSLI Lab dvwsose that wherever | turn,
I will find someone with the answer—whether it be a C++ tipngliistics question, a brain-storming
session at the white board, or a solicitation for food. Thlagspecially go to: Andrei Alexandrescu,
Amittai Axelrod, Chris Bartels, Costas Boulis, Lee Damomyrifh Filali, Sangyun Hahn, Gang Ji,
Jeremy Kahn, Xiao Li, Jon Malkin, Alex Marin, Tim Ng, Taka 8bkaki, Amar Subramanya, Sheila
Reynolds, Mei Yang. | am also lucky to have many friends oletsif SSLI lab, who continue to help
me whenever | call or email. To name a few: Justin Brickelghiti Chang, Nels Jewell-Larson,
Kristy Hollingshead, Hoifung Poon, Jared Tritz, Matt Wallkeei Xia.

| would also like to acknowledge the National Science FotindgNSF) Graduate Fellowship.
The fellowship not only gave me generous financial suppart,aklso allowed me the freedom to
explore a variety of research topics, something | sinceapfyreciated. | learned that research is not
just about solving problems, but also about defining problem

Finally, my utmost thanks go to my family—my parents, my gigarents, my brother, my wife,
and my three children: | cannot say how much you all mean toYoe.are the ones who make life

worth living.

Xii

DEDICATION

To my family

Xiii

Chapter 1
INTRODUCTION

1.1 Motivation

The problem of ranking, whose goal is to predict an ordervey @ set of objects, is a key problem
in many applications. In web search, for instance, ranklggridhms are used to order webpages
in terms of relevance to the user. In speech recognition amchime translation, a set of candidate
hypotheses is ranked such that the best transcription msl&téon emerges near the topn these
applications as well as others (e.g. recommender systami®in structure prediction, sentiment
analysis, online ad placement), the ranking algorithm isitical component that has important
ramifications on final system output; a suboptimal ranking neader the entire system useless.

Due to its wide-spread applicability and importance, thebfgm of ranking has been gaining
much attention in research communities ranging from machéarning to information retrieval
and speech/language processing. However, most of therchssafar has addressed ranking as a
supervised learning problem. This is a restriction singestised learning requires that all samples
in the training set be labeled, which can be costly or prokibin real-world applications.

This thesis extends the study of ranking into semi-supedvisarning, namely learning to rank
using a dataset containing both labeled and unlabeled samphis has the potential to improve
the performance of ranking algorithms while keeping the mahtabeling effort scalable. There has

been little prior work in this area. Our goal is to study thidiwing questions:

1. What information in unlabeled samples can be exploitatiéncontext of ranking problems?
In classification problems, ideas such as the manifold ag8amand cluster assumption are
used to justify the utility of large amounts of unlabeledadaiWhat assumptions exist for

ranking problems?

2. Is there an effective mechanism for adapting the wideearignethods developed for semi-

IThis is referred to as “re-ranking” or “re-scoring” in theegmh and language literature.

supervised classification into semi-supervised rankimg®artticular, is there a general frame-
work (i.e. meta-algorithm) that makes it straightforwaodajpply ideas in classification to

ranking?

3. What can we learn by comparing the same semi-supervisgihgaalgorithm on different
kinds of real-world datasets? The No Free Lunch Theorenesstatit no algorithm can be
best on all datasets, but can we acquire rough intuition talwbat algorithms/assumptions

match what datasets best?

In the following sections, | first formally formulate the fmem of semi-supervised ranking
(Section 1.2). Then, for concreteness of illustration, iefty describe in Section 1.3 two of the
applications of ranking. The contributions of the thesesssurmmarized in Section 1.4 and an outline

of what follows is given in Section 1.5.
1.2 Problem Formulation

The problem of ranking involves learning a ranking modefrfratraining setsuch that it generates a
“good” ordering on theest set Formally, let{x(") y!)},_; | be the labeled training set consisting of
L samples, and lexW },_1 y be the unlabeled training set consistingJosamples. In many semi-
supervised learning scenarios, unlabeled samples aréicagily cheaper to acquire than labeled
samples, so it is often the case that-> L. For simplicity of notation, | will use the variable
s to index the entire training set when the distinction betwkbeled and unlabeled data is not
important: s= 1..L,L +1..L+U. In other words, | will use<® to refer to a sample in either the
labeled or unlabeled training set. The variab¥eill be used to index the test sgx®, y®}.

A samplex® € X consists of a set dfis objects{x? },_1 x. to be ranked or ordered. Often, an
object is represented numerically as a feature vector viittedsiond, sox® can be thought of as
a matrix ofNs by d dimensions. Ranking can be thought of as “shuffling” the roithis matrix.

It is important to notice thd\ls is dependent oa some samples will naturally have more objects to
be ordered than others.

The labely(") € Y encodes the ranking c[fxﬁ”}. Depending on the problem type, the label

either represents a total ordering or a partial ordering. eAegal encoding for both would be to

represent a total/partial ordering as a set of preferena&cms,&(') > xg') for a set offi, j) pairs,
wherep> representsxi(|> is strictly “preferred to” or “ranked higher than(ﬁ”. A weak preference
><i(|> Exﬁ') means tha>l{i(I> is either strictly preferred or equivalently preferreokf&).2 More formally, a
preference relatiobr over a seX is considered a total ordering if it satisfies the followinmgerties.

Fora,b,c e X,

1. (Reflexivity)a>a
2. (Antisymmetry) Ifa> b andbt a, thena ~ b (~ denotes “equivalently preferred”)
3. (Transitivity) Ifa> b andb> c, thenal>c

4. (Completeness) Eitha>b orb>ais true.

If only the first three properties are satisfi¢el s called a partial order. The set of preference
relations can be shown in graph format where eéEh’s a node and eacah links two nodes by a
directed edge. A partial ordering forms a directed acyclapy whereas a total ordering forms a
linear chain. Clearly, a training set with total orderingitains more labeled information than one
with partial ordering?®

The goal is to learn a functioh: X — Y that performs well (i.e. minimizes loss) on the test
set. While the performance measure is application-spedtiere are two broad categories: In
the general case, the loss functigha : Y x Y — Ris based on differences between the true and
predictedotal orderings. In the more specific case, the llggsis only a function of the top-ranked

object in the true and predicted rankings.
1.3 Example Applications

Information retrieval (IR) is a prominent example wherekiag is central. Given a user-inputed

query, the IR system returns a sorted list of documents #iisfies the user’'s information need. The

2The notationsa > b anda > b are also used to meanis (strictly) preferred td. | personally prefer- to avoid
confusing> with another similar-looking binary relation.

3A ranking problem with only partial ordering labels may ats®thought of as semi-supervised ranking, but we do
not use this definition in this thesis. Here, the term “senpesvised” refers to the fact that some samples are labeled,
whether they be total or partial orderings.

sorting should ideally be in order of relevance to the qu¥#hen the total number of documents
scale up, such as in library search or web search, preseatsiwrt list of relevant documents
become an essential task.

The labeled training datgx),y()},_; | for IR corresponds to the following: Eactl) is a set
of vectors, each vectotﬁ') representing a document. There are a totdl glieries, thud sets of
documents. Labelg! can be thought of as a vector of relevance judgments, whiedetermined
by a human annotator by seeing whether each document inttisarskevant to the given query. The
unlabeled datgx},_1 y refers to sets of documents in which there are queries butssaiciated
relevance judgments.

Machine translation (MT) is another example where rankiag loe applied. There are consid-
erable differences with IR, however. In MT, the goal is to g@te a translation for a given input
sentence. The space of translations is theoretically tefiigompared to IR, the set of documents
may be large but is finite). Therefore one can think of MT asengation” problem as opposed to
the “selection” problem of IR. In this case, ranking is us@fia second-stage procedure in MT. The
first stage generates a preliminary list of translation @atds; this usually involves algorithms not
directly related to ranking. The second stage, which isaftled a re-ranker or re-scorer, involves
ranking the set of translations.

The labeled training datéx!),y()},_; | for MT corresponds to the following: Eactl! is a

) representing a hypothesized translation. There are adbtalin-

set of vectors, each vecto;f
put sentences, thus sets of hypothesized translations. Labgls can be thought of as a vector
of fluency/adequacy judgments, which are determined by gadng the translation to a human-
generated translation. The unlabeled d[ai(&)}uzl_u refers to sets of translations from input sen-
tences that have no correlating human-generated traorsdati

A third example is protein structure prediction in compiatadl biology. The goal is to predict
3-D structure given an amino acid sequence. The rankinggmols to sort a set of candidate 3-D
structures (generated by different techniques) such ligabhes most likely to be correct are at the
top of the list. The setup is in many ways similar to the maghmanslation problem. The labeled
training data{x"),y()},_; | corresponds to the following: Eactl) is a set of vectors, each vector

xﬁ) representing a hypothesized 3-D structure. There are lagfotainput amino acid sequences,

thusL sets of hypothesized structures. Labgélscan be thought of as a vector of similarity values,

Table 1.1: Example applications and their relation to sseamervised ranking

Information Retrieval (IR) Machine Translation (MT)
Goal For a user query, return the most| For an input sentence, return the corregt
relevant documents translation

Where | Ranking is the central operation use¢d Ranking is used at an (optional)

Ranking | to sort documents, which potentially second-stage to re-sort a set of
Applies come from a large set hypothesized translations
xOy 1 sets of documents sets of candidate translations

{y(')}|:1__|_ sets of relevance judgments for eac¢h sets of fluency/adequacy ratings for eagh
document as determined by a human translation, computed by matching with

annotator human-generated translations

{x(“>}u:1“t sets of documents without relevange sets of translations without the associated

judgments human translation

which are determined by a comparing the hypothesized stegto a true reference structure. The
unlabeled datéx(“)}uzluu refers to sets of structures that have no true 3-D reference.

A summary of the information retrieval and machine tramstatpplications is summarized in
Table 1.3.

1.4 Contributions

Our answers to the questions posed at the beginning of thteh(Section 1.1) are briefly summa-

rized below:

1. What information in unlabeled samples can be exploitegtiércontext of ranking problems?

Answer: We demonstrate that some of the assumptions from semisgspérclassification
can apply to ranking. In particular: the manifold assummtilmw density separation (clus-
ter) assumption, and change of representation assum@iobeexploited in certain dataset

scenarios. We also introduce a new assumption based onmawfegdtation for ranking.

2. Is there an effective mechanism for adapting the wideegarignethods developed for semi-

1.5

supervised classification into semi-supervised ranking?

Answer: We propose a local/transductive meta-algorithm whicg @ ranker for each test
point individually. This makes it straightforward to inparate semi-supervised classification
assumptions, as one does not need to take into account aawéeslamong different sets of
objects to be ranked. Further, this has the added benefitiloirzu test-dependent rankers,

which has the potential to improve over general-purposkeran

In addition, we develop a kernel defined on lists (as opposgubints), which allows one to

modify kernel-based or graph-based classification metfmdsinking.

What can we learn by comparing the same semi-supervisgghgaalgorithm on different

kinds of real-world datasets?

Answer: We experiment with six real-world datasets: three are inrimation Retrieval, two
are in Machine Translation, and one in Computational Biplogs expected, most meth-
ods show mixed results, since each of the dataset has diffelharacteristics. Some issues
that influence what method works include: (a) the amounteuf tanks, (b) the correlation
between the optimized loss function and the true applioadfmecific loss. We also observe
that some methods tend to give slight improvements to a#lsgas, while other methods are
high-risk/high-reward. A concise summary of the results ithe Conclusion section, while
detailed analysis about why something worked (and did nok)are in the respective exper-

iments sections.

Outline of Thesis

Chapter 2: reviews related work, such as semi-supervisessification and supervised rank-

ing.

Chapter 3: describes the three tasks (and correspondiagatis) used in this work (Informa-

tion Retrieval, Machine Translation, Protein Prediction)

Chapter 4: presents a general local/transductive framefeorexamining various assump-

tions in semi-supervised learning in ranking.

Chapter 5: investigates how unlabeled data can be usedrtoldetier features for ranking.

Chapter 6: investigates how unlabeled data can be used ti et training distribution to

the test distribution in order to improve ranking.

Chapter 7. investigates whether the low density separatssumption in semi-supervised

classification can be applied to ranking.

Chapter 8: introduces a novel kernel based on lists and fication in semi-supervised

ranking.

Chapter 9: compares all presented methods and summargesaiin contributions of this

work.

Chapter 2
RELATED WORK

2.1 Supervised Learning for Ranking

A variety of approaches have been explored for the rankidplem in the supervised learning
setting. The majority of algorithms can be seen as inst#onis of the following abstraction, which

| call thescore-and-sort approach
1. Learn a functiorf that maps each individual objeéf‘) to a real number, acore

2. Rank a set of object@q(f)} by ordering the scores from maximum to minimum. An object
with the maximum score will be ranked first, followed by anesttjwith the next largest score,

etc. In other words, the ranking modei X — Y is equivalent t@ar gsor t f(xﬁs)).

This can be contrasted with the structured learning appraduich directly estimatels: X — Y,
i.e. scores are given for entire permutations, rather timindividual objects. In this case, ranking

is similar to a structured prediction problem [100]:
1. Defineh(x'¥) = argmaxey g(x®,y)
2. Estimateg by minimizing a rank-based loss, e k_; liotal (Y", h(x9))

The score-and-sortapproaches have been investigated to a greater extentseeitas often
difficult to directly optimize the ranking loss function onet space of all permutation of orderings
(For N objects, the argmax in the above formulation needs to searehN;! orderings). The
challenge, however, is to design an algorithm for learrirgyich that the argsort thereafter induces
an ordering with minimal loss. There are roughly three aaieg of methods for learning: point-

wise methods (regression), pairwise methods, and list-mwisthods.

2.1.1 Point-wise methods (Regression-based methods)

In regression-based methods [45], each object in the set teaget score value, arfdis estimated

by regression techniques to directly predict this valuee Tdss is measured by, for example, the
residual between predicted and target scores. The adeaotaggression-based methods is that the
large body of work on regression can be exploited for rankidgwever, the disadvantage is that
predicting a target score for each object may be a hardetgmothan simply ordering the objects.
In addition, like the pairwise methods, there is ho guamatit@t optimizing for regression loss will
optimize forlietal OF liop. Yet, recently [49] has shown promising asymptotic restilé in the limit

of large samples, regression can optimize loss functiools adlyqp.

Regression-based methods may be most suitable in cases avhazaningful scoring function
exists. For instance, in protein structure prediction [B34, 159], the target score quantifies the
quality of protein fold. To predict these scores, [124] meed a modification of support vector
regression that gives smaller slagkt(ibe) for top-ranked objects than lower-ranked objectsclv
ensures that the scores of the top-ranked objects are f@edidcth higher accuracy. The automatic
metrics used for speech recognition and machine translatiay also serve as meaningful targets
for regression.

A related approach is ordinal regression [113], where otesrgidts to predict the ordinal num-
bers, which may directly represent the ranks of each ob[&8l] provides a framework for large

margin ordinal regression applied to ranking.

2.1.2 Pairwise preference methods

The idea of pairwise preference methods is to Idasach thatf (xi(')) > f(xg')) if xi(') ng'). Even if
the Iabels{y(')} are given as total orderings, pairwise preference methodtdmevertheless extract
and learn from the corresponding set of pairwise orderifigsa(total ordering o, objects, there
are(N)(N; — 1) /2 such pairwise preferences).

The advantages of this pairwise preference approach arex{djng classification methods,
with some modifications, can be applied, and (2) it works amigdeorderings and can be used on
applications where total ordering labels are difficult tdaifp. The main disadvantage is that the

learning objective is more naturally cast as minimizing iaenber of incorrect pairwise orderings,

10

which may not correspond to the true loss function on totdénngs. Other disadvantages include
the i.i.d. assumption of different pairs and the computati@complexity arising from generating all
pairwise preferences, but these issues can be solved toesderd, by e.g. placing more emphasis
on some pairs over others (c.f. [31] [84]).

One of the first pairwise preference approaches is RankBe®jstRankBoost maintains weights
on each pair of objects and learns weak rankers that redagsuthber of incorrect pairwise order-
ings. Following the boosting philosophy, a weak rankerasned in each round and the final ranker
is a combination of weak rankers. Similar to RankBoost, FRAfW [67, 82] attempts to minimize
the number of incorrect pairwise orderings by formulanjrﬁgxi(')) > f(x}')) for all pairsxi(') > xﬁ'))
as constraints in a support vector machine objective. Rék8inimizes the hinge loss over the
margin f(xi(')) - f(xg')) of incorrectly ordered pairs. The idea of pairwise prefeemnis given a
probabilistic formulation in RankNet [27]. The probatyilihatx’ x| is defined asR;j = 1%y
whereg;; = f(xi(')) — f(x}')), and a neural network is trained to optimize the cross-pgthetween
the desired?; and the predicte®;. Much recent work in this area has focused on improving the
above algorithms and attempting to optimize an objectiatithcloser to the true loss function (e.g.
[26, 147, 128, 52]).

Many applications that use the loss functigsgp, may also learn the scoring function from a
pairwise preference method [42]. Rather than generatingoskible pairwise preferences from a
total ordering, these methods only ensure that pairwistemmeces between the top-ranked object
and other objects are predicted correctly. In other wordsestimatef such that the score of the
top-ranked object is higher than any other object, but docaot about the ordering among non-
top-ranked objects, i.é(x;’) > f(x\"") for i’ indexing the top-ranked object anig i'. This line of
work has an interesting connection with structured premictl44, 148], since the argsort function
of h: X — Y essentially becomes an argmax. Most re-rankers in machanslation and other
natural language processing systems employ this argmawaqp Prominent examples include:
parsing [43, 92], machine translation [133], part-of-sihetmgging [74], information extraction [78].

One thing to note about pairwise methods such as RankBotbettialthough the training phase
uses pairs of objects, the testing phase operates on indivabjects. That isf(-) is learned by
comparing pairs of objects (i.é.(xi(,')) > f(xﬁ”)) but during prediction, we appl¥(-) on individual

objects independently, then sort by the resulting valuessuth, there are no issues of intransitivity

11

for score-and-sort pairwise methods. (Intransitivity wscif we make independent pairwise deci-
sions during test time, i.éA > B, B > C, andC > A, which leads to an inconsistent ordering.) A few
alternative methods (not in the score-and-sort approgohjate on pairs at test time and therefore
is required to solve the challenge of combining partial fpise) orderings into a total order. For
instance, [41] proposes a greedy method where one firstshaildirected weighted graph, where
each vertex is an object and each edge indicates the striengthich the starting node ranks over
the ending node. Then they compute the potential for each hgdhe weighted sum of outgoing
edges minus weighted sum of incoming edges. The node wghsapotential ranks first, is deleted
from the graph, and we recurse to obtain the second-rankee. nbnother example is [3], which

advocates using the QuickSort algorithm to combine pawtidérings during test time.

2.1.3 Listwise methods

The third class of ranking methods is called list-wise apphes, due to the emphasis on treating
the list as the basic object of optimization. This avoids pheblems in regression and pairwise

approaches, which artificially forces independence assangpamong objects in the same list.

Listwise approaches can use information about rank paosiimd information at the query level. It

can potentially optimize a loss function that more closgipraximates the true loss function, but

the cost is usually more intensive (sometimes intractatme)putation.

Listwise approaches can generally be divided into two categ. The first directly optimizes
the loss function one cares about, or some smoothed versoedf. Loss functions for ranking are
usually non-smooth and non-differentiable, which is a @srable challenge to the optimization.
Examples include [115, 158, 163]. The other approach deéress function on the list, but the
loss function may not necessarily be inspired by the losstion used for evaluation. For example,
[156, 32] define probabilistic permutation models basedhenltuce-Plackett model and training

involves optimizing the model likelihood (or minimizing Kdivergence).

2.2 Semi-supervised Learning for Classification

A wide variety of techniques have been proposed for semgrsiged learning in thelassification

literature. See [170] for a concise and updated survey. ttergroup the various techniques based

12

on the assumptions used. Each techniqgue makes differamhpdens on how unlabeled data can
help learning. The four broad assumptions are:

Bootstrapping: Assume that the predicted labels of unlabeled data can liefasdearning.
Methods such as self-training [162, 1], co-training [2Xdanixture models with EM [118, 34] fall
into this class.

Low Density Separation: Assume that the classification boundary exists in low dgmedions,
and that unlabeled data can help identify those regions.ekample, transductive support vector
machines [15, 81, 61] (also known as semi-supervised SVktigee this by forcing a large dis-
tance between unlabeled samples and the decision boufiderassumption used by these methods
is sometimes also called the “cluster assumption.”

Manifold/Graph-based Methods: Assume that samples similar to each other have the same
label, and samples indirectly linked by a chain of close damplso have the same label. A graph
defined over both labeled and unlabeled data captures thiglghnd local closeness information.
The assumption used in graph-based method can also be adheahifold assumption” since they
all assume that data lie in some manifold defined by the gramththat the decision function varies
slowly over this manifold.

Change of Representation:Assume that a better feature representation (e.g. moramaars
nious or expressive) for learning exists and that unlabe#td can help discover this representation.

One important note is that there is no clear-cut way of categg the various algorithms by
their assumptions, since many of the assumptions are dedasité many algorithms employ more
than one assumption. For example, one may also think of gsapbd methods as falling under the
Low Density Separation assumption or the Change of Repies@m assumption.

Since these assumptions are very relevant to this work, serithe their related work in much

more detail as follows.

2.2.1 Bootstrapping Assumption

The Bootstrapping Assumption assumes that the predicbadslaf unlabeled data can be used for
supervised learning. Techniques that assume this inclselgtraining [162, 1], co-training [21],

and generative models with EM [118, 34].

13

In self-training, first an initial classifier trained on sinaimounts of labeled data predicts the
labels of unlabeled data. Then, confident predictions atecuhto the training set, and the classifier
is re-trained. Self-training assumes that the additiomlaéls are accurately predicted; its accuracy

degrades when noisy labels are added to the training set.

In co-training [21], two classifiers are trained on differé&ature splits of the labeled data. Then
the classifiers teach each other about their respectivedugfidence predictions on unlabeled data
(i.e. confident predictions by classifier A are added to théing set of classifier B, and vice
versa). Theoretical and experimental results show thataining performs well when feature splits
are sufficiently good and are conditionally independent axfheother given the class [21, 117].
In general, co-training can be seen a method that enforcégplawclassifiers to agree on both the
labeled and unlabeled data. It works because the versiae speeduced when classifiers are forced
to agree on the large unlabeled data.

Generative models with the EM algorithm [53] can be seen adtaversion of self-training.
They model the joint distributiom(x,y) = p(y)p(x]y) where p(x|y) is a mixture component that
can be identified by large amounts of unlabeled data. [11&§ nsultinomial mixture components
for semi-supervised text classification. Castelli and €¢88, 34] proved that if the model form
is correct, unlabeled data is guaranteed to improve acgutagractice, unlabeled data are often
downweighted [30, 46] in generative models to prevent esteedias. Fujino et. al. [60] derives a
hybrid algorithm that attempts to correct the bias. Generahodels with EM are also subject to

the difficulty of getting stuck in local optima.

2.2.2 Low Density Separation Assumption

The Low Density Separation Assumption assumes that theifitadion boundary exists in low
density regions of the feature space, and that unlabeledlearran help identify such regions. Such
an assumption is reasonable if one assumes that positiveegyadive samples form two separable
clusters (i.e. the so-calledluster assumption

Transductive SVMs (TSVMs), also known as semi-supervisei1s (S3VMs), [15, 81, 61]
achieve low density separation by maximizing the marginadhtbabeled and unlabeled data. Zhang

and Oles [166] questions the notion of margin for unlabetd@es, and suggests that TSVMs may

14

“maximize the wrong margin.” Nevertheless, much reseaahfbcused on TSVM’s difficult dis-
crete optimization problem by methods such as gradientemésain an approximate continuous
objective [37], deterministic annealing [135], and the @mre-convex procedure (CCCP) [44]. Im-
portantly, [35] applied a Branch-and-Bound optimizationgedure to obtain exact global optima
on small datasets. Their excellent results, which outperéa other TSVM implementations and
some graph-based algorithms, validated the importancegoiod optimization procedure for the
TSVM obijective. [160] proposed an alternative SVM formidatbased on semi-definite program-
ming (SDP); their formulation allows for both binary and tivglass problems in semi-supervised
and unsupervised learning.

Other techniques that employ the Low Density Separationnagson include Gaussian Pro-
cesses with null category noise model [99], informatiorufagzation [142, 47, 48], entropy mini-

mization [64, 80, 102], and maximum entropy discriminatjidf].

2.2.3 Manifold Assumption

In graph-based methods, one first constructs a graph ovierldimtled and unlabeled data; then a
function that is both smooth over the graph and incurs smosdl bn the labeled samples is estimated.

The graph can be seen as a data-dependent regularizer.

This can also be considered as similar to a Change of RepatisenAssumption because the
distances in the original Euclidean feature space are risdan favor for the geodesic distance
induced by the graph. This geodesic distance is assumedmotseaccurate since the large amount
of unlabeled data can help induce the true underlying saaespamanifold of the data. To make
this clearer, imagine we have 10 labeled points in a feapaeesof dimension 1000. This is a high
dimensional space, and it is likely that we would suffer frowerfitting. Now suppose we have
many more unlabeled points, which we use to generate a dapd-¢the edge weights of a node,
for example, can be computed from the Euclidean distanc#s cbsest neighbors. Therefore, the
distance between two faraway points is no longer the Euatidistance computed directly on its
feature vectors, but instead the summed distance of treytirough the paths of nearest neighbors
in the graph. If it turns out that the real data lies in the rfddiand not the original feature space,

then the geodesic distances would be a more accurate distegmsure and the graph-based method

15

may achieve improvements.

The variety of graph-based semi-supervised algorithrisrdstimarily in the particular form of
loss function and regularizer. Prominent examples inclidiecut [19, 20], Spectral Graph Trans-
ducer [83], Discrete Markov Random Fields (MRF) [171], atsdciontinuous relaxation: Gaussian
Random Fields and Harmonic Functions [172], Manifold Ragahtion [12, 13], and Graph Ker-
nels [138, 91, 95, 5]. An open area here is the question aigbtjraph construction, since empirical
evidence suggests that accuracy may depend more on thethepkhe particular learning algo-
rithm. Some works have begun to address this, e.g. modifyrtagh spectrum [173, 85], convex

combination of graphs [8], and classifier-derived distar{dé

2.2.4 Change of Representation Assumption

The Change of Representation Assumption assumes thatea bitesentation (e.g. more parsi-
monious or expressive) for learning exists, and that uhdabdata can help discover this hidden
representation.

The idea of feature/kernel learning is to use vast amountsibeled data to learn a better
feature or kernel representation of the data. The new feaiukernel is assumed to be a better
distance measure, just as the geodesic distance is assoiimetetter when the data lies on a man-
ifold. Feature/kernel learning methods differ from grd@sed methods in terms of the emphasis:
whereas graph-based methods focus on ways to exploit uathtlata once a graph is constructed,
feature/kernel learning methods focus on learning a bdistance metric, whiclkouldbe used to
construct graphs [4]. However, the strongest advantageatfife/kernel learning is that one is not
restricted to graphs but is free to choose from the toolkérof supervised and inductive classifica-

tion algorithm once the new feature/kernel is learned. dsisentially a two-step procedure:

1. Learn a better feature/kernel representation usinglab#led and unlabeled data

2. Apply supervised learning to the new feature/kernelasgntation of labeled data

How does one learn better features from unlabeled data? gmeaxh is to cluster the samples
and use the cluster identities as new features [105]. Adterely, one may learn dependencies

between the original features and collapse them into mamgrpanious latent variables. Works by

16

Ando and Blitzer [6, 7, 18] use multiple-task learning to fihé dependent features; [121] learns
the latent variables via principal components analysisndependent components analysis. An
alternative to learning better features is to learn distarar kernels between points directly (since
many learning algorithms work by comparing distances, & initial representative is based on
features). Methods for learning better kernels includé&tigernels [75, 70, 63] and cluster kernels
[36]. There are also many distance metric learning algmistife.g. [96, 69]); the application of
them to this problem is still relatively unexplored. An opesearch area is the question of how to
use the labels as well as the unlabeled data to learn bedteirés; the above techniques essentially
ignore the labels and learn features/kernels in an unsigeerfashion.

Finally, we note thatheoryfor semi-supervised classification is still an open prohlarmd has
been identified as one of the ongoing challenges in macharaifeg [93]. One of the first works in
this area was [34], which established that if we view classifon as a mixture of class conditional
distributions and that the mixtures are identifiable (@ustssumption), then error can converge ex-
ponentially fast in the number of labeled examples. Foraiming, [103] presents a generalization
error bound which shows that forcing agreement among nhelltgarners lead to tighter bounds.
Importantly, [11] formulates a PAC model for unlabeled dataich is the first unified theory for
semi-supervised learning (as opposed to algorithm-speaifalyses). More recently, [94] analyzed
the Manifold Assumption and indicate that some methodsasegraph Laplacians actually do
not achieve faster convergence rates. Singh et. al. [13Fjfide an interesting analysis of when
unlabeled data helps under the cluster assumption. Theosgemi-supervised classification is still

an unsolved problem; we will not address these issues imbrik.

2.3 Semi-supervised learning for Ranking

There are generally two interpretations of “learning tokranth partially-labeled data.” For con-
creteness, in this section we will describe these intemioets as information retrieval problems,
where the objects to be ranked are documents

In the scenario we consider here, the document lists in dasdaare either fully labeled or not
labeled at all. The second scenario arises when a docurseahidionly partially-labeled, i.e. some

documents ird have relevance judgments, while other documents irséimeelist d do not. This

17

second problem can arise when, e.g. (a) the document lisgwed by one query is too long and
the annotator can only label a few documents, (b) one usesglicinfeedback mechanism [82] to
generate labels and some documents simply cannot acgbéks laith high confidence. Currently
there is no precise terminology to differentiate the twobtems. Here we will call Problem One
“Semi-supervised Rank Learningihd Problem TwoéLearning to Rank with Missing Labels"See
Figure 2.1 for a pictorial comparison.

Several methods have been proposed foMissing Labelgproblem, e.g. [168, 153, 66, 151]:
the main idea is to build a manifold/graph over documentsmopagate the rank labels to unlabeled
documents. One can use the propagated labels as the fine vatuanking [168] (transductive), or
one can train a ranking function using these values as thedd4§66, 151] (inductive). One impor-
tant point about these label propagation methods is thgidb@ot explicitly model the relationship
that documentl)) is ranked above, sag®). Instead it simply assumes that the label valuedfér
is higher than that ofi®¥, and that this information will be preserved during propizga

An alternative approach that explicitly includes pairwrseking accuracy in the objective is
proposed in [2]. It also builds a graph over the unlabele@abj which acts as a regularizer to en-
sure that the predicted values are similar for closely-eoted objects. Specifically, for a combined
training and testing set of objects, one can learn a score vedtar R" that represents the score

value for each object. One minimizes the following objeztivnction with respect th

g{rnlfTLf +c(ig€Er(>q,x,-)a,- (2.1)
subject tdi — f; > &;, &; >0 V(x,Xx)) €E
where(i, j) € E is the set of labeled pairwise preferencksis the Laplacian of the data graph
consisting of all objects as nodesis the loss for misordering; andx;, ¢ are slack variables, and
C is an adjustable parameter that trades off between losseguithrization.

[40] also proposes a graph-based regularization termpbeantrast to Equation 2.1, it defines
the graph nodes not as objects, bubbgect pairs Just as the pairwise formulation allows one to ex-
tend Boosting to RankBoost, this formulation allows onedog any graph-based semi-supervised
classification technique to ranking. However, generatilhgp@ssible pairs of objects in a large

unlabeled dataset quickly leads to intractable graphs.

18

Semi-supervised rank leaming:
lack of labels for some gueries

Query 1 Query 2 Query 3
Doc1 Label Doc1 Label Doc1 777
Doc?2 | abel Doc?2 | abel Doc2 777
Doc3 Label Doc3 Label Doc3 777
Doc4 Label Doc4 Label Doc4 777

Learning to rank with missing labels:
Lack of labels for some documents

Query 1 Query 2 Query 3
Doc1 Label Doc1 Label Doc1 Label
Doc2 Label Doc2 777 Doc2 Label

Doc3 777 Doc3 Label Doc3 777
Doc4 777 Doc4 777 Doc4 777

Figure 2.1: Two patrtially-labeled data problems in rankitdge focus here on semi-supervised rank
learning, where labels are entirely lacking for some q@eredifferent problem is that of “missing
labels”, where not all documents retrieved by a query arelémb Note that these two problems are
not mutually-exclusive.

Most prior work consist of graph-based approaches foMissing Labelgproblem. However,
they may be extended to address Semi-supervised Rank Learnipgoblem if one defines the
graph across bottl andd,. For instance, [151] investigates label propagation acougries, but
concluded that it is computationally prohibitive. Beyoh& itomputational issue, however, how to
construct a graph across different queries (whose featiagde at different scales and not directly
comparable) is an open research question.

To the best of our knowledge, [145] is the only work that tasaty addresses tH&emi-supervised
Rank Learningproblem. First, it uses a supervised ranker to label the eots in an unlabeled
document list; next, it takes the most confident labels adsséw label propagation. A new su-
pervised ranker is then trained to maximize accuracy onaheléd set while minimizing ranking
difference to label propagation results. Thus this is astompping approach that relies on the initial
ranker producing relatively accurate seeds. Our previoug y64] proposed another method using
the Change of Representation assumption.

TheSemi-supervised Rank Learnipgpblem is important in practice because it may be difficult
to obtain any labels for some queries/lists. For examplanfiormation retrieval, this problem

manifests itself in the long tail of search queries. A quat&Jdi Manber (Google Vice President of

19

Engineering) demonstrates how many types of queries aeévestat Google: “Twenty to twenty-
five percent of the queries we will see today [at Google], weehaever seen before It is
therefore impractical to obtain labels for many of the geiin practice. For machine translation
and protein structure prediction, tisami-supervised Rank Learnipgoblem is actually the only
scenario that occurs. In these applications, a one-tim& sast is associated with obtaining a
reference translation or 3-D structure. Once this referdambtained, labels for each hypothesis
translation or candidate structure is computed via autenpabcedures. Therefore, the additional

cost

2.4 Relations to Domain Adaptation

Domain adaptation (c.f. [79] for a survey) is a field of maehiearning that focuses on the prob-
lem of training and testing under different distributior®ur interest in domain adaptation stems
from the fact that transductive learning can be consideredxé&reme form of domain adaptation,
i.e. where one adapts to the given test set. Recent work sufi¥al25] applied the Change of
Representation idea from semi-supervised learning to doadaptation. Our work in Chapter 6
goes in the opposite direction, applying domain adaptagchniques to semi-supervised learning.
In particular, our Importance Weighting approach treatshdast list as a new domain and adapts
the training procedure towards it.

Generally speaking, domain adaptation can be divided imervised and unsupervised domain
adaptation: for supervised adaptation, small amountdelda data are available for the test domain
and the goal is to leverage the additional large amount tdréifit but labeled data. In unsupervised
adaptation, no labels are available for the test domain. Weiscuss only unsupervised adaptation
since the use of unlabeled data relates more closely to thessgervised/transductive scenario.

One of the popular approaches in domain adaptation is impoetweighting [134], which in-
volves re-weighting the training samples such that sample® representative of the test domain
are emphasized during training. This approach is basedeoassumption of “covariate shift”, i.e.

the sample distribution differs between train and test{teifunctional relationships between input

IHe made this statement at Google Searchology conference,287. A video of the event is available online
athttp://ww. yout ube. conf wat ch?v=SDOcyYUEELY ; his talk is roughly 35 minutes into the 53 minute
video.

20

and output remain unchanged. To illustrate, considgassificationproblem with labeled training
set{(x,z)}i=1.L and unlabeled test s€tx,) tu=1.u. Let prain(X) and prest(X) be the true training
and test distributions, which are assumed to be signifigaliffierent.

It has been shown [134] that training on a dataset where eauting sample{(x)}i=1.L is
weighted by the ratiov(x) = % corrects for covariance shift. In practice, computing tea-d
sity estimateresi(X) (from {(x) }1=1.1) and prest(X) (from {(X,) }u=1.u, IS undesirable in high di-
mensions, so much recent work has focused on directly cangpthie importance weights(x;)
(without computingprest(-) and prest(+)) [17, 73, 141]. A supervised algorithm applied to this
weighted dataset would therefore focus on correctly digsgi training samples close to the test
distribution (i.e. highw(x)), while ignore samples far from it (low(x)).

We are aware of only a few recent works addressing the dondaiptation problem in ranking

[155, 38]. However, their methods are under the supervisieghtation framework, and therefore

are not directly applicable to the transductive problem wecisterested in here.
2.5 Related Work in Statistics and Economics

There is a large body of literature in statistics on modelizugk data, as well as in economics on
modeling choice decisions. These are related to the rantimigem, and insights from these fields
could potentially benefit our machine learning techniqui¥¢e do not directly apply any of the
statistics or economic work here, but for completeness Widvigfly describe some background in
these areas. These may be useful in identifying possibleuageof interdisciplinary work.

One of the main goals of statistics is to analyze, model, atetpret data. Ranking data is
a kind of data that often results from surveys, for examplerv&ys could be given to a large
population, and insights on what the population preferdccte inferred and hypotheses about
population preferences could be tested. For instanceosepg survey asks a group of students to
give their preference for a set of drinks: (Coke, Pepsi,t8pri There are 6 possible rank vectors:
(3,2,1), (3,1,2), (2,3,1), (2,1,3), (1,3,2), (1,2,3). Ba®n the population survey (size N), we obtain

a histogram over these 6 possible rank vectors. The qusedtianstatistics seek to answer are, e.g.:

1. Is there an average (mean/median) rank vector that tescithe average preference? If so,

2Example taken from [111]

21

how to compute it?
2. What is the spread of rank vectors to the average (i.eanvee)?
3. Are there clusters of sub-populations that show diffekamds of preferences?
4. How to model the population, and how to fit the model to data?

The average rank vectgrcould be obtained by minimizing, e.g. the following objeeti

N
argminy d(y", 2.2
gmi i; v,y (2.2)

whered is a distance between two rank vectors. Possible distanckgle:

e Spearman, Footrule, and Hammind(y,y) = S4|y§ — Y| where p- 0 (Hamming), p=1

(Spearman) or p=2 (Footrule)
e Kendall: d = miniminum number of consecutive swaps required to meakecomey.

e Cayley:d = miniminum number of arbitrary swaps required to mgkecomey.

There are many ways to model the data with a probabilisticehotio give a flavor, here are

some examples:

e Mallows @ model: P(yly,0) = ﬁexp(—ad(y,ﬂ). This is similar to a Gaussian model,
where we have a “mean” vectgrand a constantr indicating the spread around the mean.

The farther a rank vectagris from the mean (in thd() sense), the lower the probability.

e Babington Smith models: Defing; to be the probability that objecis ranked above object
j, independent of other potential choicesIhe probability model is then obtained by ranking

a set of objects constrained to the orderings wherp;gdl are consistent.

3The Bradley-Terry model, which is an instance of this, ass = Vi‘\ﬁVj , wherev > 0.

22

e Multi-stage models (e.g. Plackett-Luce model): Defindo be the probability that object
is the first choice out of all candidates. Then we can imagineubi-stage process where a
ranking is obtained by drawing the first choice, then detgtire first choice and drawing the
second choice, etc. We may wish the valygs$o satisfy some conditions such as the Luce

Axioms?

For a broad review of ranking models, refer to [57, 111]. Onpartant note about these ranking
models is that they often work with a fixed set of objects. Ashsuanalysis of ranked data is
often termed “analysis of permutations.” For example, in swrvey, each participant produces a
preference over the same set of objects (different paatitggive a different permutation over the
same set). In contrast, in the ranking problems we are stile different “participants” may be
producing preferences for different sets of objects. Fangde, in Information Retrieval, each list
of documents represedifferentdocuments retrieved via different queries. While this nigiply
that prior work on permutations may not always be directlpligpble, we already begin to see
recent innovations in machine learning which utilize thiesas (c.f. [28, 101, 72]).

Related work in economics include social choice theoryitytiheory, and game theory. All
these fields are concerned with “making choices” out of a setndidates, and one way this deci-
sion manifests itself is via a preference relation. Sodmalice theory [9] studies how preferences
can be aggregated to make a collective decision. Utilitphéc.f. [109]) is a branch of decision
theory and game theory which models choice and preferenaeh &bject has an utility, and the
preference relation is induced from the ordering of thedligyuvalues. This is very similar to the
score-and-sort approach of ranking. In fact, we may consitany of the methods for ranking as

procedures for estimating the utility of each object.

Chapter Summary

We reviewed various work related to semi-supervised rapkimparticular semi-supervised classi-
fication and supervised ranking. While there are much wothése related fields, semi-supervised

ranking is still a relatively unexplored area. Here we byiédientify some potential challenges and

4Essentially, these axioms formalize intuitions such athdfprobability that Coke is the first choice out of all 3 dsnk
is 0.9, then the probability that Coke is the first choice dyGmke,Pepsi) should be no less than 0.9.

23

open problems in semi-supervised ranking:

e What kinds of unlabeled data assumptions in classificaorbe converted to ranking? Clas-
sification algorithms can be converted to ranking algorghna, e.g. pairwise formulation,

but would the unlabeled assumptions be convertible as well?

e What new algorithmic and computational challenges aredhiced by the ranking structure?

How can operations (e.g. loss function, kernels) on samptesextended to operations on

lists?
e What sorts of theoretical guarantees are possible with-sapervised ranking?

The first two challenges will be addressed in this disserati

24

Chapter 3
APPLICATIONS AND DATASETS

This thesis focuses on three applications: Informatiomi&etl, Machine Translation, and Com-
putational Biology. The idea is to utilize a variety of reebrld datasets to test the effectiveness of
my algorithms. An algorithm may work well on one dataset attthe other, and investigation into

the reasons for such differences may lead to further insigbtt the algorithm and its assumptions.

3.1 Ranking in Information Retrieval

The goal of Information Retrieval (IR) is to help a user fine ihformation he/she desires. The
user’s need can be very diverse. For example, in web sedrehyser's need can be classified as
informational, navigational, and transactional [25]. Tinst, informational query, may range from
simple factoid questions such as “What is the highest mauimtdhe world?” to complex ones such
as “How have different parts of the world responded to theiBemt’s new plan for Afghanistan”.
Users with navigational needs are interested in going tticoder webpages on the web (e.g. the
query “NAACL 2009” may indicate a need for the user to find afeoence website, which will
eventually help in satisfying other needs. Transactioealds represent a user’s wish to accomplish
some action on the web, such as the “Form 1040 download”.

The IR field is therefore very broad, encompassing studiésiofan interaction, document rep-
resentation, scalable architectures, etc. (Refer to atdw®k by [110] for an overview). Ranking
is one of the core areas of study in IR due to its importanceésenting documents to users in an
efficient manner. Information is essential to making knalgkeable decisions, but information is
useless if the one who needs it cannot find it.

Ranking in IR is classified into two main categories: Statankng and Dynamic Ranking.
Suppose we have a large but fixed and finite document colfectBiatic ranking is the problem
of ordering documents without regard to a specific user qu&hys ordering can represent the a

priori “quality” of a document; high quality documents skainave a prior probability of ranking

25

higher than a low quality document, independent of any ugeryg For example, Google’s famous
PageRank algorithm [24] assumes that webpages with mamkmare likely to be of much higher
quality than those with few in-links, i.ep(d) = (1—a) + U(Zd/emcoming%)- Here, p(d) is the
PageRank of documeunit(the higher the betterf(d’) is the number of out-links for documedt,
anda is a damping factor that is useful for computational issugsraodeling a random surfer. We
see here that this recursive equation generates a stakingaof all webpages on the web, where
a webpage that is often linked by others with high pageraritsédf higher in rank. Importantly,

note that this ranking is only a function of the underlyingowggaph and is independent of any user

query.

In contrast, Dynamic ranking is the problem of ordering doeutsafter a user-given query has
been observed, i.e. a user need has been stated. A largetidgsamic ranking functions are
human-engineered “metrics” that compute a score for eaehyeflocument pair. Documents are
then ranked by their respective scores. For example, usegector space model, one can measure
the score of a query-document pair as the distance betwéblgtdefined query and document
vectors. Particular methods include TF-IDF and BM25, whielve been shown to work well in

many evaluations.

Recently, the machine learning paradigm has emerged asragimg approach to solving rank-
ing problems. In this “Learning to Rank” setup, one first @egs a training set comprising queries
and documents labeled by their relevance. These querystttupairs are represented by feature
vectors, which could include a variety of metrics (e.g. BMZbhen a machine learning algorithm
learns the optimal combination of these features for ptegjaelevance rankings. The advantage
of the machine learning approach is that it can automaitatie the ranking function for the given
dataset. However, this also leads to a disadvantage: tkgafunction can only be as good as the

quality and the size of labeled training data.

This thesis focuses on the dynamic ranking problem, whexteifes derived from static ranking

may be employed.

26

Type of feature Examples
Document characteristics document length
Term matching of query and web document BM25[126], LMIR[165], tfidf
Term matching of query and metadata (anchor, title, URL) BM25, LMIR, tfidf
Static ranking PageRank[24], HITS[87]
Hyperlink-based scores Hyper-link feature propagation[123]

Table 3.1: Examples of TREC features

3.1.1 Information Retrieval Datasets

Our IR experiments are performed on the LETOR dataset (uei2j [107], which contains three
sets of document retrieval data: TREC’03, TREC'04, and OMIED. This is a dynamic re-ranking
(subset ranking) problem, where an initial set of documénatse been retrieved and the goal is to

sort the set in an order most relevant to the query. This isrameanly-used benchmark task in IR.

The TREC data is a Web Track Topic Distillation task [50]. gl is to find webpages that
are good entry points to the query topic. Figure 3.1 givesxamgle of a query and a subset of
webpages that ought to be returned by the ranker. As seea @xdmple, webpages such as “USDA
Cotton Program” provide a good entry point reference forreetaof information that will answer
the query; the webpage itself may not contain much inforomatbut should contain pointers to
information. The original data consists of all webpagesifieocraw! of the gov domain in 2004.
There are a total of 1,053,110 HTML webpages and 11,164,8g8rlinks. The LETOR dataset
conveniently extracts many state-of-the-art featuresifquery-document pairs, including BM25
[126], HITS [87], and Language Model [165], and hyperlinlopagation [123]. A summary of

features is given in Table 3.1.

The OHSUMED data [68] consists of medical publications dreldueries represent medical
search needs. It is a clinically-oriented MEDLINE subsemnsisting of 348,566 references (out
of a total of over 7 million), covering all references from@®ihedical journals over a five-year
period (1987-1991). An example query and relevant documsesitown in Figure 3.2. Note that the

document fields are the title, abstract, MeSH indexing teamthor, source, and publication type.

27

QUERY:
Title: cotton industry
Description: Where can | find information about growing, harvesting aotnd turning

it into cloth?

EXAMPLE ANSWERS/HOMEPAGES

Cotton Pathology Research Unit (cpru.usda.gov/)

FAS Cotton Group (ffas.usda.gov/cots/cotton.html)

Office of Textiles and Apparel (otexa.ita.doc.gov/)

USDA Cotton Program (www.ams.usda.gov/cotton/)

Figure 3.1: Example TREC query and webpages

The features are in general of the term-matching type, ie2BMMIR, and tfidf.

For TREC, documents are label@del evant ,i r r el evant }; an additional labefparti al | y
rel evant } is provided for OHSUMED. Table 3.2 summarizes the data (e.g-REC’03, the
ranker needs to sort on average 983 documents per querypmiithl. document in the set being

relevant); see [107] for details.

3.1.2 Information Retrieval Evaluation

The evaluation metrics are mean average precision (MAP)namohalized discount cumulative
gain (NDCG@n) [77]. MAP is defined using precision, the patage of relevant documents up to
a given rank. For a set ¢t relevant documents, average precision (AP) is:

AP z precisior@rank(j)

IR deR
For example, for a set of documents with the following ragkifrelevant, irrelevant, relevant

the precision at rank 1, 2, 3 are 1/1, 1/2, 2/3, respectieelg, the AP i%(1/1+2/3) =0.8. MAP

28

QUERY:
Patient Info: 60 year old menopausal woman without hormone replacemerdji
Information requestAre there adverse effects on lipids when progesterone engiith

estrogen replacement therapy

DOCUMENT:

Source:J Obstet Gynaecol 8707; 94(2):130-5

MeSH KeywordsDrug Combinations; Estrogens/AE/*TU; Female;Hemorri@ge..
Title: Continuous oestrogen-progestogen treatment and seraprdigins in
postmenopausal women.

Publication type:JOURNAL ARTICLE.

Abstract: Serum lipids and lipoproteins were examined in 44 healttstpenopausal
women every 3 months during 1 year of treatment with eithetinaous
oestrogen-norethisterone acetate or placebo. Total selofasterol and
LDL-cholesterol levels were reduced by approximately 15%b 20% (P less than
0.001), respectively in the hormone group but were unchédimgthe placebo group....
Moreover, the low frequency of bleeding with continuousteEgen-proge stogen therapy

would make this an appropriate alternative in postmenaaeplacement therapy.

Author: Jensen J; Riis BJ; Strom V; Christiansen C.

Figure 3.2: Example OHSUMED query and document

is the mean of AP over all queries. NDCG is an alternative imétat takes into account multiple
levels of judgment (not only relevant vs. irrelevant). Santo precision, NDCG is measured at a

given position:

NDCG(n) = Z ¢ 20 -1
n)= -
",Zl log(j)

Herer(j) =0,1,..M represents th&l-level numerical rating for document!) (Higher value

indicates more relevance). The log is base 2 and we sgt)legl (not 0) in the above equatiody

29

Table 3.2: IR Data characteristics

TREC 03 | TREC 04 | OHSUMED
#queries 50 75 106
#documents 49k 74k 16k
avg #document/query 983.4 988.9 152.3
#relevant documents 516 1600 4.8k
avg #relevant/query 1 0.6 28
avg #document pairs| 302k 262k 369k
#features (original) 44 44 25

is a normalization constant that represents the score difdbtepossible ranking and allows NDCG
to be bounded by0, 1].
As reported by [107], some of the state-of-the-art resudiseld on RankBoost and RankSVM

are as follows:

e TREC'03: RankBoost - 0.212 MAP, RankSVM - 0.256 MAP

e TREC'04: RankBoost - 0.383 MAP, RankSVM - 0.350 MAP

e OHSUMED: RankBoost - 0.440 MAP, RankSVM - 0.447 MAP
3.2 Ranking in Machine Translation

In machine translation systems, ranking algorithms ard ase “2nd-pass” decision maker that im-
proves upon the outputs of a “1st-pass” translation sysiEm. 1st-pass system, due to constraints
in computing power, usually employs simpler features anowkedge sources when translating
foreign sentences. For each input sentence, it generateisch kkely hypotheses (N-best lists),
which is then re-ordered by a ranking algorithm that emphogse powerful features or knowledge
sources. In a variant of this setup called “system comhinatimultiple 1st-pass systems are simul-
taneously employed to generate multiple N-best lists, Wwhie then combined and ranked. This

coarse-to-fine approach of ranking a hypothesis set geelgt the 1st pass system can be very

30

effective in improving system accuracy. The assumptiohas good translations lie in the set of the

hypotheses, and can be picked out by powerful ranking algos.

In machine translation, the ultimate output of the entirstam is a single translation, so the
more specific loss functiohop, that only measures the quality of the top hypothesis is usad.
addition, the label$y(!) } are usually total orderings. Automatic metrics, which nueashe distance
between translations and their corresponding human-peatiteferences, provide an effective way
to label each hypothesis with a score. These scores (e.@LiBEY metric for machine translation)
can be sorted to provide a total ordering. Further, multiptpotheses may have the same loss,
SO in practice we have ties. Finally, machine translatiostesys tend to have low-dimensional
feature vectors for representing hypotheses—this in tapacts issues such as separability of data.
We note that there are research systems that operate oreddanuirthousands of features, but the
conventional systems usually work with on the order of 1Quiess. The features, which include
likelihood scores from language models, translation mmdmtoustic models, etc., are sometimes
called “sub-models” because they are each quite complextiums and encompass a significant

amount of information.

3.2.1 Machine Translation Datasets

We employ two machine translation datasets from the Intenma Workshop on Spoken Language
Translation (IWSLT) shared task of 2007. One dataset is fabik-English translation, while
the other is for Italian-English translation. IWSLT evaioas, in general, focus on translation of
spontaneous speech. The Arabic-English task involveslation of transcribed read speech of the
Basic Travel Expression Corpus (BTEC) [143], which cont@ntences similar to those found in a
traveler's phrase book. The training data for the Italianglish task consisted of transcriptions of
read dialogs, whereas the test data contains spontaneadogsl{e.g., between a travel agent and
his clients regarding transactions about ticket purchaseéshotel reservations), so there is a data
mismatch condition in the Italian-English case.

The baseline systems used for this task are described inygter Description paper of Uni-
versity of Washington’s entry in IWSLT [86]. The work in thisesis is based on the University of

Washington system, so note that the following brief desioniis are related to the system and do

31

not represent thenly approach for machine translation. Nevertheless, the Wsityeof Washington
system is a mainstream and competitive system in the framkeviphrase-based statistical machine

translation. For a good recent survey of various approatthemchine translation, see [108].

The first-pass machine translation system is a statistivalse-based MT system based on a

log-linear probability model:

K
ex = argmaxp(e| f) = argmax Z Aax(e)} (3.2)
e e K=1

wheree is the English sentencéd,is the foreign (Italian or Arabic) sentenck, arek weights to be
trained, andu (e, f) are features such as phrase-based translation scores) leanslation scores,

word count penalty, and language model score.

The weights are trained by Minimum Error Rate Training (MBRITL9] and decoding is done
via the Moses decoder (without factored models) [89]. Tledmg generates N-best lists of size up
to 2000 hypotheses, which is then de-duplicated to remasmtichl hypotheses. This dataset is the
input to our second-pass ranker. For more details aboutysters, refer to the system description

[86]. A brief summary of the data characteristics are shawreaible 3.3.

Table 3.3: MT Data characteristics

Arabic-English (ar)| Italian-English (it)
#lists (dev set) 482 500
#lists (test set) 499 494
avg hypothesis per list 260 362
minimum # of hypotheses in a list 2 1
maximum # of hypotheses in a list 1676 1626
#manual references 7 1
#features (original) 9 10

32

3.2.2 Machine Translation Evaluation

Traditionally, MT evaluation measures required examoratf results by human judges, who an-
notated theadequacyof translation in capturing the meaning aftgencyof the expression in the
target language. This is expensive, however, so the contynluas since moved towards automatic
evaluation metrics such as word error rate BLEU [122], PER[LTER [140], and METEOR [98].
A common element of these automatic metrics is the requinéwieone or more human-generated
translation of the test set, called references. The ideartsatch the system output with these human
references; the larger the match, the better the translatio

In this work, we use BLEU [122], the most common evaluatioririnéo date. BLEU considers
n-gram matches of the system output with human referencés apnaximum n (usually n=4, as
employed in this work). This rewards sentences where thal word order matches that of the
reference. BLEU is a precision-oriented measure in thaalitutates the percentage of n-gram
matches out of the total number of n-grams in the sentencerexity penalty is introduced to
capture recall: it penalizes sentences that are significahbrter than the reference. The BLEU

metric is computed over the whole corpus using the follovgqgation:

BLEU = BP- exp(z log pn) (3.2)
n

whereBP s the brevity penalty angy, is the precision of each n-gram.

Traditionally, researchers report the BLEU score of thehgpotheses chosen by the ranker. In
addition to this, here we report what we catip-k BLEU oracle scoresvhich is a metric useful
for MT system combination scenarios. In this scenario, timel ass ranker not only outputs the
top hypothesis after re-ranking, but the Top-k hypothedd® idea is that a downstream system
combination engine will gather these k-best lists from mpldtMT systems and do an additional
re-ranking step. System combination has become an eféestilategy in MT research due to, e.qg.
advances in sentence/lattice alignment (c.f. [127]), &edefore we believe Top-k oracle is a mean-
ingful metric to report.

The Top-k BLEU oracle is best illustrated by an example. lguFé 3.3, we see seven hypoth-
esized translations (of the Arabic-English dataset) inditier ranked by the re-ranker. If we only

output a single sentence (“please press the button yeltbe)BLEU score would be .53. If we in-

33

stead output the top-2 hypotheses (“please press the ndtow”, “please press button yellow”),
the best possibleoacle) BLEU score is still .53. If we output the top-4 hypothesé, best possi-
ble BLEU score is 1.0. In this sense, the Top-k BLEU oracleasgnts the best possible achievable
BLEU score if the Top-k list is given to a system combinatioiee! Note that in this definition,
the Top-k BLEU oracle is a non-decreasing curve with resjuelct

In addition to BLEU, we report PER (position-independentaverror rate) for the first hypoth-

esis in the re-ranked list.

REFERENCES
please press the yellow button

please push the yellow button

Hypotheses in ranked order and BLEU of individual hypothess
(BLEU=.53) 1. please press the button yellow

(BLEU=.42) 2. please press button yellow

(BLEU=.41) 3. please press the button the yellow

(BLEU=1.0) 4. please press yellow button

(BLEU=.65) 5. please press the yellow the button

(BLEU=.43) 6. please press yellow the button

(BLEU=.35) 7. please press a yellow the button

Figure 3.3: lllustration of Top-k BLEU oracle score. Top-facde=.53, Top-2 oracle=.53, Top-3
oracle=.54, Top-4 oracle=1.0, Top-5 oracle=1.0.

3.3 Ranking in Computational Biology (Protein Structure Prediction)

Protein structure prediction is an important research aigd@n computational biology. The goal

is to predict the 3-D structure of a protein based on sequénge amino acid) information. This

1This assumes the system combination is simply choosing greentences; more advanced system combination
methods merge different sentences and generate new onshijcim case the Top-k BLEU oracle becomes a lower
bound on the best possible score from system combination.

34

problem is of significant interest because while advancageimome sequencing techniques have
produced large datasets of linear amino acid sequencésnfigrstanding of the biological role of
proteins require knowledge of their structure and funciii.

Protein structure prediction methods can generally beddiviinto two classes. Given a se-
guence with unknown protein structutemplate-based modelingorks by first identifying similar
sequences in a pre-established protein database (PDB}handhe predicted structure is con-
structed from these possibly-similar “templates” (c.f9])3 On the other hand, iab initio model-
ing, the 3-D structure is constructed from scratch by plafsicnulation and sampling the conformal
space [146]. In either case, a common component of the dgysaem involves ranking the set of
templates or samples in order to select the most promisindidates [124].

In this work, we follow the framework set up by [124]. The peutar task is to select among
multiple protein structure candidates that are generated Yarious methods. The test set involves
the protein structures submitted to the the annual CASRi¢aIrAssessment of Methods of Protein
Structure Prediction) evaluation [116]. The CASP eva@rais a community-wide effort in protein
structure prediction, where different research grouparatdhe world submit their structure predic-
tions on a common set of yet-to-be-known proteins. For eagmawn protein sequence, we have
a set of candidate structures from various sites. The gadleofanker is to choose the best among
the set.

The problem setup is therefore analogous to the machinglatéon task. Whereas MT rankers
work with a N-best list of hypothesis translations, the piprediction ranker works with a N-best
list of candidate 3-D structures. In MT, the goal is to find Hast translation that matches a human
reference translation. In protein prediction, the goabiditd the best structure that matches the
true structure as determined by X-ray crystallography beoinethods (which are usually more

expensive than the computational approach).

3.3.1 Protein Structure Prediction Dataset

We use the protein structure prediction dataset providefilB¥].2 The training data consists of

the predicted structures submitted to CASP5 and CASP6aahs. The native protein structures

2| am immensely grateful to Jian Qiu and Bill Noble for theimmerous help on preparing this dataset.

35

from PDB used in the training set of [124] is not included hsirece our training algorithms are

based on ranking.The test set consists of proteins to be predicted for the GABRIlenge.

A brief summary of data statistics is shown in Table 3.4. Aensé¢here are 99 proteins to be
predicted in the test set, each with around 211-267 carelgtaictures to choose from. The number
of candidate structures per list is more for the test setuserthe test set includes the top five models
submitted by site participants, whereas the training data contains the top model. For details,

refer to [124].

Table 3.4: Protein Prediction Data characteristics

TRAINING SET | TEST SET
#lists, i.e. number of proteins to predict 73 99
#candidate structures per list 61-132 211-267
Total number of structures 7730 24128
#features (original) 25 25

There are 25 features that represent each protein structheefeatures divide into two major
types. One type measures the properties of the structwgetlgirsuch as pairwise atomic potential
of the fold, the overall shape and packing, and the hydrogedibg patterns. The other type of fea-
ture are termed “consensus features” and measure theriiynila structure to other structures in
the same list. The intuition is that correctly-folded sttwe is more likely to be similar to other pre-
dicted structures for the same target protein, and thatiiectty-folded structures would most likely
be outliers. For a given structuxg its consensus feature is computedigdiar{sim(x;,x;)).Vj # .
sim(-, -) is a similarity function that measure the distance betweenstructures (such as the GDT-
TS metric). The median, rather than the mean, is used to &) sensitive to skewed distribu-

tions.

3Qiu and Noble [124] trains by a regression objective, the@lowing them to use these native protein structures as
additional information. We cannot use these native strestin ranking because they are not lists, but single points.

36

3.3.2 Protein Structure Prediction Evaluation

Our evaluation metric consists of the GDT-TS [164] and tteeare, following [124] and CASP

evaluations. The GDT-TS measures the structure’s backbjoalty when compared to the true
structure. Similar to the MT evaluation, we also report tp-K oracle GDT-TS scores (For K=5,
this is equivalent to the GDT-TS5 metric used in [124]). Tlghlkr the GDT-TS score, the more
similar the predicted structure is to the true structure.rgymrt overall GDT-TS by averaging over
GDT-TS of all test proteins.

In addition, since GDT-TS scores are not calibrated acrdgseht proteins, we additionally
report z-scores. The z-scores are calculated by first tdakimgnean GDT-TS score of each list, then
measuring how many standard deviations (z) the chosentsteuis from the mean. The z-score
calibrates for absolute differences of GDT-TS score betwdiferent protein targets. It can be
positive (meaning that the chosen structure is better tharage) or negative (meaning that ranking
did worse than the average).

The state-of-the-art results, as reported in [124], carubesarized as:

e Top performing systems ([124]): GDT-TS = 0.589; z-score 110 1.17

e Oracle (best structures are manually selected): GDT-T$36)z-score = 1.81

e The second-best system (SVR-noZhang in [124]) achievesG®F 0.576 and z-score=1.02.
This difference of (0.589-0.576=0.013) is statisticallgnéficant from the top performing

systems according to the Wilcoxon signed rank test.
Chapter Summary

We described the 3 applications (6 datasets) considerdikimvork. Characteristics of the datasets
are summarized in Table 3.5. Importantly, we note that eppliGation has different characteristics,

which will be helpful in analyzing when an algorithm worksdamwhen it does not.

Table 3.5: Summary of all datasets used in this work.

37

Information retrieval

Machine translation

TREC | TREC | OHSUMED | Arabic- Italian- Protein
2003 2004 English English prediction
lists 50 75 106 482 500 73
label type discrete| discrete| discrete | continuous| continuous continuous
avg # objects/listf 983 988 152 260 362 61-132
features 44 44 25 9 10 25
evaluation MAP, NDCG BLEU,PER GDT-TS, z-score

38

Chapter 4
A LOCAL/TRANSDUCTIVE FRAMEWORK FOR RANKING

In this chapter, we propose a simple yet flexible local/tdactive meta-algorithm for ranking.
The key idea is to adapt the training procedure to each wstftier observing the documents that
need to be ranked. This framework allows us to explore varassumptions in unlabeled data.

The organization of the chapter is as follows: The proposedlitransductive meta-algorithm
framework is presented in Section 4.1. Then we present & tmigkground review of RankBoost
(Section 5.1.2), a supervised ranking algorithm that Seagea basic component in each of the three
approaches we will discuss in subsequent chapters. SdcBaescribes an extension of RankBoost
that works with continuous-value labels, which will be resary for the machine translation task.
The goal of this chapter is to set up the basics, so that weedaa thto actual algorithms in Chapters
5to7.

4.1 Description of Local/Transductive Framework

We use the following notation in this chapter. For concressn we will present the ideas using
Information Retrieval as an example, so objects are doctsnand lists are documents to be ranked.
Let g = query, d = list of retrieved documents, angd= list of relevance judgments. L& =
{(ar,di,yi) h=1.L be the training set consisting bftuples of query-document-labels. Documents
within the setd; will be indexed by superscripts, i.edl(j) where j = 1..N; (N; is the number of
documents retrieved for quegy). The traditional task of “supervised learning” is to learranking
function usingS; the ranker is then evaluated on a previously unseen andelathtest seE =
{(Qu,du) }u=1.u, WhereU is the number of test queries. In transductive learningh I$oand E

are available when building the ranking function, whichlsoahen evaluated oB. This has the
potential to outperform supervised learning since (1) & im@re data, and (2) it can adapt to the test
set. A pictorial representation of our problem is shown guiFe 4.1.

We now introduce our general framework for thinking abowalétransductive ranking. We

39

Data available for training SUPERVISED LEABNING
Querv 1 Query2 Test Query
Docl Label Doc1 Label ft) j— Doct 777
Doc2 Label Doc2 Label Lz 17
Doc3 Label Doc3 Label Prediction en| - Docd 777
Docé Label Doc4 Label urssendala | Docd 777
Data available for training INDUCTIVE SEMI-SUPERVISED LEARNING
Query 1 Query 2 Query 3 LestQuery
Docl Label Doc1 Label Docl 777 f() [—= Do=t :::
Doc2 Labsl Doc2 Labsl Doc2 777 Predict Dlsz2
Doc3 Labsl Doc3 Labsl Doc3 777 rodictionon| Dosd 17
Docé Label .} | Doc4Ladal) | Doct 777 unseendata | Docd 777

rrrrrrrrrrrrrrrrrrrrrrr TBANSDUCTIVE LEARNING
Query 1 Quev2 lest Query Test data available during training
Directly predict its labels

Doc1 Label Doc1 Labsl Doc1 777
Doc?2 Label Doc2 Labs! Doc2 777
Doc3 Label Doc3 Labs! Doc3 777

Doc4 Label Doc4 Label Doc4 777
4 v

Figure 4.1: Supervised learning, inductive semi-supet/iearning, and transductive learning: here
we focus on the transductive setting, where test query iergbd during training.

motivate it with the following question:

Suppose we observe a particular test qugrglet u = 1) and the corresponding list
of Ny—1 retrieved documents that need to be ranked @1 = {dfjgl},j = 1..Ny=1).
Each document in this list is kdimensional feature vector comprising BM25, TF-
IDF, etc. What information can we exploit from thisx N,—1 set of numbers in order

to improve our ranking for this query?

It is important to note that we set up the problem so that only test query/list is in focus at a
time, even though there may betest queries in total. The rationale is that different tesrggs are
essentially independent problems from the perspectivheofanking function, and that it is likely
easier to extract information that will be helpful for ongtJirather than many lists.

Algorithm 1 presents our general framework (meta-algonjtfor transductive ranking in pseudo-
code. For each test ligt first we obtain some information from the raw document featectorsd,,

(line 2). Then, we use this additional information, togetivweh the original labeled training data,

1The motivation here has some analogies to query classificétif. [59]), which believes that different classes of
queries are best served by different ranking functions. \Wéhhis to the extreme by makimyeryquery be served
by its own ranking function.

40

to obtain a ranking function (line 3). After the ranking ftilon F,(-) re-sorts the test liad, it can
be discarded (line 4). The loop (lines 1-5) need not be a seigli®peration, but can be computed

in parallel since the ranking functions are trained indeleeily.

Algorithm 1 Local/Transductive Meta-Algorithm
Input: Train setS= {(q;,d,y }—1.L

Input: Test seE = {(qy,du) }u=1.u
Output: Predicted rankings for tesfyy}u-1.u

1: foru=1toU do

2: Observe the test documentg= {d&j)}j:l,Ju for queryqy.

3: Train aranking functiori,(-) using the Train Seband the additional observed information.
4. Predict the test rankingy, = F,(dy)

5: end for

Our proposed meta-algorithm can be contrasted with thelegtad method of pseudo-relevance
feedback, which can be seen as a kind of transductive ratéaigique. Pseudo-relevance feedback
(c.f. [157], [110] chapter 9) uses words in the initial toprieved documents to generate a new query,
which is then used to retrieve a new list of documents. Algfothis new query may contain some
noise, as in the semi-supervised method of self-traininmaly retrieve more relevant documents
that have little match with the original query. Note thatym@ relevance feedback occurs at query-
time and the result is query-specific. In this respect itrisilgir to our transductive meta-algorithm.

The three main differences are:

1. Pseudo-relevance feedback usually uses textual infammfrom the test list, whereas our

transductive meta-algorithm works purely from the docutfieature vectors

2. Pseudo-relevance feedback usually creates a new quegyeas our meta-algorithm creates

new ranking function.

3. Pseudo-relevance feedback depends on a self-trainimtgtbapping assumption, whereas our

meta-algorithm leaves the assumption unspecified.

41

Finally, we can also compare our meta-algorithnoieal learning Local learning differs from
traditional supervised learning in that it does not use thigree training set, but rather selects a
subset of samples close to each test sample [22]. The artuii that fitting a smooth function
over a small partition of the feature space is easier thanditt function over the entire space. Our
meta-algorithm could be termed local, due to propertie sigctraining at query-time and fitting
test-specific functions; however, our meta-algorithm igengeneral in that it is not restricted to
techniques that subsample the training data. In the infbomaetrieval literature, local learning by
k-nearest neighbors [62] and by query-time associatiagsrdl50] have achieved promising results.

The fact that we focus on a single test list at a time has skeadvantages:

1. Letting our unlabeled data be the test data (transdustigeario) is arguably a simpler situa-
tion than inductive semi-supervised learning [149]. Onénngaal of the thesis is to explore
how we can use unlabeled data, so the fact that the unlabaledisithe test data avoids

additional challenges associated with learning genexiadia.

2. Focusing on aingletest list at a time can be thought of as a form of local learni8mce
ranking functions can be complex, local learning can be &emient method to improve over

state-of-the art baselines.

3. Importantly, combining local learning with transduetilearning means that we only work
with unlabeled objects from theamelist at a time. This can help give a meaningful inter-
pretation when we adopt assumptions from semi-supervikegification. For instance, the
Low Density Assumption on pairwise instances extractenhfacsingle list may reveal cluster
structure, which gives a meaningful interpretation thgeots with good and bad ranks exist
on opposite sides of the feature space. However, if we hadagt pairwise instances from

multiple lists, the cluster structure (if it exists), woldd more difficult to interpret.

We investigate three instantiations of this general frantkwThe Feature Generation approach
(Chapter 5) is based on discovering more salient featuoes fihe unlabeled test data and training a
ranker on this test-dependent feature-set. The ImportAfaghting approach (Chapter 6) is based

on ideas in the domain adaptation literature, and works hwyaighting the training data to match

42

the statistics of each test list. The Low Density Separadigporoach (Chapter 7) exploits the cluster

assumption on pairs of objects extracted on the test list.

One note about terminology: We call the method “local” beseaitl focused on a single test list
at a time, and “transductive” because it does not train wesl data is received. However, some
may disagree with these terms. Especially, “transductsgetietimes imply that a set of test points
are provided—in our case we only have one test list and therafo not leverage any potential

information that can be obtained across lists.

4.2 RankBoost: a supervised ranking algorithm

In successive chapters, we will use RankBoost or its vaaaiitie component in Line 3 of Algorithm
1, therefore we will describe RankBoost in detail here. HBagst [58] is an extension of the
boosting approach [129] for ranking. In each iteration, lBoost searches for a weak learner that
maximizes the (weighted) pairwise ranking accuracy (ddfamethe number of document pairs that
receive the correct ranking). A weight distribution is mained for all pairs of documents. If a
document pair receives an incorrect ranking, its weightdésdased, so that the next iteration’s weak

learner will focus on correcting the mistake.

It is common to define the weak learner as a non-linear thtéghoction on the features (de-
cision stump). For example, a weak learh¢r) may beh(d())) = 1 if “BM25 score > 1” and
h(d())) = 0 otherwise. The final ranking function of RankBoost is a \htég combination off

weak learners:

F(dW) = ian(d“)), (4.1)
t=

whereT is the total number of iterationsd is computed during the RankBoost algorithm and its
magnitude indicates the relative importance of a given weakner (feature). Finally, a ranking
over a document ligd is obtained by calculating = F(d(j)) for each document and sorting the list

by the value ofy!.

43

Algorithm 2 RankBoost
Input: Train setS= {(q,d,yi }i=1.L

Input: Initial distributionD(i, j) over (i,])
Output: Ranking functiorF ().
1: fort=1toT do
2: Find weak rankeh; (-) on weighted dat®.
3: Choose step siz@
4: Update weight®(i, j) = D(i, j) exp& (h (d)) — hy(d))). Normalize.
5: end for

6: Output final ranking functionr (d™) = 5[, gh(d™).

4.3 Moadifications to RankBoost for continuous-level judgmats

RankBoost, by design, works with discrete relevance juddmeAs seen in the pseudocode in
Algorithm 2, RankBoost extracts pairs of samples, wherd @air represents two documents that
have different ranks. Two documents with the same rank arsaluded as pairwise data because
one does not need to learn whether one object is ranked Higleanothef. RankBoost generally
assumes a discrete set of relevance judgments, so it isrdéetn pairs of documents should be tied.
However, for Machine Translation (as well as Protein StrirePrediction), the “relevance judg-
ment” comes in the form of real-valued scores. In MT, this rhaythe sentence-level BLEU score;
for Protein Prediction, it may be the GDT-TS score of thedtre. The question in this case is: If
we have two translations, do we extract them as a pair for Baost if one has BLEU of .43 and
the other has BLEU of .447? What if the difference is .43 vs?.€ontinuous value judgments pose

two problems for RankBoost:

1. A difference in value (i.e. .44 vs .43) may not be signiftcamough to warrant an extracted

pair. The values may be so close that the objects shouldigatgtoe considered as tied.

2. If we were to extract pairs for all objects with absolutiellences in their value judgments,

there may be too many pairs and the memory requirements ntayrieeprohibitive. In gen-

2There is recent work, however, that seeks to exploit thid kiftie information. c.f. [169].

44

eral, the number of pairs for continuous labels scal©@s?) (whereN is the number of
documents in a list), but for discrete labels with small czatity, the number of extracted
pairs can be much smaller in practiteFor largeN (e.g. N=1000 for 1000-best lists), the
memory requirement for continuous labels may become pitolbwhile that for discrete

labels may still run efficiently.

A solution to the continuous-value label problem is to gumnthe values into discrete lev-
els. This approach was taken in [133], which applied Rank@&teptron to MT Re-ranking by
“splitting” the N-best list into positive and negative hypeses. This essentially corresponds to a
two-level quantization, where the midpoint is tuned. Thauts were mixed, however.

We use a different solution here. Rather than applying dgeticn, we extract pairs only if
their score difference is above a threshold. This is clarifirethe simple pseudocode in Algorithm
3. To compare this approach with quantization, considetishehown in Figure 4.2. We see that

guantization and Algorithm 3 extract very different pairs.

Algorithm 3 Pair extraction with threshold
Input: A training list (q,d,y), whered = {d)};_; n

Input: User-set thresholt> 0

Output: A setP of pairs(i, j), i,] € (1..N) which represent hard preference relations

1: fori=1toN do
2. for j=1toNdo

3: if yi) > (y() +1) then insert(i, j) in P.
4. end for
5: end for

The relative performance of these approaches depends olathieTable 4.1 shows the dev set
BLEU score (on the Arabic task) for a variety of quantizatzm pair extraction schemes. We chose
the best one (threshold=30) in all our following experinsert general, Algorithm 3 outperforms

guantization on machine translation datasets.

3e.g. Suppose we have only two discrete labels, then the mufilpairs range from{N — 1)+ 1=N—1to (N/2) *
(N/2) = N2/4.

45

BLEU of individual hypothesis in a list
(BLEU=1.0) 1. please press yellow button
(BLEU=.6) 2. please press the yellow the button
(BLEU=.5) 3. please press the button yellow
(BLEU=.4) 4. please press button yellow
(BLEU=.3) 5. please press a yellow the button

Figure 4.2: Pair extraction example. The quantization @ggn may discretize all labels with
BLEU>0.45 to 1 and all labels with BLEW: 0.45 to O, leading to the pairs (1,4), (1,5), (2,4),
(2,5), (3,4). On the other hand, pair extraction with thodgh{t=0.3) will extract entirely different
pairs: (1,2),(1,3),(1,4),(1,5),(2,5).

Chapter Summary

In this chapter we introduced the local/transductive fraork for ranking. The next three chap-
ters will present practical algorithms that exploit difat semi-supervised assumptions under this
framework.

We also reviewed RankBoost and a modification thereof to watk continuous-level labels.
This supervised ranking algorithm will be basic componémthe local/transductive algorithms of

the next chapters.

46

Table 4.1: Dev set BLEU of various pair extraction schemes

Pair Extraction Method # Pairs Extracted Dev BLEU
Algorithm 3, t=40 41k 29.0
Algorithm 3, t=30 251k 29.2
Algorithm 3, t=20 1480k 29.1
Quantize: Best hyp =1, Others =0 24k 26.6
Quantize: All hyp with BLEU>40 = 1, Others =0 282k 27.2
Quantize: All hyp with BLEU> than that chosen by MERT = [L 225k 27.3
Quantize: All hyp in top 70 percentile =1 525k 26.4
Quantize by k-means 701k 27.3

47

Chapter 5

INVESTIGATING THE CHANGE OF REPRESENTATION ASSUMPTION

The Change of Representation Assumption assumes that testtere representations are pos-
sible, and that unlabeled data can help discover theseseagegions. In this chapter, we present a
Feature Generation Approach (Section 5.1) which explbitsassumption under the Local/Transductive
Framework (introduced in Chapter 4). Experimental evadmabf this approach in Information Re-
trieval, Machine Translation, and Protein Structure aesented in Sections 5.3 to 5.5. In addition,

a novel feature extraction algorithm is described in Seci®-this method enhances the Feature

Generation Approach.

5.1 Feature Generation Approach

The Feature Generation (FG) Approach, works by finding b&ttdures on the test data. It employs

two components:

e First, an unsupervised method (e.g. principal componemidysis) is applied to discover

salient features for the test list.

e Second, a supervised method for learning to rank (e.g. Remdiis applied to a labeled
training data with this new representation, which ideadlyriore pertinent to the test list in

guestion.

48

Algorithm 4 Feature Generation (FG) Approach to Transductive Ranking
Input: Train setS= {(q;,d,y }=1.L

Input: Test se€ = {(qu,dy)}u=1.U

Input: DISCOVER(), unsupervised algorithm for discovering s#ligatterns
Input: LEARN(), a supervised ranking algorithm

Output: Predicted rankings for tesfy,}u-1.u

1: foru=1toU do

2. P, =DISCOVER(,) # find transform on test data
3. dy=P,-dy # project test data along,

4. forl=1toLdo

5: di = P, - d; # project train data along,

6: end for

7. Fu(-) = LEARN({(q,di,y1)}i=1.0)

8: yu= Fy(dy) # predict test ranking

9: end for

Algorithm 4 shows the pseudocode for this Feature Generajiproach. DI SCOVER() is a
generic unsupervised method that is applied to each test liseparately (line 2)LEARN() is a
generic supervised method for learning rank functions.cé&the feature-based representations of
the training documents{{, },-1..) are enriched with additional test-specific features (bjewe
learn a different ranking functioR,(-) for each test query (line 7).

The usefulness of test-specific features and test-speaifldrrg functions is illustrated in Fig-
ures 5.1(a) and 5.1(b). These are plots of documents fronTREC’04 queries. The x-axis shows
the (normalized) HITS Hub score of a document, while the ig-akows the (normalized) BM25
score of the extracted title (both are important featuresefarning). Irrelevant documents are plot-
ted as small crosses whereas relevant documents are lasyeFw the first query (Fig. 5.1(a)),
we see that the data varies mostly along the y-axis (BM2%)thfe second query (Fig 5.1(b)), the

variation is on the x-axis (HITS). These two document listaild be better ranked by two different

IHere, line 2 corresponds to line 2 in the Algorithm 1, line% 8errespond to line 3 in Algorithm 1.

49

TRECO4 query192 TRECO4 query97

°
([]

BM25
w

b
x mmmonccnm i x @@ x @ @
x e
S I
BM25

f
- I R T T S - R

(a) (b)
Figure 5.1: Plots of documents for 2 different queries in TRE (y-axis = BM25, x-axis = HITS
score). Relevant documents are dots, irrelevant ones @ssag. Note that (a) varies on the y-axis
whereas (b) varies on the x-axis, implying that query-dpecankers would be beneficial.

rankers, e.g. one which ranks documents with BNA28.5 as relevant, and the second which ranks
documents with HITS> 1.25 as relevant. A single ranker would find it difficult to sirfarieously
rank both lists with high accuracy.

In this thesis, we use kernel principal components analy&snel PCA) [130] as the unsu-
pervised method and RankBoost [58] as the supervised raKkenel PCA is advantageous in its
flexibility in generating many different types of featuresthe use of different kernefs.This is a
good combination with RankBoost, which has been shown teelaively robust to variations in

tuning parameters and feature sets. These are describethihid the following subsections.

5.1.1 Unsupervised feature extraction: Kernel PCA

Principal components analysis (PCA) is a classical tealnfqr extracting patterns and performing
dimensionality reduction from unlabeled data. It comp@dimear combination of features, which
forms the direction that captures the largest variance endgta set. This direction is called the
principal axis, and projection of a data point on it is calfled principal component. The magnitude
of the principal component values indicates how close a gatat is to the main directions of

variation.

2Since we are using PCA transforms, we are performing a kinfeature transformatioras opposed tdeature
selection

50

Kernel PCA [130] is a powerful extension to PCA that compugdstrary non-linear combi-
nations of features. As such, it is able to discover pattarisng from higher-order correlations
between features. We can imagine Kernel PCA as a procedairéirgt maps each data point into
a (possibly) non-linear and higher-dimensional spacen geeforms PCA in that space. More pre-
cisely, letd be a list ofm documents and(}) be the original feature vector of document Then

Kernel PCA can be seen as the following procedure:

1. Map each documeni!) to a new spacd(l) — @(d())), whered(-) is the (non-linear/high-

dimension) mapping.

2. Compute covariance matrix in this new space:

C= %zﬁ":l d(dD)d(d))T. (T = transpose® should be centered at zero mean—if not, this can

be achieved by some simple operations in kernel space [132])
3. Solve the eigen-problenkv = Cv.

4. The eigenvectorg with the largest eigenvaluesform a projection matri¥. Datapoints can

now be projected to the principal axes of the non-linear spedined byd(-).

In practice, Kernel PCA uses the dual formulation to avoidiag the above eigen-problem in
high dimensional space (this is known as the kernel triclge B30] for the derivation; here we

only present the steps needed for this paper:

1. Define a kernel functiok(-,-) : (d()),dI) — R which maps two document vectors to a real

number indicating the similarity between the two documents

2. There exist kernels of the form
k(d,d0)) = (d(dW), d(d)), (i.e. dot product of the document mappings in high-dimemesi

space) such that the mapping does not need to be computecithxp get the kernel value.

3In the context of Kernel PCA, we drop the subscriptiinto avoid clutter.d, or d is a document listd() is one
document vector within the list.

51

3. Letthem x mmatrix K be the kernel values of all pairs of documents in the list. K, =
k(dW,d07) vj,j’ € {1,2,...,m}. This kernel matrix can be centered to ensure that the fea-

tures® are zero-mean.

4. Kernel PCA reduces to solving the eigen-problevha = Ka. We pick only thea with the

largest eigenvalues.
5. For a new document", its principal component is computed g8 ; a;jk(dV),d™).

The kernel function defines the type of non-linear patteortsetextracted. In this work, we use

the following kernels:

e Polynomial: Computes dot product of all monomials of orgeik(d!),d() = (d(), di)yp,

. This is an isotropic

e Gaussian / Radial basis function k(d(),d(") = exp(—%)

kernel, with bandwidtho adjusting for smoothness.

o Diffusion kernel [91]: This is suitable for graph data. We generakergearest neighbor graph
with documents as nodes and edges defined by the inversel@rchiistance/1)d)) —d(1||.
k(d@,d1") is defined by running a lazy random walk frami) to d(i"). A time-constant
parameterr adjusts how long to run the random walk (e.g. largéeads to a more uniform
distribution). Performing Kernel PCA with diffusion ketlsas equivalent to running PCA on

a non-linear manifold.

e Linear: k(d),d) = (d()),d1"). Equivalent to PCA.

Kernel PCA scales a®(m®), due to solving the eigen-problem on thex m kernel matrix
K. Nevertheless, extremely fast versions have been propésethstance, Sparse kernel feature

analysis [139] is based on sparsity constraints and caaabiatterns if©(m).

5.1.2 Supervised Ranking Algorithm: RankBoost

We use RankBoost as th&ARN() component of the algorithm. In theory, many algorithms can b

plugged in forDl SCOVER() andLEARN() . In practice, it is important to consider the interaction

52

between feature and learning, and to ensureDh&COVER() generates features tHaEARN() is
able to exploit. We believe that there are several advastagasing RankBoost with Kernel PCA

in our transductive framework:

1. Inherent feature selection: RankBoost seldcteatures that are most conducive to good
rankings. Since there are no guarantees that the KernelsRi&ctions of high variance
always correspond to directions of good ranking, RankBeasherent feature selection re-
duces the need for tuning. FOL&ARN() algorithm without inherent feature selection, we
may have to tune for (a) number of Kernel PCA features, (I3tired importance of Kernel

PCA features compared to original features.

2. Non-linear thresholding in weak learnéxs): One could define the weak learner to be simply
the feature values (e.9(-) = raw BM25 score). This assumes that good ranking is directly
correlated to the feature values (e.g. large BM25 impliesemelevance). Kernel PCA, how-
ever, may generate features that have a non-linear redaiipmo ranking (e.g. large positive
andnegative deviation from the principal axes implies lessvahce). Non-linear rankers can

handle this possibility more robustly.

3. “Anytime” training: Boosting can be seen as gradient datin function space [112] and
each iteration improves on the training accuracy. If tragrtime is a concern (e.g. in practical
deployment of the transductive framework), then RankBoastbe stopped before reaching
T iterations. The resulting ranker may be less optimized,tbahould still give reasonable

predictions.
5.2 RankLDA: Supervised feature transformation for Ranking

The Feature Generation Approach described above emplayeKeCA as the method to discover
useful features from the test list. However, this is not thly @hoice; in theory, any feature extrac-
tion/transformation method is possible.

In this section, we introduce a novel feature transfornmatitethod that complements Kernel
PCA. Kernel PCA is a totally unsupervised method, and as,stdmores information from the

labeled part of the training data. While we rely on RankBdosthoose what Kernel PCA features

53

are important for ranking, we could also directly generaadres correlated with rank from the
outset. We therefore introducesapervisedeature transformation method called RankLDA. The

contributions with this method are that:

1. To the best of our knowledge, it is the first supervisedul@atransformation method that
exploits rank information. Related methods such as Fisheriear Discriminant Analy-
sis (LDA) was developed for classification, and thereforesdoot fit well into the ranking

framework.

2. Features generated by the proposed RankLDA can be imtiuitle the feature set generated
by Kernel PCA, thereby enlarging the model space for theufedbeneration Approach.

In the following, we first briefly review LDA, a feature tramsfmation method for classification

of which our method is based, before describing our supssvigankLDA method.

5.2.1 Feature Transformation by Linear Discriminant Arsady(LDA)

Recall the notation as follows: Lef= query,d = list of retrieved documents, and= list of
relevance judgments. L&= {(q;,d,yi) h-1.L be the training set consisting bftuples of query-
doc-labels. Each documedf is represented by a vector &f features, and the goal of feature
transformation is to find a transformation matdx € Z<*K' K’ < K such that the projected
document vectorél,j = Ade, after input to a ranking algorithm, lead to better test ltssu.e., a
ranking algorithm trained o= {(q|,a|,y|)}|:1”|_ should outperform the same algorithm trained
onS={(q,d;,yi) h=1.L. In supervised feature transformation, the lalyglare used for computing
A.

Fisher's LDA is a classic method for computing the transfation matrixA for classification
problems. The main idea is to find a transformation veatéhat maximizes the covariance (scat-

ter) among class means while minimizing the covarianceiwitiie same class. For a multi-class

classification problem on datasétd(,y }i—1.1), we finda by:

TBa

a
arg max——— 51
9 a a'Wa (6.1)

54

251

O Rankl
> Rank2
+ Rank3

40

x-axis

Figure 5.2: An example where LDA fails at ranking. Projegtom the y-axis will optimize Eq. 5.1
but doing so will reverse ranks 2 and 3. The x-axis is a betigjeption that respects the properties
of linear ordering among ranks.

whereB =3 .(Uc — 1) (He — 1) is the between-class scatter ahd= 3¢ 3jy—c(di — pic) (di —)T

is the within-class scatter. (Hereindexes the clas$ic is the class meamn is the overall mean).

LDA can be applied to a ranking problem by treating the releeajudgment as class labels.
If discrete relevance judgment is provided for each docupthan documents can be divided into
classes in a straightforward way (e.g. “very relevant’sslg, “relevant’=class 2, “irrelevant’=class
1). If relevance judgment is continuous-valued or is in irerf of preferences between document
pairs, then one should make some design decisions regdrdimd¢o map each document to a class

label?

[104] proved that ranking errors are upper-bounded by ifieation errors. One might there-
fore imagine that the LDA may work for ranking problems. Hew®e one can construct artificial
examples where achieving optimal class separation in th& $éhse actually reverses the ranking

(Figure 5.2).

4The only additional modification we make in the ranking setiis to compute the scatter matrices independently for
each document list. This avoids problems of uncalibratitmoss different lists, and also allows for extraction of eor
features than the number of classes. For simplicity of pitasien, in this paper, thB andW matrices are therefore
sums of matrices fror lists.

55

5.2.2 Description of RankLDA

Our RankLDA method extends Eq. 5.1 for ranking. For ease e$gmtation, consider a 3-level
ranking problem, where documents labeled 3 are preferredtbese labeled 2, and 2 is preferred

over 1.

First, we modify the idea of between-class scatter for pa&welations. For the 3-level rank
data, we would have 3 matriceBi», B13, Bo3, WhereB;; is the between-class scatter between docu-
ments labeledland j.> Second, we impose constraints on the projected variamEBﬁa to respect
the fact that variance of far-apart rank$B13a should be larger than the variance of close-together
ranks, such as'Bioa. This constraint enforces the algorithm to avoid reversamks at the ex-

pense of improving separability. Putting it together, weeha

s
argmay, Lo (5.2)
st. aof Biza > a’ Bioa

GTB;|_3C¥ > GTBzga

whereB = B;3+ Bi2+ Bys is the combined between-class scattiris defined as in Equation 5.1.
Note that there is no constraint of the foro' Bioa ~ a T Bysa, since we have no prior knowledge

which of the scatter values should be larger.

Algorithm 5 presents the general RankLDA method. In eadfatiten, we compute the projec-
tion vectora in line 3, and the method of deflation is used to generate gaihal projections iter-
atively. Note that slack variables, are added to allow for constraint violations and the paramet
[determines the tradeoff. It is interesting to note that thiedive in RankLDA has analogs to the
formulation of RankSVM [82]. The main difference is that ttencept of margin is here replaced
with between-class scatter, and the constraints are nowimesr. We use a general interior-point

algorithm (Matlab Optimization Toolbox) to optimize thejettive.

5For N-level rank data, we hawd(N — 1)/2 matrices corresponding td(N — 1)/2 pairwise binary classification
problems.

56

Algorithm 5 RankLDA
Input: Train setS= {(q;,d,y }=1.L

Input: K’ = number of features to be extracted
Input: 8 = slack tolerance parameter
Output: Projection matrixA
1: for k=1toK’do
2: ComputeB;; for all (i, j) pairs of distinct labels iry;. ComputeB = S Bij.

3: Find projection vecton:

argma&g%—ﬁzfq
st. a'Bja+&>a'B,a ,&>0
for all preference relation§ <r <z< j)or(i<r<z<j)
4 A(k =a
5. Deflation:B = B — (a"Ba)*xaa’)

6: end for

While we do not attempt these here, RankLDA can be extendeatliade:

1. Non-linear formulation via kernels [132].

2. Semi-supervised extension by, e.g. adding a graph Liaplabjective [29].

5.3 Information Retrieval Experiments

We perform experiments on the LETOR dataset (version 2)][M@fich contains three sets of
document retrieval data: TREC’'03, TREC’04, and OHSUMEDr éxperiments compare the Fea-
ture Generation Approach (FG) with baseline systems undetdScross validation, using MAP
and NDCG as evaluation metrics. The Baseline is a superi@sedtBoost, trained on the original
training data. See Chapter 3 for details about the data.

For Feature Generation, we employed the following kernais<ernel PCA and extracted five

features for each, leading to an additional 25 features:

57

Polynomial kernel, order 2

Gaussian kernel, bandwidth = 1

Diffusion kernel, time constant = 1

Diffusion kernel, time constant = 10

Linear kernel

Note that the hyperparameters of these features are chdsigardly and have not been exten-
sively tuned. They are only tested on a small subset of theldement data to ensure that they are
reasonable hyperparameters. The reason we chose not tthéuhgperparameters is that we work
in the transductive scenario, so in practice there will reotiime to tune a new set of parameters for
a new set of dev/test data. We rely on RankBoost to choosekivant features.

Table 5.1 shows the results (boldfaced MAP/NDCG numbersate a statistically significant
improvement p < 0.05) over Baseline.) We observe that nice results: Featunei@gon (FG) im-
proves over the Baseline in general. For example, for botE@'B3 and OHSUMED, FG achieves
MAP values that are significantly better than the baseliB@58 vs. .2482 for TREC'03; .4481 vs.
4424 for OHSUMED). Feature Generation also improves odatfisets for various NDCG values,
though not all improvements are considered statisticadjgiscant.

For the OHSUMED dataset, which contains three levels ofagiee judgments, we additionally
applied RankLDA to create additional features for the Featieneration Methods. The result row
labeled (FG + RankLDA features) in Table 5.1 representsingnRankBoost on top of the 25 orig-
inal features, 25 Kernel PCA features, and 10 RankLDA festukVe observe that FG+RankLDA
gave a slightimprovement over FG in MAP, a strong improvetogar NDCG@1, and few changes
for NDCG at lower positions. It is conceivable that the RabKki_features, which especially aim to
separate ranks with large differences, have more impadmking top documents. In other words,
whereas pairwise accuracy gives the same loss when a dotwritlereither relevance label 2 or
1 is ranked above a document with label 0, RankLDA would ersizieaa larger separation for the
case of label 2 than that of label 1. This may have the affeptishing label 2 documents higher in

the list, thereby improving NDCG@1.

58

Table 5.1: Main result for Feature Generation (FG). In galndtG provides improvements over
baseline. Statistically significant improvements are Hoftted.

MAP | N@1 | N@3 | N@5 | N@10 | N@14

TREC 03
Baseline (supervised) | .2482| .3200| .3455| .3404| .3388 | .3401
Feature Generation .3058 | .5200| .4332| .4168| .3861 | .3994

TREC 04
Baseline (supervised) | .3712| .4800| .4237| .4144| .4471 | .4686
Feature Generation 3760 | .4800| .4514| .4415| .4665 | .4910

CHSUMED
Baseline (supervised) | .4424| .4906 | .4543| .4501| .4230 | .4218
Feature Generation (FG).4444 | .5094 | .4787| .4600| .4469 | .4377
FG + RankLDA featureg .4481| .5252| .4785| .4600| .4444 | .4390

5.3.1 Information Retrieval: Detailed Analysis and Exiens

In order to understand the proposed framework better, we desgribe an assortment of further

experiments and analyses.

1. How important is it to adapt to the test query?

Does the Feature Generation approach obtain gains becarsel RCA extracts good features
per se, or particularly because the features are extracteldedestset (i.e. the local/transductive
aspect)? Kernel PCA may extract better features due to tiedsdn noise and discovery of useful
non-linear combinations (due to the kernel). In order toagarghis question, a new systetdRCA
on trai n)was built based on feature transformations estimated framing data alone: Kernel
PCAwas run on each training list (as opposed to projectiadrtining lists to principal directions of
the test lists). The subsequent rank learner and evaluagioain identical: we train RankBoost on
this data, which is the same training data as Baseline exoefite additional Kernel PCA features

and evaluated this new ranking function on the test set. @hglts (Table 5.2) show thKPCA on

t rai nis worse than Feature Generation (e.g. .2511 vs. .3058 MAPR&C’03), implying that

the transductive aspect of adapting to each test queryaesesis

Table 5.2: Feature Generation (transductive) outperfdff€A on train (inductive); adapting to

test queries is a useful strategy.

TREC 03 | TREC 04 | OHSUMED
Feature Generation .3058 .3760 4444
KPCA on train 2511 .3625 4418
Baseline .2482 3712 4424

2. How can Kernel PCA features be interpreted?

Kernel PCA features are in general difficult to interpretdaese they involve non-linear combi-
nations and ther generated from the eigen-problem represents weights oplesymot features.
Some insight into this question might be obtained by conmgutine correlation between the values
of a Kernel PCA feature and an original feature. Table 513 k®me features that correlate with
particular kernel PCA features (e.g. in TREC'04 queryl@ Ehiffusion feature correlated highly
with HITS). It is important to note, however, that this kintamalysis only serves as extra reference
to help us understand particular test queries: most Ker@él features have little correlation to

original features. The average correlation on TREC'043s than 0.15.

3. What are the most useful features?

For the Feature Generation system, what weak learngnsin the multiple ranking functions
(Fu(-) = S{_1 8 (-)) achieve largg&|? For instance, how often are Kernel PCA features cho-
sen compared to the original features? To analyze this, vk &b the 25 FG ranking functions
in TREC'04 that improve more than 20% over the Baseline. Baheanking function, we look
at the top 5 features and note their tyd@ri gi nal , pol ynom al, rbf, diffusion,

| i near }. 24 of 25 functions have both original and Kernel PCA featurethe top 5, indicating
that Kernel PCA features are quite useful. It is even morer@sting to note that no single combi-

nation of types is more prevalent than others. Figure 5.@/sltleat the distribution of these (feature

60

Table 5.3: Some examples of original features that coedlgthly with Kernel PCA features (coeff.
of determination in parentheses). However, most featureslisted) have low correlation due to
their non-linear relationship.

Polynomial Diffusion Linear
TREC 03 none Hyperlink feature| LMIR.JM
query2 prop, weighted of anchor

out-link (.66) (.70)
TREC 04 dl of HITS authority | LMIR.ABS
quer y10 (| anchor (.99) (.89) of title (.68)
OHSUVMED none BM25 of BM25 of
queryl title+abstract | title+abstract
(.78) (.82)

type) combinations. For example, seven of 25 rankers usenhioation of original and diffusion
kernel features; four of 25 rankers use a combination ofimalgand polynomial kernel features.
The results on the other two datasets show similar diver3itys again supports the intuition that

test-specific rankers are better than a single generalranke

4. Linear vs. Non-linear PCA

How important is the non-linear aspect of Kernel PCA? Coldilar gains be achieved if the

Feature Generation approach were restricted to using armard PCA? To test this, we trained
new systems consisting of original features plus 5 lineaA P&atures, vs. original features + 5
polynomial, rbf, or diffusion kernel features. On TREC’O4e observe the MAP scores, in order:
.3701 (rbf), .3670 (poly), .3627 (diff), .3614 (linear). ¥Wever, on TREC’03, linear is not the worst:
.3032 (diff), .2996 (linear), .2895 (poly), .2754 (rbf). 0% non-linearity is important in most cases,
but one should not expect non-linear kernels to always oigipe linear ones. The best strategy is

to employ multiple kernels.

61

Diversity of boosted rankers

orig only (1) orig+rbf+diff (1)

orig+poly
+linear (4)

orig+diff
+linear (1)

orig+poly+diff (4)

orig+poly (4)
orig+linear (3)

Figure 5.3: Pie chart showing the distribution of featyneet combinations for the 25 best rankers
in the TREC’'04 dataset. The number in the parenthesis itefidche count. For example, 3 of 25
rankers use a combination original and linear kernel featufhe chart shows a diversity of feature

combinations.

62

Relative changes in MAP Relative changes in MAP

>50% worse [>50% worse

>20% worse [>20% worse -
>1% worse - >1% worse -
>1% better - >1% better -
>20% better - >20% better -

>50% better - >50% better -

20 10 0 10 20 30 40 40 30 20 10 0 10 20 30 40
count (number of queries) count (number of queries)

(a) (b)

Relative changes in MAP
T T

>50% worse [

>20% worse [

>1% worse -

>1% better -

>20% better -

>50% better -

i i i i
60 40 20 0 20 40 60
count (number of queries)

(©)

Figure 5.4: Query-level changes in MAP: We show the numbemuéries (inFeat ure
Gener at i on) that improved/degraded compareditasel i ne. In TREC'03 (a), the majority
of queries improved, but in TREC'04 (b) and OHSUMED (c) a figant proportion degraded.
See text for more explanation.

63

5. How does performance vary across queries?

In Section 5.3, we present overall results averaged ovédestliqueries. A more detailed analysis
would include per-query MAP and NDCG. Figure 5.4 reportssidgram of queries that are im-
proved vs. degraded by Feature Generation. For each piohafs on the right side indicate the
number of queries that improved more than 1%, 20%, and 50%Ba&eline. Bars on the left side
indicate the number of queries that become more than 1%, 208550% worse than Baseline.

One observes that our FG approach does not give improvemenoiss all queries. We are seeing
gains in Section 5.3 because the proportion of improvediesiés greater than that of degraded
queries (especially for TREC’03).

It would be helpful to understand exactly the conditionsemahich the transductive approach
is beneficial vs. harmful. On TREC’03, there is slight evideshowing thaFG seems to benefit
queries with poorer baselines (See Figure 5.5, scattesplmseline and transductive MAP scores).
One hypothesis is that the original features of more diffiquleries are not sufficiently discrimi-
native, so Kernel PCA has more opportunity to show improv@sieViewed in another way, note
that many of the our features (e.g. tfidf) attempt to quarttity match between the query and the
document, so that high feature values usually correlate métter documents. However, while only
the relative differences between feature values matteanking, RankBoost gives absolute value
thresholds in its decision stumps. This implies that for saueries (possibly the difficult ones),
most documents may pass or fail the feature value threshBidapplying Kernel PCA to the doc-
uments of these queries, we can again focus on the featwresabe large relative range, which is
expected to better discriminate among different documierttse set.

Nevertheless, it is difficult to test the above hypothesie alempted to see if differences at
the query level correlates with e.g. (a) number of documdhjsnumber of relevant documents, (c)
pairwise ranking accuracy in training, but no single factdiably predicts whether a query will be

benefited by the transductive ranker.

6. How do individual RankLDA features compare with LDA andioal features?

How well do RankLDA and LDA perform, irrespective of the fml-up training algorithm for

ranking? In order to evaluate this, we compared the firseptimn vectorr extracted via RankLDA

64

TD2003 MAP

0.9f
0.8}
07t
0.6}
3 05f
0.4t

o . .o
031 o

L.o0 o
0.1 (¢] o) ©
o © ° o

0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1
transductive

Figure 5.5: Scatterplot of TREC'03 MAP results féieat ure Generati on (x-axis) vs.
basel i ne (y-axis).

or LDA. Specifically, we compute a singte on the training set, and rank the documents in the test

set according to the projection value$d.

Table 5.4 compares RankLDA and LDA with the best and worsthef ariginal 25 original
features, where best/worst is determined on the test seafioly experiment). For RankLDA, we
tried different8 parameters (0.1,1,10,50,100) and report the one with tbe dedting based on
MAP/NDCG on the training set. We see that RankLDA consi$gentitperforms LDA, though it

does not achieve the (cheating) results of the best poswilgieal feature.

RankLDA | LDA | Original (Min) | Original (Max)
MAP 0.4309 | 0.3005 0.3331 0.4488
NDCG@1 0.4346 | 0.1429 0.1851 0.5042
NDCG@7 0.4149 | 0.1764 0.2328 0.4354
NDCG@14| 0.4109 | 0.1865 0.2480 0.4208

Table 5.4: Performance of single features. RankLDA and LID#the rankings derived from the
first projection vectorr. The Original column presents the minimum and maximum tesfop
mance among the 25 original features.

65

Table 5.5: Arabic-English MT results

Top-k BLEU k=1 | k=2 | k=3 | k=4 | k=5 | PER

MERT (supervised) Baseline 24.3| 26.5| 27.9| 28.6| 29.3| 47.9
RankBoost (supervised) Baseline23.7 | 26.4| 28.0 | 28.9| 29.6 | 47.9
Feature Generation (transductivep3.4 | 25.7 | 27.0| 27.9| 28.6 | 48.3

5.4 Machine Translation Experiments

We apply the Feature Generation Approach on the two Machiaeslation datasets, i.e. the Arabic-
English and Italian-English IWSLT 2007 tasks. The experitaksetup is identical to that described
in the Information Retrieval experiments, except for the omodification to the RankBoost algo-
rithm for continuous-value labels (see Section 4.3). Feaitieregarding the data and task, refer to
Section 3.

We compare the Feature Generation Approach with two ba&seli@omparison with the super-
vised RankBoost baseline can give insight into the effecintdibeled test data in training, since the
Feature Generation approach is based on RankBoost. HgwRaekBoost is not a conventional
algorithm used in MT, so we additionally compare with the MBEbBaseline. The MERT baseline
is computed by running the minimum error rate training (MERIGorithm [119], which generates
linear weights.

The results for Arabic-English and Italian-English aresgred in Tables 5.5 and 5.6. The

general observations are:

1. RankBoost is comparable to MERT in terms of BLEU results.tRe Arabic task, RankBoost
performs slightly worse than MERT for Top-1 BLEU but appetiyxdmprove at a slightly

faster rate for Top-k with larger K.

2. However, Feature Generation gives degradation from #mkBoost baseline for both tasks.
For Top-1 BLEU, we have FG (23.4) vs. Baseline (23.7) for Acalanslation, and FG (21.2)

vs. Baseline (21.5) for Italian translation.

66

Table 5.6: Italian-English MT results

Top-k BLEU k=1 | k=2 | k=3 | k=4 | k=5 | PER

MERT (supervised) Baseline 21.2|23.1| 24.3| 25.0| 25.7 | 52.6
RankBoost (supervised) Baseline21.9 | 23.6 | 24.7 | 25.4| 26.0 | 51.7

Feature Generation (transductivepl.5| 23.4 | 24.4 | 24.9| 25.3 | 52.5

Surprisingly Feature Generation did not work well in MT (wéa&s it worked well in IR). In
order to analyze this, we first looked at the sentence-let@Bscoré of Feature Generation vs.
RankBoost baseline results to see if there are consistéetrips of degradation. The visualization
(for the Arabic data, results for Top-5 BLEU) is shown in Figb.6. In these graphs, we take
the Top-5 result of FG (Overall BLEU=28.6) vs. RankBoost ¢l BLEU=29.6) and compared
BLEU at the sentence level. Interestingly, we see thatmiffees on the sentence-level do not appear
to be large. The average difference of sentence-level BLdoles between the two systems is only

0.5 points.

300

2501

?
0000

200
150+
100+

501

,_._4__4.M.L‘lll...m4__‘_____‘¥

i i i i i 0
0 20 40 60 80 10 -40 -30 -20 -10 0 10 20 30 40
RankBoost Baseline Sentence-level BLEU BLEU difference (FeatGen-RBbaseline), negative=baseline wins

Feature Generation Sentence-level BLEU
I3y
=)

@) (b)
Figure 5.6: Sentence-level BLEU analysis for Feature Gaioer vs. RankBoost Baseline. While
the corpus-level BLEU result for RankBoost is 1 point bettieere does not appear to be significant
differences on the sentence level.

Following [106], we compute a smoothed version of sentéagel-BLEU with add-1 count for each n-gram precision

to prevent arbitrary zeros. An alternative but more compiexhod to approximating sentence-level BLEU is described
by [152].

67

We then looked deeper into the rankers that were trainednéideature Generation method.
On average, the pairwise training accuracy of FG ranker$.8386, compared to the RankBoost
baseline, which is 82.42%. This means that the trainingrdhgo in FG approach is optimizing
the objective it was designed for better, due to the additidmatures. In fact, the percentage of
weight that belongs to Kernel PCA features in the FG appraaemound 0.4 (see Figure 5.7 for
a histogram), which means that Kernel PCA features are stemély being used to a large extent.
However, on the level of the individual ranker, the coriielatcoefficient between this percentage
(i.e. how much weight is dedicated to Kernel PCA featurespg®sed to original features) and the
sentence-level BLEU, is= —0.0131. This means that the amount of usage of Kernel PCA festur

has little correlation to the sentence-level BLEU scorer €uimmary of the observations:

1. In MT, Feature Generation performs worse than Baselir@verall (corpus-level) BLEU, but
little difference is observed in sentence-level BLEU. Ryas work has shown that sentence-
level BLEU may not correspond well to corpus-level BLEU, there is little choice for us
since RankBoost (or any standard learning algorithm, viithexception of MERT) requires

labels on the sentence level.

2. Feature Generation is indeed selecting Kernel PCA featduring training, leading to better
pairwise training accuracies, but rankers with more weggsigned to Kernel PCA do not

necessarily achieve better sentence-level BLEU.

3. Therefore, the problem is likely that the pairwise accymptimized by RankBoost does not

correlate very well with corpus-level BLEU.

In IR there is a strong relationship between the pairwisai@my and the MAP and NDCG
metrics, so enlarging the model space with additional feataan give gains overall. For MT, there
is a much larger chance of fitting a mismatched objectivecésthe link between pairwise accuracy
and corpus-level BLEU is weaker), so more complex modelespaan lead to overfitting.

Another possibility is regarding the characteristics of thriginal features. There has been
work [62] showing that cosine similarity with queries, faxaenple, provide useful information

for comparing lists. But in our setup throughout, we igndre query (in IR) or source sentence (in

68

count

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Percentage of weight in terms of KPCA features

Figure 5.7: The percentage of total weight in RankBoost nlny to Kernel PCA features, in
histogram (Arabic-English Translation Task)

MT); everything is done agnostically on the feature spabespite this, in IR, features suchtasdf

directly encode some information about the query (e.g.unt®the number of times the query term
occurs in the document). However, in MT, features such asskation models only encode some
information about the source sentences, since there themany ways to translate a give phrase.

This difference could potentially have an effect on the BeaGeneration method.

5.5 Protein Structure Prediction Experiments

We applied the Feature Generation Approach to the ProteutiBte Prediction dataset, using the
same methods as IR. Although the Protein Prediction tasktels continuous level labels like the
MT task, we did not find the need to adopt a threshold in the @eiraction part of RankBoost.
Empirically, we have observed that extracting all pairshaitt a threshold gave the best result on
the training data.

The results for Feature Generation and the RankBoost andIM&BRelines are shown in Tables
5.7 and 5.8. The MERT baseline of (GDT=.581, z-score=1€¢pmparable to the Support Vector
Regression baseline reported in [124] (GDT=.589, z-schf&s.

We observe that:

"The reason for ignore the query text information is that watveair methods to be application-dependent.

69

Table 5.7: Protein Prediction GDT-TS results

Top-k GDT-TS k=1 | k=2 | k=3 | k=4 | k=5

MERT (supervised) Baseline 581 | .590| .597 | .601 | .604
RankBoost (supervised) Baseline579 | .590| .595 | .599 | .604

Feature Generation (transductive)569 | .586 | .596 | .601 | .605

Table 5.8: Protein Prediction z-score results

Top-k z-score k=1 | k=2 | k=3 | k=4 | k=5

MERT (supervised) Baseline 1.07]1.17)| 1.26| 1.31| 1.34
RankBoost (supervised) Baselinel.13 | 1.25| 1.30| 1.36| 1.41

Feature Generation (transductivel.07 | 1.24 | 1.33 | 1.40| 1.41

1. Feature Generation performs worse than the baselinefigid<2, but is comparable ford3

in Top-k GDT-TS.

2. The z-score results show similar trends. In general, waglade that the Feature Generation

method gives little gains or degradations for the ProteadRtion dataset.

3. None of the differences are statistically significantading to the Wilcoxon signed rank test.

To analyze the results in more detail, we look at the scdtie(pigure 5.8) of Top-1 GDT-TS
values for Feature Generation vs. the RankBoost baselime sGatterplot shows that a majority of
test lists do not exhibit GDT-TS differences for Feature &ation vs. Baseline. Only 19% of the
lists are improved by 0.01 GDT-TS, and only 26% of the lisess@egraded by 0.01.

Doing a similar analysis as done in Machine Translation, eokéd at whether there are sys-
tematic differences between the 19% of FG rankers that ingoies. the 26% of FG rankers that
degraded. Our goal is to determine whether the rankers rigatoved used a larger fraction of
weight for the new Kernel PCA features in RankBoost. This Mondicate whether the new fea-

tures were useful; if the opposite trend were observedwhigd indicate that the new features were

70

0.9 o®

o8l o @930@

0.7} : o} o
0.6 @8
0.5f o

OO
O
oa] ~ Boo

o0af 8 S
02t s

0.1F o

Baseline

0 0.2 0.4 0.6 0.8 1
Feature Generation

Figure 5.8: Scatterplot of GDT-TS values: Feature Germmdtb69 average GDT-TS) vs. Baseline
(.581 average GDT-TS). The majority of lists are not affddby Feature Generation; 19% of the
lists are improved by 0.01, 26% of the lists are degradedrelairon coefficient =.9717

actually detrimental. However, Figure 5.9 shows that theeetually little correlation between the
amount of KPCA usage and the GDT-TS value. Furthermore,reingethe histogram of KPCA
usage (Figure 5.10), we see that there is on average only k¥&y%ewf the new features, much
less than that of Machine Translation (40%). Further, thea®se Training accuracies of the FG
rankers (84.2% average accuracy, 83.9% minimum accurdcy¥@maximum accuracy) actually
do not deviate much from the Baseline system (83.6%). Thisd®ntrast to what we observed in
Machine Translation—in that case, Pairwise Accuracy satatesscally significant improvement of
3% when comparing FG to Baseline.

This together indicates that Feature Generation simplyndidaffect the Protein Prediction
dataset very much. Unlike Information Retrieval, where el PCA features are useful, and
unlike Machine Translation, where new Kernel PCA featuresamelpful for pairwise accuracy but
harmed corpus-level BLEU, in the case of Protein Predictioa effect of Kernel PCA was simply

neutral and not used frequently by RankBoost.

Chapter Summary

We presented and evaluated the Feature Generation apprehoke main idea is to use Kernel

PCA to discover better features from the test list befordyépg a supervised RankBoost learner.

71

0.3 O
o

o
< © ¢
9 0251 ©
X] 00
3 S0 @ 0,
2
g ° o ggo
Q
E 0.2 O%O o Io)
2
2 o
=4 o 0o
]
= L o ©
= 0.15 o o} 5
2 o

o
g o ° 5 ST
g o 0©
S o1r
e 8
0.05 ; ; ; ; ; ; ; i
-03 -025 -02 -015 -01 -0.05 0 005 01

GDT-TS Difference (FG-Baseline)

Figure 5.9: There is little correlation between the amodr€arnel PCA usage in Feature Genera-
tion vs. the GDT-TS score. (Protein Structure Prediction)

12

Count

0.1 0.15 0.2 0.25 0.3
Percentage of weight in terms of KPCA features

Figure 5.10: Percentage of total weight in RankBoost betantp Kernel PCA features for Protein
Prediction. Here, on average we have 17% of the weight repted by KPCA. Compare this to
Machine Translation (Figure), which on average has 40% ofweledicated to KPCA.

72

Results show that Feature Generation gave across-thd-bmprovements for all three Informa-
tion Retrieval datasets. However, it gave degradationdMiachine Translation datasets and little
differences for the Protein Prediction dataset.

Our detailed analyses revealed several characteristite @lgorithm, such as:

¢ In Information Retrieval, it is not Kernel PCA per se, butagsplication on the test list that

lead to improvements.

¢ Different test lists are best represented by different KERTA feature representations, which

reinforce the idea that test-specific ranking is a worthevhéisearch direction.

e For the machine translation datasets, the Feature Gemeratithod is indeed choosing Ker-
nel PCA features and improving the training pairwise accyralhe fact that the method
worked for Information Retrieval but not Machine Transdatseems to indicate that pairwise

accuracy is not as beneficial a surrogate loss function in Mif ¢éR.

¢ In Protein Structure Prediction, the new Kernel PCA feawae simply not chosen often,
which results in small changes in the pairwise training eacy of RankBoost and overall

little difference compared to the Baseline.

In addition to the above, we presented a novel feature d@iiraprocedure for datasets con-
taining more than two levels of discrete judgment labelsis RankLDA procedure could be used
to enhance the Kernel PCA feature set in the Feature Gemera@pproach, and we indeed show

improvements in the OHSUMED IR dataset.

73

Chapter 6
INVESTIGATING THE COVARIATE SHIFT ASSUMPTION

The idea of covariate shift (from domain adaptation litera} is that sample distribution differs
between the training and the test set, but the functionatiogiship (mapping input to output, i.e.
mapping a list to an ordering) remains the same. It assuraésliservation of some unlabeled test
samples is sufficient to allow us to “shift” the training dilstition such that it better matches the test
distribution.

In this chapter, we will propose a method that exploits theadate shift assumption under
the Local/Transductive Framework. The proposed Impogaffeighting Approach is presented in
Section 6.1 and evaluated in Sections 6.3 to 6.5. We alsemrasmethod to combine the Feature

Generation Approach with the Importance Weighting ApploacSection 6.2.
6.1 Importance Weighting Approach

We now detail a way to exploit the Covariate Shift Assumptioder the Local/Transductive Frame-
work. The assumption is that each test list exists in a $lightferent “domain” from the training
data, thus Importance Weighting techniques (which lookb@tiocations of the unlabeled data in
feature space) could correct the bias and improve resultsordparison of the standard covariate
shift assumption vs. our local/transductive version isrghin Table 6.1.

The Importance Weighting (IW) Approach requires the twdofeing components:

e An domain adaptation algorithnDAPT() , that generates importance weights specific to

Table 6.1: Comparison of Covariate Shift Assumption forsSification and Ranking

Classification Local/Transductive Ranking

Feature Space Original vector of one object Difference features from pairs of objects

Test Domain | All unlabeled vectors forms one domaijn One domain per list

74

each test list.

e A supervised learning to rank algorithMEl GHTED- LEARN() , that can train on weighted
data. Essentially, only a weighted subset of the trainirtg daost similar to the test list will

be used in computing the ranking function.

Algorithm 6 Importance Weighting (IW) Approach to Transductive Ragkin
Input: Train setS= {(q;,d,yi }i=1.L

Input: Test seE = {(qy,du) }u=1.u

Input: ADAPT(), a domain adaptation algorithm

Input: WEIGHTED-LEARN(), a supervised ranking algorithm that Hkes weighted data
Output: Predicted rankings for tesfy,}u-1.u

1: foru=1toU do

2. W=ADAPT(dy, {(a,di,yi) h=1.) # find weighting over training samples such that samples

close to test have high weights

3 Fu(-) = WEIGHTED-LEARNW, {(qi,di, Y1) }i=1.1)
4.y, =FRy(dy) # predict test ranking
5. end for

Algorithm 6 shows the pseudo-code for the Importance Weigh@iw) approach. In our in-
stantiation WEI GHTED- LEARN() is the AdaCost version of RankBoost [56] afDAPT() is the
Kullback-Liebler Importance Estimation Procedure (KL)§P41]. KLIEP is currently the state-of-
the-art in importance weighting, its main advantages batmgutomatic model selection procedure
and proven convergence properties. The main issue hergvitohadjust the importance weighting
method developed for classification to a ranking problere Jamples to which importance weights
are applied depends oElI GHTED- LEARN() . Since AdaCost-RankBoost is a pairwise ranking
algorithm, our importance weights will be applied to sampbensisting of document pairs. If
VEI GHTED- LEARN() were a regression-based method, then we would define inmpertaeights

for each training document; for listwise methods, the ingnoce weights would be defined on the

75

level of each query/lidt

6.1.1 Computing the Importance Weights

Our domain adaptation meth@®APT() works in the following steps:

1. Extract all pairs of documents from the training Set {(q;,d;,y; }i=1..L Where there are rank
differences (i.eylj:l * y,‘<:1). This is the same set of document pairs that would be ertlact
from a pairwise ranking algorithm which maximizes pairwé&zuracy, such as RankBoost.

Suppose there atgy,r such document pairs.

2. Extract all pairs of documents from the test tigt.; = {dSQl},j =1..Ny=1. There will be a

total of Upair = Ny—1* (Ny=1 — 1) such pairs.

3. For each train/test document pair, derive a single veefmesentation by taking the difference
of the original document feature vectors. For instancetfferdocument pai(dl(”,dl(k)) we
derive the difference vector= d,(j) - dl(k). The set of difference vectors from the training set

will be {x }i=1.,,;; the set of difference vectors from the test list will {)ej}uzlnupair.z

4. Run the KLIEP importance weighting algorithm [141] usif)g}u-1.u,,, @s samples from

the target domain. The method will generate weigtitg) for each sample ifix =11, -

For completeness, we briefly review KLIEP; for details, rate[141]. KLIEP computes impor-
tance weightsv(x) without directly estimating the densitiggsi(X) and pest(X). The main idea is
to minimize the Kullback-Liebler divergence between trst thstributionpest(X) and the weighted

training distributionw(X) * prrain (X):

. _ Prest(X)
KL(Res¥)/ /W) * Pran(9) = [Pres()10g — w0 pua.n< 0 e X (6.1)
= / Prest(X) log sttr:: dx— / Prest(X) logw(x)dx (6.2)

1we would define importance weights on the level of lists int®acs.4

2Note that for notational simplicity we have again overladdee indexesi and| to index both lists and individual
vectors.

76

The first term does not depend arand can be dropped in the following objective:

Okuep = / Prest(X) logw(x)dx (6.3)
Upair

A Upa" Z logw(xy (6.4)
Upair

= Upa” Z log Z BoWo(Xy (6.5)

6.6)

where the last line follows from parameterizing the weightss a weighted average of basis func-
tions: wW(x) = SB_; Bob(X). In this work, these bases are Gaussian kernels centerbe aedt
samples:p(x) = exp(—%).3 The kernel bandwidtlo are set by KLIEP’s automatic model
selection procedure. In addition, we will need the constsaihat3 > 0 (so that the weighte are
positive) and = [W(X) prain (X)dX = Lpa")';ial" zEBbt,U(x.) (so that it is a proper distribution). The
resulting problem can be solved by linear programming. &ehd, we have a weightg(x) for
each document pair in the training data, where large vak@®sent training document pairs occur

in high density regions of the test pairs.

6.1.2 AdaCost: RankBoost with Importance Weights

The weights{w(x) }1=1..L,,,, are given to the AdaCost-RankBoost learning algorithm. @akt will
ensure that training document pairs with large weightsam&ed correctly during training, possibly
at the expense of other document pairs with smaller impoetaveights.

Algorithm 7 shows the AdaCost maodification. Note that theyailange from traditional Rank-
Boost (Algorithm 2 is the cost facta(i, j) in Line 4 and its incorporation into the update equation

in Line 5. The cost factoc(i, j) is computed such thét:

o Ifimportance weightv(d) —d())) is large and prediction is incorrect (iJa.(d® > h(d())),

thenD(i, j) is increase much (i.e(i, j) is large)

3Note that the Gaussian kernel allows us to have infinite sipop;est(x) and prrain(x). Otherwise the integration
in Equation 6.1 may not be valid.

“We use the formula(i, j) = 0.5xW(d") —d(})) + 0.5 if the pair is correctly ranked, andi, j) = —0.5%W(d® —
d()) + 0.5 otherwise w'is w normalized td0, 1].

77

¢ Ifimportance weight is small and prediction is incorrebgnD(i, j) increases only slightly.

e Ifimportance weight is large and prediction is correctntbei, j) decreases only slightly.

¢ Ifimportance weight is small and prediction is correctniiKi, j) decreases much.

Algorithm 7 RankBoost - AdaCost version
Input: Train setS= {(q;,d,y| }1=1.L

Input: Initial distribution D(i,) over (i,j)
Input: Weights on each training document pair
Output: Ranking functionF (-).
1: fort=1toT do
2: Find weak rankeh; (-) on weighted dat®.
3: Choose step siz@
4. Compute cost factaz(i, j) depending on importance weight
5. Update weight®(i, j) = D(i, j) exp(c(i, j) 6 (h(dV) — h (d(1)))). Normalize.
6: end for

7: Output final ranking functior (d™) = 5[, gh (d™).

6.2 Combining Feature Generation and Importance Weighting

It is possible to combine Feature Generation and Importsveighting into one method, since they
operate at different stages in the Local/Transductive Eveonk. Feature Generation modifies the
feature set, whereas Importance Weighting changes thaiaption in RankBoost.

In this section we show one straightforward method for caonmigi the two methods. The pro-

cedure is as follows:

1. For each test list, run Kernel PCA to obtain new featureasgntation

2. Run KLIEP on the new feature representation, obtainimg@ortance weighting for the train-

ing data (which are represented with augmented Kernel P@uffes).

78

3. Train AdaCost-RankBoost on the augmented features goorience weights.

This combined method allows us to effectively select (sstiysets of the training data while
training with test-specific features. Since we believe thffierent feature representations are op-
timal for different queries, it may be reasonable to alsaéelel that we should train on different
subsets of the projected training data, rather than theendwil

Whether this method works depends on whebiwgh of Change of Representation and Covariate

Shift Assumptions are satisfied.
6.3 Information Retrieval Experiments

In the experiments, we used our own implementation of Ada®askBoost; the KLIEP software
is available from [141]. We compare three systems: supesviRankBoost baseline, Importance
Weighting, and the combined Feature Generation / Impoet&ieighting ranker.

The results are shown in Table 6.2. We observe that

¢ Importance Weighting outperforms Baseline in all threeadats. For example for MAP, we
have .2482 (Baseline) vs. .2932 (Importance Weighting)TlREC’03. The improvements

are statistically significant for numerous metrics on atedats.

e The Combined FG+IW method improves upon Importance Weighéind achieves the best
result overall. Further, observing Figure 6.1 which corepafG, IW, and FG+IW, we note
that on virtually all metrics and all datasets, the combimeihod performs better or equiva-

lent to either of FG or IW individually.

We now present a few more detailed analyses to better cleamecthe Importance Weighting

method:

1. What is the effect of extracting all pairs of test docureent

We demonstrated that the Importance Weighting approactistently improves over the supervised
Baseline. However, it is not clear whether our weights argénwg-there may be other sets of

weights that achieve even better results. In particularameenterested in the question of whether

79

Table 6.2: Importance Weighting Results on Informationrigdeal. Importance Weighting (IW)
outperforms the Baseline in various metrics. The combireatie Generation (FG) and IW method
gave further improvements.

MAP | N@1 | N@3 | N@5 | N@10 | N@14

TREC 03
Baseline (supervised) .2482| .3200| .3455| .3404 | .3388 | .3401
Importance Weighting .2932 | .4800| .3858 | .3862| .3713 | .3755
Combined FG+IW 3219 | .5250| .4321| .4138| .4023 | .3990

TREC 04
Baseline (supervised) .3712| .4800| .4237| .4144| .4471 | .4686
Importance Weighting .3834 | .4800| .4456 | .4353| .4653 | .4810
Combined FG+IW .3891 | .4833| .4487 | .4483| .4554 | .4873

OHSUMED
Baseline (supervised) .4424| .4906 | .4543| .4501| .4230 | .4218

Importance Weighting .4440| .5000 | .4483| .4466| .4319 | .4280
Combined FG+IW 4497 | .5010| .4897 | .4765| .4431 | .4422

80

r . 0.7 T T T T T
I Combined (FG+W) I Combined (FG+IW)
I FeatureGeneration (FG) 0.65 - [FeatureGeneration (FG) H
[1ImportanceWeight (IW) T JimportanceWeight (IW)
06 : T gl
05 1 055
05
0.45
0.45 : g 041
035
0.4 0.25 ’_‘
MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10 MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10
(@) (b)
0.5 T T
Il Combined (FG+W)
[] | FeatureGeneration (FG)
|:| ImportanceWeight (IW) —
0.45
0.4
035 JIH
MAP

NDCG@1 NDCG@3 NDCG@5 NDCG@10

(c)
Figure 6.1: Combining Feature Generation with ImportanaagWting allows for soft selecting of
the projected training data. Combined results improves N@kRil three datasets (a) OHSUMED,
(b) TREC'03, and (c) TREC’04. Results are mixed for NDCG.

81

extracting all pairs of documents from the test list actumitroduces a bias in the test distribution,
since in actuality most of these pairs are not ranked pairids.

Thus, we performed a cheating experiment: rather thanaitigpall pairs of documents in the
test list, we extract only the pairs that have rank diffeemnby observing the test labels. These
“oracle” document pairs correspond to samples that carntgilo the actual pairwise ranking test
accuracies. On average, this corresponds to a 70%-80%ti@dircthe number of document pairs.
This would therefore be a “more focused” target domain. Tedwilts in figure 6.2, as expected,
show that the current importance weights can be improvedigin the gap is not large for the case
of OHSUMED. The test list has roughly 1000 documents for TRBGnd 150 for OHSUMED.
We believe there is more chance for improvement in TREC’'88esthere are many more possible
test document pairs in that dataset.

Note that this oracle result does not necessarily imply tiemlte upper limit of the potential
of Importance Weighting, since we are still using a particiinplementation (KLIEP) to compute
these weights. Though KLIEP is a state-of-the-art algorjtthere are other methods that may

potentially achieve better weights.

2. What are the statistics for the importance weights?

We are interested in seeing how well-matched is the traisdndp the test query, and whether KLIEP
is indeed selecting subsets of the training data. Figuresi@®/s histograms of importance weight
values associated with a random set of test queries. Natehthdistograms vary widely, i.e. for
the same pairs of training documents, the correspondingritapce weight varies a lot depending
on the test list in question. This supports our rationaletfeating each test list as a new domain
adaptation problem.

Further, we compute general statistics on the importandghtge shown in Table 6.3. First,
note that the cardinality of the importance weight distiidyu is similar for both OHSUMED and
TREC'03: there are roughly 150k-230k training pairs for QHSED and 130k-270k training pairs

for TREC’'03 (the variation is due to different folds). Thine we may compare weight values

5For example, we have experimented with enhancing KLIEP vettking-specific features derived from the initial
list. Though the results are not statistically differendt(reported here), it does show small improvements over the
standard KLIEP algorithm. The point is that we think impnments to include ranking characteristics into a otherwise
standard Importance Weighting algorithm could bring @ddal improvements.

82

0.55

T T
I A\l test pairs
[___]Oracle test pairs

05

0.45

0.4

MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

MAP

NDCG@1

T T
I A\l test pairs
] Oracle test pairs

NDCG@3 NDCG@5 NDCG@10 |

(b)

@
Figure 6.2: Comparison of importance weights extractet alittest pairs (current implementation)

or oracle test pairs (cheating experiment). (a) OHSUMEDsh® smaller gap, while (b) TREC'03
implies more chance for improvement can be achieved.

rl

o
N
N
o
N
N

.
.

o
[y
N

o
[y
N

.
N

F

o
ol
=
o
o
=
N

o
-
N

o
(&)
=
o

\

o
[E=N
N
o
=
N

N
F

o
=
N

o
N
N

i

g

o
N
SN

-

o
[é)]
=
o

Figure 6.3: Importance weight histogram from some OHSUMEBrgs. The x-axis is the impor-
tance weight value; y-axis is the histogram count. The laegety in distribution implies that the
target test statistics differ drastically.

83

Table 6.3: Importance weight statistics. Median repreiaaiverage median value of importance
weights, across all test lists. Similarly, the 25Rh/75hrgile capture the value of the 25th and 75th
portion of the weight's cumulative distribution functio€DF). Standard deviation and entropy
show how much the importance weight distribution diffex@firthe uniform distribution. Uniform
distribution would achieve an entropy of 2.48 (entropy isgkated discretely by dividing the weight
histogram into 12 bins).

CHSUMED TREC 03 TREC 04

(all pair) | (oracle pair)| (all pair) | (oracle pair)| (all pair) | (oracle pair)
Median 0.9142 0.6588 0.5140 0.0370 0.0461 0.0539
75th Quantile| 1.2808 1.1304 1.3642 0.2406 0.5137 0.0772
25th Quantile| 0.6104 0.3789 0.1420 0.0143 0.0011 0.0533
Mode 0.9031 0.6511 0.0416 28.9366 0.3041 56.4709
Std Deviation| 0.5712 1.4719 1.2951 18.7540 3.2136 35.3528
Entropy 1.8582 1.7784 1.9653 0.8520 1.2753 0.4803

across datasets to draw some conclusions. The median \@limgortance weights is 0.91 for
OHSUMED and 0.51 for TREC’03. The 25th Quantile value is aisach lower for TREC’'03, im-
plying that KLIEP assigns relatively more low values to TR&Eas compared to OHSUMED. Sim-
ilarly, the higher standard deviation in TREC’03 suggels&t the weight distribution for TREC’03
is more skewed and broader than OHSUMED. In other words, weseg that the Importance
Weighting approach ignores more training data in TREC'@®tim OHSUMED. We are not certain
why this is so, but this may be due to the fact that the TREC datamore features, thus more

chance of domain variety.

We also observe interesting statistics when comparingaih&eét pairs) with (oracle test pairs)
implementation (see Section 6.3). The (oracle test paasg ¢esults in a more focused target
domain, so the importance weight distribution becomes meeked: the entropy becomes lower,
standard deviation becomes higher, and in general many saonples get low weights (leading to

lower median and lower 25th quantile).

84

3. Both FG and IW gave improvements over the Baseline. HoWwajocbmpare under data ablation

experiments?

We performed data ablation experiments to see how Featurer&@en and Importance Weighting
compare for low data scenarios. For each fold, we artificiithited the training data by taking
the first 40%, 60%, and 80% of the training data (i.e. TREC'88 B0 queries for training in each
fold, so we would take the first 12, 18, and 24 queries as abldata). The original datasplit is
already randomized and independently sampled, so we dakpeteany biases with this subsam-
pling scheme. The results for MAP and NDCG@10 are shown inrgig.4. The Importance
Weighting approach consistently improves over the Baselimd can therefore be considered a rela-
tive safe/stable algorithm. On the other hand, Feature @#&ae performs well for 80% and 100%
but is usually worse than Baseline for 40% and 60% casess @hiresponds to 18 and 27 train-
ing queries in TREC’04; 25 and 38 training queries in OHSUMPBEDe believe this is due to the
fact that Feature Generation creates more features, ahdrefére more sensitive to the amount of

training data.
6.4 Machine Translation Experiments

We repeated the experimental setup for Machine Translafldre results for Arabic-English and

Italian-English are presented in Tables 6.4 and 6.5. Thergéobservations are:

1. Importance Weighting improves over the RankBoost basedilightly for both tasks. In
Arabic-English translation, Importance Weighting is @D1t9 BLEU points higher than Base-
line for Top-K (K = 1 to 5). In Italian-English, Top-1 BLEU isgaivalent for both systems
but forK > 1, Importance Weighting outperforms by 0.5 to 1.1 BLEU pairiowever, these
improvements are not statistically significant accordiodghte bootstrapping ttest procedure

[167]5

2. The Combined FG+IW performs worse than IW individualtygeneral, and is often worse

6BLEU is a corpus-level metric, not an average of sentenee-fmetrics. Therefore, in order to compute confidence

levels, bootstrapping is used. The idea is to randomly sélgth repeats) sentences from the hypothesized outputs.
Each set of random selection corresponds to a “sample” isitiréficance test. We perform 1000 samples, compute
BLEU scores for each, and judge significance by the pairedti-tvithp < 0.05.

85

Table 6.4: Arabic-English MT results

Top-k BLEU k=1 | k=2 | k=3 | k=4 | k=5 | PER

MERT (supervised) Baseline 24.3| 26.5| 279 | 28.6| 29.3| 47.9
RankBoost (supervised) Baseline | 23.7 | 26.4 | 28.0 | 28.9| 29.6 | 47.9
Importance Weighting (transductive)24.6 | 27.1 | 28.7 | 29.6 | 30.5| 47.7
FG+IW 23.3| 26.0| 27.6| 28.4| 29.0| 47.9

Table 6.5: Italian-English MT results

Top-k BLEU k=1 | k=2 | k=3 | k=4 | k=5 | PER

MERT (supervised) Baseline 21.2| 23.1| 24.3| 25.0| 25.7 | 52.6
RankBoost (supervised) Baseline | 21.9 | 23.6 | 24.7 | 25.4 | 26.0| 51.7
Importance Weighting (transductive)21.9 | 24.7 | 25.8| 25.9 | 26.5| 51.5
FG+IW 21.6| 235| 25.0| 249| 256 | 52.5

than the supervised Baseline as well.

It is interesting to observe that FG+IW performed worse th&nin Machine Translation but
gave further improvements in Information Retrieval. Wepsgs that since the new Kernel PCA
features do not correlate well with BLEU (and indeed FG ditpeyform well by itself in Machine

Translation), it is detrimental to include them in calcirigtimportance weights.

6.5 Protein Structure Prediction Experiments

The results and conclusions for Protein Structure Predidsi very similar to that of Machine Trans-

lation. Tables 6.6 and 6.7 compares IW and FG+IW with bassland show that:

1. Importance Weighting slightly improves over supervibegelines for all k's in Top-k GDT-
TS. However, the improvements are not statistically sigaift according to the Wilcoxon

signed rank test.

86

Table 6.6: Protein Prediction GDT-TS results

Top-k GDT-TS k=1 | k=2 | k=3 | k=4 | k=5
MERT (supervised) Baseline 581 | .590| .597 | .601 | .604
RankBoost (supervised) Baseline | .579 | .590 | .595 | .599 | .604
Importance Weighting (transductive).583 | .596 | .603 | .605 | .608
FG+IW .568 | .584 | .593 | .596 | .601
Table 6.7: Protein Prediction z-score results
Top-k z-score k=1 | k=2 | k=3 | k=4 | k=5
MERT (supervised) Baseline 1.07]1.17)| 1.26| 1.31| 1.34
RankBoost (supervised) Baseline | 1.13| 1.25| 1.30| 1.36 | 1.41
Importance Weighting (transductive)1.15| 1.26 | 1.33| 1.35| 1.39
FG+IW 1.02]1.23|1.29| 1.32| 1.39

2. Using the Kernel PCA features to compute important wsigippear to be detrimental, and

the combined FG+IW performed worse than IW itself. This iseved in both GDT-TS

scores and z-scores.

Further, we look at the scatterplot of GDT-TS values for Im@oce Weight vs. Baseline to
see how results vary by individual lists. Figure 6.5 shoved tmportance Weighting can be called

a low-risk enhancement in the sense that the majority of (88%) are not affected much by the

weighting, and that the degree of improvement/degradasgioelatively mild.

Chapter Summary

We presented the Importance Weighting Approach, whichaitgpthe covariate shift assumption
by adapting the training distribution to each test list. sTli achieved by modifying the KLIEP

importance weighting method for pairwise instances andguah AdaCost version of RankBoost

to incorporate distributions.

87

Importance Weighting appears to be a relatively stable atkthchieving gains in all datasets.
In particular, the majority of gains in Information Retréare statistically significant. Data ablation
experiments also show Importance Weighting to be a stabthadehat consistently outperforms
the Baseline (in contrast to Feature Generation, which magmperform in low data scenarios).

We also experimented with a Combined Feature Generationimpdrtance Weighting ap-
proach, which has the potential to adapt to test lists botlistiibution and feature representation.
This combined method gave further improvements in InforomaRetrieval, but actually degraded
results in Machine Translation and Protein PredictionsThimost likely due to the effectiveness of

Kernel PCA features in the first task and their correspondieffectiveness in the two latter tasks.

88

0.31 0.4 0.4 0.48

0.46 -

0.44
o o
— —
® ®
Q Q 0.42
Q o
[a) o
z z
041
/
/ /
0.23 - 1 I - = 0.321 — — —Base | 1 / - =
P Base 03k - _ _, Base | | YA 0.38) / Base | |
7 —+— FG - —+— FG / —+- FG —+— FG
0.22}~ , - 0.31F,] /
—e— 1w —o— W —o—w r —e— 1w
0.21 y v y v 0.3- 0.36 y v
40 60 80 100 40 60 80 100 40 60 80 100 40 60 80 100
Percentage of training data Percentage of training data Percentage of training data Percentage of training data

(@) (b)

0.455 0.45
/
/
0.45 1 0.44 y
0.445
o
—
®
< 044 Q
Q
[a)
z
0.435
v
/7
0.43 /// — — —Base || 0.4y, — — —Base|]
R FG —+— FG
Eee —S— 1w —— W
0.425 0.39 y v
40 60 80 100 40 60 80 100
Percentage of training data Percentage of training data

Cc
Figure 6.4: Data ablation results (MAP an(d)NDCG@lo) of (a)SDHIED, (b) TREC'03, (c)
TREC’04 for 40%, 60%, and 80% subsets of training data. Itamae Weighting consistently
improves over the Baseline. Feature Generation perforridavdéarger data but poorly in the 40%
and 60% cases.

89

]
8

0.9 &

0.8 ﬁ

0.7 ;)é&@p

0.6 0 &
® @ 00
=] o o
3 05 o OC;;?
©
o

0.4 C@@ o

03 o6P

00
0.2t
063
01f O
o
0 i i i i i
0 0.2 0.4 0.6 0.8 1

Importance Weighting

Figure 6.5: Scatterplot of GDT-TS values: Importance We(lb83 average GDT-TS) vs. Baseline
(.581 average GDT-TS). The majority of lists are not affddig Importance Weights; 12% of the
lists are improved by 0.01, 20% of the lists are degradedrdlaiion coefficient = .9827

90

Chapter 7
INVESTIGATING THE LOW DENSITY SEPARATION ASSUMPTION

7.1 Pseudo Margin Approach

Here we propose a method to exploit the low density separassumption under the Local/Transductive
Framework. Under the low density separation assumptiolapefed data is used to define regions
of low-density vs. high density. The (classification) fuantis assumed to cut through low-density
regions, which corresponds to the intuition that object ttiuster together belong to the same
category.

One common way to implement this assumption is using the eminof a “pseudo-margin”
[82, 16, 51]. We will briefly portray this idea with boostingldssification), following [16]: For
labeled datd (xi, Vi) }; = 1..L, wherex are the features andare the (classification) labels, AdaBoost

minimizes the following objective function:

iela;IEdeXp(—YiF(N)) (7.1)

whereF (x;) is the value of the classification function on sampleThe product;F () is called the
margin (following support vector machine literature), anid positive if the (binary) classification
is correct, negative otherwise. By minimizing the objegtiwe are basically maximizing the margin
for labeled points.

For an unlabeled sample, the margin (or pseudo-margin, tertre distinction with the la-
beled case clear), the margin is definedrasg)|. This is equivalent to assuming that the label is
sign(F (x)), i.e. which means that we trust the prediction to be corEoé objective with unlabeled

points therefore becomes:

minielegeledexp(_yi i (Xi)) " yieungbeledexm_ ‘ " (Xi) ’) (7.2)

The effect of the second term is low density separation. THpeitparametey adjusts for its

91

importance in the overall objective. The functibif-) will veer away from any unlabeled sampte
in order to achieve large pseudo-margin.

Previous work in classification has applied the pseudo-imadga to boosting. The ASSEM-
BLE system of [16] achieved the best result of the NIPS 200lhiied Data Competition. Here,
we will extend the pseudo-margin idea in [16] to RankBoost.

The main idea in our extension to ranking is to measure thedesenargin on pairwise samples.

In (supervised) RankBoost, the objective function miniesiz

S exH—(F(x)~F (1) (7.3)

(i)
for all pairs (i,j) where item i ranks above item j. Heyes (F (%) — F(X;)),y = 1 can be thought of

as the margin. To extend this to unlabeled samples, we sidgfige the pseudo-margin

|F (i) — F(x;)[for any pair (i,j) from unlabeled list (7.4)

Thus, our approach first extracts all pairwise samples fronmdabeled list. Then we minimize,

exp(—(F(x)=F0))+y > exp(—|F(x)—F(x)l) (7.5)

(i,j)<labeled (i,j)eunlabeled

which leads to low density separation in the pairwise samsplre. The pseudo-code for the
overall framework is shown in Algorithm 8, and the pseuddedor the modified RankBoost is
shown in Algorithm 9. Note that in contrast to previous melhothis method requires a semi-
supervised ranking algorithm in the inner-loop of the gahkocal/Transductive Framework.

Importantly, we should note that using the pseudo-margisinary classification automatically
carries an implicit (and usually valid) assumption that atabeled point is either one class or the
other. In a similar vein, using it in the ranking scenaricomudtically assumes that one item is defi-
nitely rank above another item (though we do not know whiahtigh). This assumption in ranking
actually leaves out one potential option: that is, the twemi being of the same rank. Therefore,
in cases where many ties are possible from the pairwise sanagktracted from an unlabeled list,
pseudo-margin as defined here may not be a suitable way toiexplabeled data. We will observe

this effect in our experiments.

92

Algorithm 8 Pseudo-Margin (PM) Approach to Transductive Ranking
Input: Train setS= {(q;,d,y }=1.L

Input: Test se€ = {(qu,dy)}u=1.U

Input: PAIR-EXTRACT(), a procedure to extract pairs of samples
Input: SEMI-LEARN(), a semi-supervised ranking algorithm
Output: Predicted rankings for tesfyy}u-1.u

1: foru=1toU do

2. P=PAIR-EXTRACT(,)

3 Fu(-) = SEMI-FLEARNW, {(q,d.y1) hi-1.L.P)
4.y, =FRy(dy) # predict test ranking

5: end for

Algorithm 9 RankBoost with Pseudo-Margins
Input: Train setS= {(q;,d,yi }i=1.L

Input: Unlabeled Pair®.
Input: Initial distributionD(i, j) over (i,j)
Output: Ranking functionF(-).
1: fort=1toT do
2: Find weak rankeh; (-) on weighted dat®.
3: Choose step sizé
4. Compute cost factar(i, j) depending on importance weiglt
5. Update weight®(i, j) = D(i, j) exp(c(i,) 6 (ht (dV)) — hy (d(D))) for (i,j) from labeled data.
6: Update weightD(i, j) = D(i, j) exp(c(i, j) & (|h (dD) — h (dD)))) for (i,j) from unlabeled
data. Normalize.
7: end for

8: Output final ranking functior (d™) = 51 ; gh (d™).

93

7.2 Information Retrieval Experiments

In the experiments we evaluate whether low density separati pairwise samples is a suitable

objective for ranking. We will compare three systems:

1. Baseline: Supervised RankBoost
2. Pseudo Margin Approach, as described in the previoussect

3. Pseudo Margin with Oracle Pairs: This is a semi-cheatikppement where only pairs of
documents that are not tied in rank are extracted for comgyiseudo margins. In other
words, whereas the standard (and non-cheating) Pseudanvapgroach extracts all possible
pairs from the test list (i.e(N«N — 1) /2 pairs in total folN documents), the “Pseudo Margin
with Oracle Pairs” system extracts only a subset of paircwhire known to have rank label

differences.

It is important to note that the Oracle Pairs system, thoughkiiged with documents pairs that
are not tied, is not given information as to which of the pairdnked above the other. That is why
we say it is asemicheating experiment. In a sense, this system more closembles the low
density separation assumption in classification, where dgtéar that the unlabeled sample (in this
case, unlabeled pair) is one of two classes (and that thed ikird option).

The Pseudo Margin Approach has one hyperparamg}doi trading off the effect of labeled
versus unlabeled samples. In all our experiments here wietset default of 05« N, /N, (where
Ny andN; are the number of unlabeled and unlabeled pairs), meanadhé loss from the pseudo-
margin is half of that of the real labeled margin. Prelimjnaxperiments show that RankBoost
is relatively insensitive to the adjustment of this hypeapaeter in reasonable domains: we obtain
similar results for values 0.1 to 1.0.

The results for Information Retrieval are shown in Table WWe observe that:

e The Pseudo Margin Approach in general performs worse thagaal to the Baseline. The

only exception where Pseudo Margin performed better §sieaily-significant) is for the

94

Table 7.1: Pseudo Margin Results. The Pseudo Margin appedormed equal to or worse than
the Baseline due to violation of the low density separatissuanption. Most unlabeled document
pairs are in practice tied in rank and should not be encodrégéave large margins. Once these
tied pairs are removed, the Oracle Pairs result show drarmagirovements for all datasets.

MAP | N@1 | N@3 | N@5 | N@10 | N@14
TREC 03
Baseline (supervised) .2482 | .3200 | .3455| .3404 | .3388 | .3401
Pseudo Margin .2502 | .3400| .3399| .3500| .3403 | .3433
w/ Oracle Pairs .5158| .7000| .6704 | .6392| .6143 | .6170
TREC 04
Baseline (supervised) .3712 | .4800 | .4237 | .4144 | .4471 | .4686
Pseudo Margin .3502 | .4533| .4143| .4070| .4350 | .4524
w/ Oracle Pairs .6858 | .8400| .7999| .7598| .7470 | .7501
COHSUVED
Baseline (supervised) .4424 | .4906 | .4543| .4501| .4230 | .4218
Pseudo Margin 4520 .4560| .4342 | .4334| .4208 | .4196
w/ Oracle Pairs 5136 | .5252| .5159| .5117| .4941 | .4948

MAP metric for OHSUMED*

e Pseudo Margin with Oracle Pairs performed overwhelminglgva the baseline, giving the
best results so far. This is a semi-cheating experimenit bbibws how tied pairs invalidates
the low density separation assumption.

To investigate deeper the issue of tied pairs, considerdl@ning statistic for TREC'03:

e There are roughly 983 documents per list. Thus the PseudgiMapproach would extract

983x982/2 = 482 653 pairs of documents.

Lin this case, it appears that precision at low ends is bemgfitom the Pseudo Margin, which improved MAP overall.

95

e There are however only 2 levels of relevance judgments in0d RElevant vs. irrelevant), and
on average there are only 1 relevant document in the list 8fdé#uments. This means that

there are only ¥ 982= 982 pairs of documents with different ranks (i.e. the Or&des).

e Only 982 out of 482,653 pairs are not tied. This is 0.02%. heotvords, the vast majority of
extracted pairs in the Pseudo Margin approach are forceavmlarge margin, but in actuality,

they should be tied and have little margin.

The issue of tied ranks is interesting because it revealsa where assumptions from semi-

supervised classification do not apply to ranking.

It may be possible to enhance the Pseudo Margin Approachleddréink datasets, using for
example atwo-step approach. In the first step, a traditi@méder is used to order the test documents.
Then, assuming this is a relatively accurate ordering, wediade the documents into top-half
and bottom-half, then extract document pairs between tivegehalves. This strategy relies on
the Bootstrapping assumption in the first step, but we do eetlrto assume that the top-half is
necessarily better than the bottom-half. The order couldelersed—as long as the tied pairs are

eliminated, then the low density separation assumptiod usthe second step becomes suitable.

Another possibility is to reformulate the objective suchttlied pairs are accounted for. We
know that for non-tied pairs, we would like to minimiZe; ;) cuniabeled®XP(—|F (i) — F (x;)|) and for
tied pairs, we would alternatively like to minimizg; ;)cuniabeled®XP(|F (%) —F (Xj)|). Further, from
the labeled dataset, we can estimate the ratio of tied vstiadrmpairs. This prior information could
potentially be incorporated into the obective such thatatfon of the unlabeled pairs maximizes
pseudo-margin while another portion minimizes it, and thinoization technique has the flexibility
to choose which pair belongs to which category. This is aj@ls to transductive SVM solutions

[82] where one can specify the ratio of positive vs. negatammples in the unlabeled sample.

2In fact, we performed an additional experiment wheremigimizerather than maximize the pseudo-margin. This
actually gave improvements in OHSUMED (.4800 MAP) and TR&Z(.3523 MAP), but not for TREC'03 (.2503
MAP).

96

7.3 Machine Translation Experiments

The experimental setup for Information Retrieval is repddor Machine Translation, with very
different results.

Tables 7.3 and 7.4 show that the Pseudo Margin Approach jgwviéicant improvements over
the Baseline, and in fact performs better than the Oracles Rarsion. Since machine translation
uses continuous-value labels, we define oracle pairs inaime svay labeled pairs are defined: if
the difference of sentence-level BLEU exceeds a certagstinid, then a pair is considered to be
ranked. If the difference is below the threshold (or zetm@ntthey are considered tied.

In Arabic-to-English translation, the Top-1 BLEU of 26.1r i8seudo Margin outperforms the
Baseline of 24.3. Similarly, the BLEU score of Oracle Pa#5.Q) also improves upon the Base-
line. In Italian-to-English translation, Pseudo Margid (2 and Oracle Pairs (23.7) also outperform
Baseline (21.2). Interestingly, for this dataset, usinty @racle Pairs actually does not perform as
well as extracting all pairs. This is because there are lgtueatively few ties in the Machine
Translation N-best lists—these lists have been de-dupticeo that identical surface strings are re-
moved, and so most pairs of hypotheses would likely benefinfthe large pseudo-margin. In
contrast to the 0.02% non-tied pairs in Information Retlgin the Arabic task for example there
are up to 20% of pairs that are not tied in terms of sentencs-BLEU.

Finally, we compare the translation output of baseline w&ugo Margin in more detail. Table
7.2 shows the breakdown comparison of BLEU computation. Wekve that the gains in BLEU
for Pseudo Margin comes from better n-gram matches (andhedirevity term). Figure 7.1 shows
some example translations obtained by the different mathod

We conclude that the low density separation assumption sueekl for our machine translation
data. It would be worth investigating in future work whethbis generalizes to other machine

translation datasets.

7.4 Protein Structure Prediction Experiments

The results for Protein Structure Prediction are shown inlé&a7.5 and 7.6. We observe slight
degradations with the Pseudo Margin Approach. The Oradls Bgstem performs slightly better

than the standard Pseudo Margin Approach, but do not ootpeithe Baseline as seen in Informa-

97

Table 7.2: Breakdown comparison of BLEU for Baseline (MERS.) Pseudo-Margin

Baseline| Pseudo-Margin

1-gram precision 65.03 66.74
2-gram precision 33.23 35.29
3-gram precision 18.30 19.94
4-gram precision 9.83 11.07
overall precision 2497 .2685
length ratio (brevity)| .9731 9725
BLEU 24.3 26.1

Table 7.3: Arabic-English MT results. The Pseudo Margin vaagh outperforms the Baseline in
all metrics. Boldface represents statistically signifideaprovement via the bootstrapping approach
[167]

Top-k BLEU k=1 | k=2 | k=3 | k=4 | k=5 | PER

MERT (supervised) Baseline 24.3| 26.5| 27.9| 28.6| 29.3| 47.9
RankBoost (supervised) Baseline23.7 | 26.4 | 28.0| 28.9| 29.6 | 47.9
Pseudo Margin 26.1| 28.8| 30.1| 30.9| 31.8| 46.5
w/ Oracle Pairs 25.0| 28.0| 29.6| 30.6 | 31.2| 46.7

Table 7.4: Italian-English MT results. The Pseudo MargirpAgach outperforms the Baseline in
all metrics. Boldface represents statistically signifidemprovement via the bootstrapping approach
[167]

Top-k BLEU k=1 | k=2 | k=3 | k=4 | k=5 | PER

MERT (supervised) Baseline 21.2| 23.1| 24.3| 25.0| 25.7 | 52.6
RankBoost (supervised) Baseline21.9 | 23.6 | 24.7| 25.4| 26.0| 51.7
Pseudo Margin 24.3| 26.1| 27.0| 27.8| 28.4| 48.6
w/ Oracle Pairs 23.7| 25.8| 26.7| 27.3| 27.9| 48.8

98

REF: the store is usually open from nine am to six pm
Baseline: open shop usually at nine SbAHAFAIY pm

Pseudo-Margin: open shop is usually at nine SbAHAFAIY six in the evening

REF: it's not salt-free we can change it to salt-free if you need
Baseline:it's not is it urgent but we can change for another seat isrttaat

Pseudo-Margin: it's not is from the salt and but we can change for the last is it

REF:sorry you cannot turn the tv on until the plane has taken off

Baseline:excuse me i you turn tv until the plane departs

Pseudo-Margin: excuse me not you turn set until the plane departs

Figure 7.1: Example translation outputs for Baseline veude-Margin.

Table 7.5: Protein Prediction GDT-TS results

Top-k GDT-TS k=1 | k=2 | k=3 | k=4 | k=5

MERT (supervised) Baseline 581 | .590| .597 | .601| .604
RankBoost (supervised) Baseline579 | .590| .595 | .599 | .604
Pseudo Margin 574 | .590| .599 | .603 | .608
w/ Oracle Pairs 578 | .591 | .599 | .603| .608

tion Retrieval.

The scatterplot of Pseudo Margin vs. Baseline for individest lists reveal an interesting result
(Figure 7.2). Compared to similar scatterplots for ImpoctWeighting and Feature Generation
(Figs 6.5 and 5.8), the results here are much more variedtl@ncbrrelation coefficient is smaller).
In the Pseudo Margin Approach, 70% of test lists differ by enthian 0.01 from the Baseline GDT-
TS. (Among these, 37% of the lists are improved by 0.01, ar®d 88the lists are degraded, but
overall the average GDT-TS is still a slight degradatiortiug, in comparison, Pseudo Margin is a

riskier approach—there is much more potential to improseyell as degrade the Baseline results.

99

Table 7.6: Protein Prediction z-score results

Top-k z-score k=1 | k=2 | k=3 | k=4 | k=5

MERT (supervised) Baseline 1.07]1.17)| 126 1.31| 1.34
RankBoost (supervised) Baselinel.13 | 1.25| 1.30| 1.36 | 1.41

Pseudo Margin 1.03]1.24| 1.34| 1.40| 1.47
w/ Oracle Pairs 1.09| 1.26| 1.35| 1.40| 1.45
il g
0.9 §%

0.8 o Oooo@@
oo%

0.7+ o) %%%

%0.5— OO %OCQ% @%O

® 04l o o(%)oo

0.3: 000@3%80

i i i i i
0 0.2 0.4 0.6 0.8 1
Pseudo Margin

Figure 7.2: Scatterplot of GDT-TS values: Pseudo Margiii4.&verage GDT-TS) vs. Baseline
(.581 average GDT-TS). In contrast to Importance Weightimege the majority of lists are affected

by the Pseudo Margin Approach: 37% of the lists are improwe@.81, 33% of the lists are de-
graded. Correlation coefficient =.9681

100

Chapter Summary

We apply the low density separation assumption to rankindghleydefinition of pseudo-margin
over pairs of unlabeled documents extracted from the tststTihe three different datasets exhibit

drastically different results:

¢ In Information Retrieval, the abundance of tied-ranks lednferior performance of the
Pseudo Margin approach. However, once these ties are atedinn a semi-cheating ex-
periment, significant improvements can be seen. An aventtufe research is to use an
initial ranking to identify possible tied pairs and elimiaghem before the Pseudo Margin

approach is applied.

¢ In Machine Translation, Pseudo Margin give significant ioye@ments. The Oracle Pairs

version also gave improvements, albeit less.

e We observe slight degradations with Pseudo Margin on theeRr&rediction dataset. These

degradations are not statistically significant.

The Pseudo Margin Approach therefore appears to be highand high-reward. If the low
density assumption is satisfied (as in the case of Machingslation or Oracle Pairs in Information
Retrieval), then significant gains may be seen. On the otaed hissues such as tied ranks may

violate the assumption and lead to degradations for thifiodet

101

Chapter 8
KERNELS ON LISTS

In this chapter we will introduce a kernel that operates stsliThe motivation for such a kernel
is that it enables more classification techniques to be eghdi ranking. In the following, Sections
8.1 and 8.2 will discuss the motivation and the related worlletail. The proposed List Kernel is
presented in Section 8.3.

We will apply list kernels for semi-supervised ranking irotdistinct ways: Section 8.4 explores
using list kernels under the Covariate Shift Assumptiamjlsir to the Importance Weighting method
of Section 6 with the exception that kernels are applied ts A lists rather than pairs of vectors.
Section 8.5 uses the distance information between listsarframework of graph-based methods

and proposes a variant of label propagation called Rankgragation.
8.1 Motivation

Many popular learning algorithms, be it supervised or sgapiervised, work with kernels that char-
acterize the similarity between sample points. For exajmglgport vector machines use kernel
functions to measure the similarity of sample points in samglicitly-defined high-dimensional
space. The use of kernels not only gives computational sppgdbut also accuracy improvements.
Graph-based methods represent another class of techniduezs kernefs or similarity informa-
tion between points are central; in this case, the overatiifola of the dataset is captured by local
distance functions. Many kernel methods or graph-basetiadstare modular with respect to the
kernel they use, giving the designer the flexibility to pingdifferent kernels (which may represent
different quantifications of the designer’s concept of iraace). It is however challenging to apply
these methods directly to ranking if the kernels are defirved samples points (e.g. vectors), rather
than lists (e.g. set of vectors).

We are therefore motivated to develop novel kernels thatadpenlists. With List Kernels we

IKernels are actually not required for graph-based leariing sufficient to have a non-negative similarity function

102

can conceivably adapt many kernel and graph-based metbodsking problems. The criteria for

a List KernelK(-,-) is as follows:

e The List KernelK(-,-) is a function that maps two lists to a non-negative scalerKi(x,y) :

RN RIXN _, R wherex andy are two lists.
e The number of vectors irandy need not be equivalent, i.Bl, = Ny is not required.

e The kernel is computed only using information from the uelall portion of the lists (e.g.

the features of each hypothesis in an N-best list), and redddlinformation is utilized.

¢ Intuitively, the kernel should give large values for twddishat are similar, and small values

for two lists that are dissimilar, where the concept of samifl/ is yet to be defined.

e K(x,y) is symmetric (i.eK(x,y) = K(y,x)) and positive semi-definite (i.e” xK(x,y)*c >0,

for anyx,y and anyc € R™ £ 0)
8.2 Related Work on Kernels

While kernel design has been an active area of researcle liasrbeen considerably little related
work for kernels on lists. Most previous work has focused emkls for vectorial data, combina-
torial data, and structured data (c.f. [132]). To the besiwfknowledge, the only work involving
kernels over lists of vectors are in the computer visionditigre. The motivation in these cases is
to deviate from the common practice of representing a tweedisional image as a single vector
(e.g. a 32 x 32 image would be represented as a vector of |&0g#h, where each entry is a pixel).
Instead, the image would be represented by 32 vectors ah&#jeach.

The works in computer vision (more specifically, image redtgn) trace their ideas to mainly
two different approaches. One is based on distance meakeategen probability distributions
induced from the list of vectors, while the other is basedfyuon geometrical properties.

The work of Kondor & Jebara [90] is based on first generatingadability distribution that
represents each list, then measuring the divergence hetilieedistributions. Conceptually, the

following steps are involved:

103

1. Forlistx= {z,}n=1.n,, train a multivariate Gaussignz) = W exp{—(z—)" Yz—)}

using thelNy vectors in the list.

2. Similarly, obtain the multivariate Gaussian by trainimg vectors in listy (i.e. compute the

meanyu and covariance).

3. Compute the distance between distributions of two lig{g)(and p/(z)) using the Bhat-

tacharyya distance:

K(p(@.P(2) = [(v/p@—/P(@)dz CEY

While different distances on distributions (e.g. the Katik-Liebler Divergence) could be used,
[90] showed that efficient computation of the above kernallma achieved with the Bhattacharyya
distance. The final kernel value can be computed in closed-fiased on means and covariances,
without requiring integration. For convenience, we willeeto this as the Bhattacharyya kernel.

The works of Yamaguchi et. al. [161] and Wolf & Shashua [15¢ based on geometric
properties of the lists using the concept of principal comgrd angles, due to Hotelling [71]. Let
Ux andUy be the subspaces spanned by samples ixlestdy, respectively. This subspace can
be computed by principal components analysis, for examphading toUy = [utu2us..], where

< ul, u}; >=0Vi# j. The principal angle between the two subspaces is defined as:

_ T
coq0) = Er;ﬁﬂ/rel&(u v (8.2)

In other words, the kernel value between two lists is the maxrn dot product between two sets
of basis functions computed by principal components amalySor convenience, we will refer to
this second approach as the principal angles kernel.

Note that both of the above kernels capture some informaitimut theorientationof the list. If
two lists differ from only slight rotation, they will recetvhigh similarity. In addition, the principal
angles kernel has a shift-invariant property, meaningdhatcould add a constant offset to all ele-
ments of a list without affecting the kernel value. It is ad®ale-invariant since a constant multiplier
will not change the set of basis functions. On the other htr@Bhattacharyya kernel is sensitive

to shifts and scaling in feature space. For the applicatfaarnking, we imagine that thehapeand

104

Table 8.1: A summary of properties of kernels on sets of yeclast Kernel is proposed in Section
8.3

Bhattacharyya Principal Angles| List Kernel

Shift-invariance no yes yes
Scale-invariance no yes yes
Rotation-invariance no no no

orientationof the list is most important, since it shows the relatiopsdtinong objects in the same
list. In many cases, what the ranker does is to tradeoff tla¢ive importance of different features,
and this ratio manifests itself in the shape and orientaifdhe list. Shape, however, is not captured
by the principal angles kernel since it only uses informatidout the PCA eigenvectors, and not
the eigenvalues. Shift invariance and scale invariancelmeajesirable properties if we believe that
the ranking function should not vary drastically at difierearts of the feature space. They may not
be desirable properties if we believe otherwise.

A summary of different properties of is shown in Table 8.1.

8.3 Formulation of a List Kernel

In this section we present our kernel, which we simply cadl ltist Kernel. Part of the formulation
turns out to be similar to the principal angles kernel sinegd@cus on geometric properties of point
clouds, though there are significant differences. We wiltarcharacterize shape and rotation differ-
ences between two lists. The main idea is to first use prihciraponent analysis to characterize
the subspace spanned by objects within a list, then use anmaaxiweighted bipartite matching
algorithm to find the distance between all basis vectorsisfahbspace. One can imagine trying to
rotate one list such that it maximally aligns to the secost [The amount of work required to do
this is the difference, and the inverse would be the sintylaiThe matching algorithm is required
because there are many ways to match basis vectors fromsbne liasis vectors of the other list.
We will enforce an one-to-one mapping between basis vebirause we are “rotating” the list as
a rigid body in space and not doing any deformation. In sumcerapare two lists by shape and

orientation similarity, and in the following we propose apecific algorithm to achieve it.

105

The pseudo-code for List Kernel is shown in Algorithm 10. Masitrate the kernel, suppose we
have computed the basis vectors forisfug uZ ug], as well as the basis vectors for lst[uy u7 u3].
For ease of explanation, supposed we had only extractesphthtee principal component axes.
If the top eigenvectors (principal axes) and u)l, point in similar directions, then their dot product
is high and the corresponding list kernel value will be highn the other hand, ifii and u)l, are
dissimilar, butu)l(andu§ are similar, then the list kernel value should be mediungean(in effect
weighted byA} x)\yz). Finally, if none of the three eigenvectors»afatch well with that ofy, then
the list kernel value will be small. The goal of the maximurpdtite matching step in Algorithm
10 is to find the best possible one-to-one correspondengeebrtthe two subspaces, so therefore

the list kernel value is defined as the attained matchingevalu

Algorithm 10 Computing the List Kernel
Input: List x and listy.

Output: Kernel valueK(x,y).

1: [Uyx; Ax] = PCAX) (ComputeM principal component axag’, m= 1..M and eigenvalueg,”,
based on vectors in list)

2: [Uy; \y] = PCA(y) (Similarly compute for listy.)

3: Define a bipartite grapls with M? edges and i nodes. One side of the graph represept
and the other side represaijt.

4: form=1toM do

5. form=1toMdo

6: Compute the edge weight, defined as the dot product betwawmripgal axes, weighted by

the corresponding eigenvalud8A)" - | < u, U’ > |.

7. end for

8: end for

9: Compute maximum weighted bipartite matching on gr&hThe unnormalized kernel value
K(x,y) is defined as the maximum matching value, Kéx,y) = s™ ; AMAZ™. | < u, 15™ >
|. wherea(-) is a bijectiona: 1..M — 1..M that represents the bipartite matchfng.

10: The output kernel valuK (x,y) is normalized by the norm of eigenvalues:

KOy) = RxY)/ (1A - [[Ay]])

106

This list kernel has advantages over the principal anglesekdecause it considers the overall
shape and orientation of the lists. The principal angleademith its “max-max” operation only
considers the correspondence of only one pair of eigermgecRrincipal angles kernel can be seen
as an extension of cosine distance (for vectors) to subsp&aece the focus is on “cosine distance”
between subspaces, there is no measure of the shape, wtiraragterized by ratios of eigenvalues
of difference principal component axes. For exampleytiimatches well witmﬁ, the principal
component kernel will achieve high value regardless of ivaethe remaining eigenvectors match
well. Further, the lack of weighting of principal axes magdeo stronger sensitivity to the number
of components extractedV). It is important to note that while both methods employ pipal
components as a first step, the principal angles kernel i$ cooserned with measuring the angle
between subspaces, while our proposed list kernel focusesatching the overall shapes between
point clouds in lists. The List Kernel is also shift-invarta The example in Figure 8.1 illustrates
how List Kernel works.

We use the Hungarian Method (also known as the Kuhn-MunKgesitom) for weighted bi-

partite matching. The overall computation cost is:

e O(d®) for the principal components analysiié the dimension of the feature vectors, which

range from 10-50 in our tasks)

e plus O(M?) for computing the edge weights in the bipartite graph (M is the number of

principal components extracted, which can be a small imt@gg. 5 or 10).)

e plusO(M?3) for the bipartite matching. Sindd is a small integer, the computations required

for list kernel is not at all prohibitive in practice.

We now show that Algorithm 10 generates a valid kernel.
Proposition 8.3.1. The function Kx,y) in Algorithm 10 is symmetric, i.e. (,y) = K(y, X).

Proof.

M AN <ur ™ > |
(AT TV

K(x,y)

107

or
-5 L)
-6 6 8
2
or
-2 L)
-8 6 8
101
or
-10 L L L L L I ’ I)
-4 -3 -2 -1 0 1 2 3 4

Figure 8.1: lllustration of list kernel. The top data is daerized a [.9 .3] vector as its first principal
axes (large eigenvalue 5.2) and a [.3 -.9] vector as its skapes (small eigenvalue 0.1). The second
and third datasets are rotations of the the first by 25 and g€eds, respectively. In the second
dataset, the first principal axis is a [1 0] vector. In thedhdataset, the first principal axis is a [.3
-.9] vector. The principal angles kernel would thereforel fihat the first and third data are close.
However, the list kernel would successively discover vartraximum weighted bipartite matching
procedure that the second dataset (which has less rot&iolgser to the first: it would match the
axes that have both small cosine distance as well as largailyes.

108

SM o ASMAM. | <™ un s |

(Ayl[-1[Ax]1)
A s |
(HAy[l- [1Ax]])

= K(y7 X)
O

Proposition 8.3.2. The function Kx,y) in Algorithm 10 is satisfies the Cauchy-Schwartz Inequality
i.e. K(x,y)? <K(xx)K(y,y).

Proof. First, we show thaK(x,x) = 1:

M AR <t i > |

K0ex) T T
CSMARAT < up U |
(T T)
_ S AAD
B (HAXHH)\XH)
e,
(AT I

The second step follows from the fact that maximum bipantiééching would achieva(m) = mvm

since< ul’,ul' >= 1 and< ul',ul >= 0 for anym= m'. The third step is a result &f ul", " >= 1.

a(m)

Next we show thaK(x,y)? is bounded by 1. Note that u',uy

M my a(m)
% < 1 where the last inequality follows from applying Cauchyr®artz to the vectors of

>< 1, so thatk(x,y) <

eigenvalues. O

Theorem 8.3.3(Mercer’'s Theorem, c.f. [132])Every positive (semi) definite, symmetric function

is a kernel: i.e., there exists a feature mappipgsuch that it is possible to write: K y) =<

@(x), p(y) >.

Mercer’s Theorem is a powerful theorem which says that ag tamr function is positive semi-
definite, we can be certain that there is an inherent (pgsisiph dimensional) feature representation

whose dot product is the kernel function. We do not need tt@ttp construct this feature space.

Proposition 8.3.4. The function Kx,y) in Algorithm 10 satisfies the Mercer Theorem.

109

Proof. We have already proved thKt(x,y) is symmetric. To see that it is positive semi-definite,
we just need to observe th&t(x,y) > 0 for anyx,y. We prove this by contradiction: Suppose
K(x,y) < O for somex,y. This implies thatyM_; AMAZ™ .| < um 1&™ > | is negative. However,
by construction, we will only obtain non-negative eigemes A, from PCA. Further, the absolute
value operatior} < uy', uﬁ““) > | ensures non-negativity. Thus, the statement K@ty) < O for

somex,y is false. O

8.4 Importance Weighting with List Kernels

In this section, we explore a direct application of list kdenwhich is more similar to the standard
classification scenario of covariate shift adaptation. Taivation is similar to the Importance
Weighting Approach of the Local/Transductive Framework dascribed in Section 6. The main
difference is that we now focus on lists, rather than on pafisbjects within lists. The advantage
with using lists as the atomic object is that list-basedroation methods, such as Minimum Error
Rate Training (MERT), can be applied.

In Algorithm 11, we outline the procedure for using list kelsito implement the covariate shift
assumption on lists. The idea is that if the test set conté@tsall with a certain shape, then the

training lists with similar shapes should be emphasizeéhduraining.

Algorithm 11 List-based Importance Weighting for Minimum Error Rateiffinag
Input: Train setS= {(q;,d,y| }i=1.L

Input: Test seE = {(qu,du) }u=1.U
Output: Weight vectomw, for testing orE.
1: For all pairs of lists irSU E, compute list kernel valuk (-, -)
2: Apply the KLIEP algorithm or. +U “samples”, where each sample is a list, with the list kernel
providing distance informatiorl. importance weights will be generated.

3: Train MERT with importance weights to obtain the adaptedgivevectorw (Algorithm 12).

The traditional MERT algorithm is modified to allow importaweights as in Algorithm 12.

110

Algorithm 12 Minimum Error Rate Training with Importance Weights
Input: Train setS= {(q;,d,yi }i=1.L

Input: Importance weights € R.
Output: Weight vectorw, for testing orE.
1: Initialize w
2: for i = 1..1 (I is the number of featuresjo
3: Perform line search along featuréo find inflection points that cause hypothesis changes in
S
4: For each inflection point, compute a weighted BLEU score,revliee weights depend on the
V.
5. Choosew; that maximize the weighted BLEU score.
6: end for

7: Repeat fod iterations

8.4.1 Evaluation in Machine Translation
In our evaluation, we compared four systems:

e MERT baseline (supervised)
e MERT with Importance Weights computed from Principal Argglkéernel
e MERT with Importance Weights computed from List Kernel

¢ Importance Weight with RankBoost in the Local/Transduefiramework (Section 6). There
are two main differences between the Local/Transductieenéwork and the techniques de-
scribed in this section: (1) the Local/Transductive Fraodveomputes new weights for each
test list, whereas techniques in this section has one wbag#d on the entire set of test lists.
(2) the KLIEP algorithm for Local/Transductive Framewoskbiased on (difference) pairs of

objects, whereas here it is based on lists.

For both Arabic and Italian datasets, we observe a smallaugmnent over the MERT baseline

with using List Kernel weights (e.g. 0.8 BLEU improvemenf)n the other hand, the Principal

111

Angles Kernel did not achieve significantly different reasurom the MERT baseline. Detailed
examination of the importance weights reveal that theyagaldiffered from 1, which implies that
there is little distributional difference between traigiand test lists from the perspective of the
Principal Angles Kernel. The List Kernel, due to its more fgrained characterization of overall
shapes, could achieve better results by capturing slidfereinces between the distributions.
Furthermore, for the Arabic task, we observe an interestasglt where the top-1 BLEU of
List Kernel is better than that of the Importance Weighingpfgach in the Local/Transductive
Framework, but for Top-kk > 1, the result is reversed. It is plausible that since the Kenel
allows us to use MERT, which directly optimizes top-1 BLEUg would achieve the best top-1
result using this method. On the other hand, for higterRankBoost may sometimes be superior
to MERT. There are however too many differences betweenwbenethods to firmly make this
conclusion, yet we would just like to point out the posstiiliNevertheless, we observe that the List
Kernel does indeed enable us to adapt new methods to rankihgie slight improvements. These

improvements, however, are not statistically significamder the bootstrap test.

Table 8.2: Arabic-English MT results with Importance Weigh. Best results are underlined (no
results were statistically significantly better).

Top-k BLEU k=1 | k=2 | k=3 | k=4 | k=5 | PER
MERT (supervised) Baseline 24.3| 26.5| 27.9| 28.6| 29.3| 47.9
Importance Weighting by Principal Angles Kernek4.4 | 26.5| 27.7 | 28.5| 29.2 | 48.0
Importance Weighting by List Kernel 25.1| 27.0| 28.0| 28.8| 29.5| 48.0
Importance Weight - Local/Transductive 246| 27.1| 28.7| 29.6 | 30.5| 47.7

8.4.2 Evaluation in Protein Structure Prediction

The evaluation for protein structure prediction is simitasetup as the machine translation tasks.
In this case, there is a slight trend showing that List Keimglroves upon Principal Angles Kernel,
but the difference between List Kernel and the Baseline mials

Analysis of the importance weights from both Principal AegyKernel and List Kernel reveal

112

Table 8.3: Italian-English MT results with Importance Waigg. Best results are underlined (no
results were statistically significantly better).

Top-k BLEU k=1 | k=2 | k=3 | k=4 | k=5 | PER

MERT (supervised) Baseline 21.2] 23.1| 24.3| 25.0| 25.7 | 52.6
Importance Weighting by Principal Angles KerneR1.4 | 23.5| 24.4| 25.6 | 26.0| 52.4
Importance Weighting by List Kernel 22.0| 24.0| 245| 25.8| 26.1| 51.8
Importance Weight - Local/Transductive 21.9| 24.7| 25.8| 25.9| 26.5| 51.5

Table 8.4: Protein Prediction GDT-TS results

Top-k GDT-TS k=1 | k=2 | k=3 | k=4 | k=5

MERT (supervised) Baseline 581 | .590| .597 | .601 | .604
Importance Weighting by Principal Angles Kernel572 | .584 | .591 | .596 | .599
Importance Weighting by List Kernel 581 | .591| .597 | .601 | .602
Importance Weighting - Local/Transductive .583 | .596 | .603 | .605 | .608

much sparsity, i.e. around 70%-90% of the weights were doseero. This means that a sig-
nificantly small set of training data was selected in thentrgj process. Contrasting this with the

machine translation results, we can say that:

e In Protein Prediction, there is an observable differencsvéen the shapes of lists in the
training set vs. the test set (thus leading to sparsity). dshime translation, this difference is

too fined grained to be captured by the Principal Angles kel it is captured by the List

Kernel.

e In Protein Prediction, the List Kernel matches the Baselaseilt, which means that the small
percentage of training data it selected correctly capttliescharacteristics of the dataset.
However, it is insufficient to improve upon the Baseline. tmtast, in Machine Translation,

there is a slight improvement obtained by List Kernels.

113

Table 8.5: Protein Prediction z-score results

Top-k z-score k=1 | k=2 | k=3 | k=4 | k=5

MERT (supervised) Baseline 1.07]1.17| 1.26| 1.31| 1.34
Importance Weighting by Principal Angles Kernell.02 | 1.15| 1.23| 1.31| 1.36
Importance Weighting by List Kernel 1.08| 1.20| 1.25| 1.30| 1.31

Importance Weighting - Local/Transductive 1.15} 1.26| 1.33| 1.35| 1.39

8.4.3 Evaluation in Information Retrieval

For information retrieval datasets, we evaluated the ksh&l derived importance weights using
the RankBoost algorithm (AdaCost version). RankBoostireguimportance weights for pairs of
documents, whereas now we have derived weights directlgdoh list. As a result, we simply tie
each pair of documents to have the same weight as the listiesdrom (i.e. all pairs in the same

list receive the same weight; only pairs from differentdiate weighted differently).

The result is shown in Table 8.6. In all datasets, we obsartgally no difference between the
baseline RankBoost and the importance weight methodsrdihsed on Principal Angles Kernel
or List Kernel. Observation of the actual weight values adtkat almost all weights are valued at
1, meaning that very little data weighting is done in praetidhis explains the lack of difference

from Baseline results.

We conclude that importance weighting under the Local/3dative framework produced pos-
itive results, though importance weighting under the aureetup produced no discernable differ-
ence. We think this indicates that there is little distriboal difference between the training set and
the test set (which is possible under the data preparationdittans of LETOR, since queries were
drawn randomly from the same set), though differences aivilee training set anonetest list is
large enough to be exploited. In addition, it is possibld tha larger degree of freedom in pairs vs.

list weighting could have an impact.

114

Table 8.6: Information Retrieval Results for List Kerneldamtance Weighting. List Kernel and
Principal Angles Kernel give virtually the same result as@&me, due to the lack of deviation in
the importance weights in practice.

MAP | N@1 | N@3 | N@5 | N@10 | N@14

TREC 03

Baseline (supervised RankBoost) .2482 | .3200| .3455| .3404 | .3388 | .3401
Importance Weight - Principal Angles | .2480| .3200| .3452 | .3410| .3394 | .3411
Importance Weight - List Kernel .2490| .3200| .3455| .3414| .3378 | .3411

Importance Weight - Local/Transductie.2932 | .4800 | .3858 | .3862| .3713 | .3755
TREC 04

Baseline (supervised RankBoost) .3712| .4800| .4237 | .4144 | 4471 | .4686
Importance Weight - Principal Angles | .3703| .4777 | .4230| .4184 | .4454 | .4666
Importance Weight - List Kernel 3700 .4790| .4242| 4153 | .4433 | .4690

Importance Weight - Local/Transductiye.3834 | .4800 | .4456 | .4353| .4653 | .4810
OHSUMED

Baseline (supervised RankBoost) 4424 | 4906 | .4543 | .4501| .4230 | .4218
Importance Weight - Principal Angles | .4420| .4901 | .4534 | .4512| .4224 | .4218
Importance Weight - List Kernel 4429 | 4900 | .4554 | 4511 | 4243 | 4222

Importance Weight - Local/Transductie.4440 | .5000 | .4483| .4466| .4319 | .4280

115

Table 8.7: Comparison of Manifold Assumption for Classtiima and Ranking

Manifold Assumption - Classification| Manifold Assumption - Ranking
Atomic object A vector (sample) A list (set of vectors)
Distance Kernel defined between pairs of vectdrs List Kernel
Smoothness Labels vary slowly along manifold | Rankers vary slowly along manifolg

8.5 Graph-based Methods with List Kernels

In this section, we explore another application of list lesrior semi-supervised ranking. In particu-
lar, we focus on utilizing the manifold assumption, commograph-based methods. The manifold
assumption (for classification) says that samples closetheg should receive similar labels. We
will extend this manifold assumption to lists, to say thatdiclose to each other should be best
ranked by similar rankers. In other words, the ranking fiomcshould vary smoothly over a mani-
fold defined on lists. Table 8.7 compares the traditionalilmlthassumption for classification, and

the version we extend to ranking.

We proposed a Ranker Propagation method for implementmgtiove Manifold Assumption.
The idea is to train list-specific rankers for each list in trening set, and propagate the ranker
parameters to the test lists using distance informatiorivgld from list kernels). This is formalized

in Algorithm 13.

116

Algorithm 13 Ranker Propagation
Input: Train setS= {(q;,d,y }=1.L

Input: Test se€ = {(qu,dy)}u=1.U
Output: Rankers{w,},-1.u, one for each test list
1: For all pairs of lists inSU E, compute list kernel valu&(-,-). This forms the basis of the
underlying graph/manifold.
2: Compute Laplaciah = D — K, whereDj; = ; K;; is the degree matrix
3: for I=1..L do
4. Compute list-specific weightsyy = MERT(d|,y))
5: Normalize weightsw = vaz_:H

6: end for

7: LetW, = —L;ul x LuW, whereW is the stacking ofv; andW, is the stacking ofv,.

We can show that Step 7 of Algorithm 13 minimizes for
%Kij [— w2 (8.3)
in a manner similar to Label Propagation [172], which optiegi
%Kij (Vi —¥j)? (8.4)

See Appendix A for derivations. In these equatiokisis a pairwise similarity measurey; € R

is a vector (linear ranker), ang € R is a scalar (classification label). Note that our objective
in Equation 8.3 essentially states if two lists have highilsinty (i.e. highKjj, then the rankers

w; andw; should be similar in the 2-norm. The 2-norm is intuitive if wssume a linear ranker
parameterized by the scoring functiarl x, so that the difference between scores using different
rankers is|w x—w || = [|(w —w;)TX].

Finally, we note that after the weight vectors are traingcech test list, we can rank the results
and produce the final ranking outputs. It is important toidiigtish that we are propagating rankers
rather than the ranks themselves. The ranks are computedtiadt the ranker for each test list
is determined. An illustration summarizing the manifolg@sption and the Ranker Propagation

method is shown in Figure 8.2.

117

2. Edge similarity = List Kernel

3. List-specific rankers are
propagated over the manifold

Figure 8.2: Manifold Assumption and Ranker Propagation.

8.5.1 Evaluation in Machine Translation

In the following experiments, we compare the Ranker Projpaganethod with two baselines: su-
pervised MERT and a random method where the ranker for aiseé$ randomly drawn from the
set of training-list rankers.

We observe nice improvements with using Ranker Propagati@m example, on the Arabic-
English MT task, BLEU improved by 1.3 points from 24.3 (baseMERT) to 25.6 (Ranker Propa-
gation). On the Italian-English MT task, BLEU improved by points from 21.2 (baseline MERT)
to 22.3 (Ranker Propagation). The Random Selection resglte significantly below the MERT
baseline.

We therefore conclude:

1. The List Kernel is effective in capturing distances beatwésts that lead to meaningful rank-

ing functions.

2. In conjunction with the Ranker Propagation algorithre thst Kernel achieves more than
1 point BLEU over the MERT baseline. The improvement of 25/6rd24.3 (baseline) in

Arabic translation is statistically significant (otherg aot).

118

3. The above improvement can be explained by the fact thatdRd@ropagation fits more spe-

cific rankers individually to each list.

Table 8.8: Arabic-English MT results with Ranker Propagati Statistically significant improve-
ments are boldfaced; best but not statistically significastlts are underlined.

Top-k BLEU k=1 | k=2 | k=3 | k=4 | k=5 | PER

MERT (supervised) Baseling24.3 | 26.5| 27.9| 28.6 | 29.3| 47.9
Random Selection 22.7| 25.2| 26.4| 27.4| 28.0| 50.0
Ranker Propagation 25.6| 27.3| 28.4| 29.4| 30.0| 475

Table 8.9: Italian-English MT results with Ranker Propawat Statistically significant improve-
ments are boldfaced; best but not statistically significastilts are underlined.

Top-k BLEU k=1 | k=2 | k=3 | k=4 | k=5 | PER

MERT (supervised) Baselinge21.2 | 23.1| 24.3| 25.0| 25.7 | 52.6
Random Selection 19.3|224|23.6|24.1| 24.3| 54.1
Ranker Propagation 22.3| 23.9| 25.4| 26.0| 26.2 | 50.9

8.5.2 Evaluation in Protein Structure Prediction

The evaluation for Protein Structure Prediction is simitaMachine Translation. We again observe
that Ranker Propagation with List Kernels outperform theeliae by a nice margin. For instance,
the GDT-TS (k=1) of Ranker Propagation is .591, .010 poighar than the Baseline of .581.
Correspondingly, the z-score improved from 1.07 (basglind.20 (Ranker Propagation). This is
the best result thus far in Protein Structure Predictiorhig work. All improvements in this case
are statistically significant. We conclude that the madifassumption is effective for the Protein

Structure Prediction task.

119

Table 8.10: Protein Prediction GDT-TS results. Ranker Bgafion gives statistically significant
improvements over baseline supervised algorithm (Sizistignificance is judged by the Wilcoxon
signed rank test).

Top-k GDT-TS k=1 | k=2 | k=3 | k=4 | k=5

MERT (supervised) Baseling.581 | .590| .597 | .601 | .604
Random Selection 521 | 549 | 567 | .582 | .588
Ranker Propagation 591 | .600| .605| .609 | .612

Table 8.11: Protein Prediction z-score results

Top-k z-score k=1 | k=2 | k=3 | k=4 | k=5

MERT (supervised) Baseline1.07 | 1.17| 1.26 | 1.31| 1.34
Random Selection 051081096 1.11| 1.16

Ranker Propagation 1.20] 1.31| 1.37| 1.41| 1.44

8.5.3 Evaluation for Information Retrieval

In Information Retrieval, we use Rank SVM [82] as the basedimranker. Each training list is
optimized to obtain a linear weight vector, which is thengaated to the test lists via similarities
defined by the List Kernel. Table 8.12 shows the results.

We observe that Ranker Propagation performed worse thaugervised Rank SVM baseline,
possibly because the List Kernel did not give accurate aittigs. In order to improve the reliability
of the List Kernel, we therefore performed feature selectia the original features. In particular,
we deleted features with weight values less than 0.1 acwpridi the baseline Rank SVM. This
corresponds to features that are less useful for rankimy @he about 10%-20% of the features).

List Kernel built on this reduced feature set gave improveisiever the baseline. We therefore
think that IR features may be noisy with respect to the ramitask, and these noisy features in
particular may have high variance. These high variancedbatively useless features dominate the
List Kernel computation, leading to degraded results. Wthese features are removed, List Kernel

gave improvements. For example, in TREC'03, MAP improvexnnfr.2199 (baseline) to .2324; in

120

Table 8.12: Ranker Propagation for Information RetrieRRdnker Propagation with Feature Selec-
tion outperforms both baseline and Ranker Prop with no featalection. The Oracle result shows
the accuracy if using Rank SVMs trained directly on the tists |

MAP | N@1 | N@3 | N@5 | N@10 | N@14

TREC 03
Baseline (RankSVM) .2199| .3600| .3358| .3236| .3134 | .3132
RankerProp (NoSelection)| .1994 | .3400| .3014 | .3086| .2916 | .2956
RankerProp (FeatureSelect)2324 | .3700| .3480| .3273| .3198 | .3186

Oracle .7580| .8800| .8256| .8094 | .7881 | .7998
TREC 04
Baseline (RankSVM) 3618 | .4467 | .4167 | .4062| .4164 | .4077

RankerProp (NoSelection)| .3560 | .4433| .4087 | .3929| .4090 | .4147
RankerProp (FeatureSelect)3683 | .4600| .4237 | .4216| .4190 | .4313

Oracle .8972| .9333| .9219| .9093| .9035 | .9094
OHSUMED
Baseline (RankSVM) 4401 | .4989 | .4456 | .4426| .4284 | .4152

RankerProp (NoSelection)| .4149 | .4048| .3768| .3619| .3589 | .3627
RankerProp (FeatureSeleqt)4453 | .5191 | .4789| .4483| .4338 | .4133
Oracle .6636 | .7170| .6825| .6588| .6505 | .6512

OHSUMED, MAP improved from .4401 to .4453 (both statistigaignificant).

The Oracle results in Table 8.12 shows the potential impr&arg one may acquire if the test-
specific weights were perfect, i.e. trained directly on s tist itself. The fact that there is large
potential for improvement (even over the nice results ofdheent List Kernels) shows that im-

proving upon the List Kernel may be a promising area of futuoek.

121

Chapter 9
OVERALL COMPARISONS AND CONCLUSIONS

This chapter summarizes the main conclusions and obsemgatif this investigation and sug-

gests future work.
9.1 Cross-Method Comparisons

In this section we will seek to compare all the previouslygm®ed method. First, to summarize our

methods:

e Under the Local/Transductive Framework, we proposed threm methods: Feature Gen-
eration (FG), Importance Weighting (IW), and Pseudo Maf@i). In addition, we have a

combination method of Feature Generation and Importandghtileg.

e Using List Kernels, we explored two methods: One is alsodhasghe Importance Weighting

Assumption. The other, Ranker Propagation, is based on #reféddd Assumption.

The overall results for Information Retrieval are presdriteTables 9.1 and 9.2. We observe
that FG, IW, and FG+IW perform well. Ranker Propagation gageificant improvements over the
Rank SVM baseline, but not necessarily the RankBoost eseli

Tables 9.3 and 9.4 summarize the results for machine tt&orslaVe note that Ranker Propaga-
tion and Pseudo Margin gave the strongest improvements. i followed by Importance Weight-
ing (both the List Kernel and the Local/Transductive vemnsjp which sometimes gave improve-
ments (but is in general not statistically significant).

Tables 9.5 and 9.6 give the overall results for Protein SirecPrediction. We observe that
Ranker Propagation is the only method that give statisficidnificant improvements. Importance
Weighting gave slight improvements but it is not statidljcaignificant. Other methods degraded
the Baseline results (also not statistically significantyéver).

A concise summary of results for all datasets is present@dhie 9.7

122

Table 9.1: Overall results for TREC. FG and IW approachesggly improved for all datasets.
RankerProp outperformed the RankSVM baseline of whichbitised (see Table 8.12) but does not
always outperform the RankBoost baseline.

MAP | N@1 | N@3 | N@5 | N@10 | N@14

TREC 03
Supervised Baseline: RankBoost | .2482 | .3200| .3455| .3404 | .3388 | .3401
Supervised Baseline: RankSVM .2199 | .3600| .3358| .3236| .3134 | .3132

Feature Generation (FG) .3058 | .5200| .4332| .4168| .3861 | .3994
Importance Weighting (IW) 2932 | .4800| .3858| .3862| .3713 | .3755
Combined FG+IW 3219 | .5250| .4321| .4138| .4023 | .3990
Pseudo Margin 2502 | .3400| .3399| .3500| .3403 | .3433
Importance Weighting by List Kerngl .2490 | .3200| .3455| .3414| .3378 | .3411
RankerProp (FeatureSelect) .2324 | .3700| .3480| .3273| .3198 | .3186
TREC 04

Supervised Baseline: RankBoost | .3712| .4800| .4237 | .4144| .4471 | .4686
Supervised Baseline: RankSVM 3618 | .4467 | .4167 | .4062 | .4164 | .4077

Feature Generation (FG) .3760| .4800| .4514 | .4415| .4665 | .4910
Importance Weighting (IW) .3834 | .4800| .4456| .4353| .4653 | .4810
Combined FG+IW 3891 | .4833| .4487| .4483| .4554 | .4873
Pseudo Margin 3502 | .4533| .4143| .4070| .4350 | .4524

Importance Weighting by List Kerngl .3700 | .4790| .4242| .4153| .4433 | .4690
RankerProp (FeatureSelect) .3683 | .4600 | .4237| .4216| .4190 | .4313

Table 9.2: Overall results for OHSUMED.

123

MAP | N@1| N@3 | N@5 | N@10| N@14
CHSUMED
Supervised Baseline: RankBoost | .4424| .4906 | .4543| .4501| .4230 | .4218
Supervised Baseline: RankSVM 4401 | .4989 | 4456 | .4426| .4284 | 4152
Feature Generation (FG) 4444 | 5094 | .4787 | .4600| .4469 | .4377
FG + RankLDA features 4481 | .5252 | .4785| .4600| .4444 | .4390
Importance Weighting (IW) .4440| .5000 | .4483| .4466| .4319 | .4280
Combined FG+IW 4497 | .5010| .4897 | .4765| .4431 | .4422
Pseudo Margin .4520| .4560 | .4342| .4334| .4208 | .4196
Importance Weighting by List Kerngl .4429 | .4900| .4554| .4511| .4243 | .4222
RankerProp (FeatureSelect) 4453 | 5191 | 4789 | .4483| .4338 | .4133
Table 9.3: Overall Arabic-English MT results.
Top-k BLEU k=1 | k=2 | k=3 | k=4 | k=5 | PER
Supervised Baseline: MERT 24.3| 26.5| 27.9| 28.6| 29.3| 47.9
Supervised Baseline: RankBoost | 23.7 | 26.4| 28.0| 28.9| 29.6 | 47.9
Feature Generation (FG) 23.4| 25.7| 27.0| 27.9| 28.6 | 48.3
Importance Weighting (IW) 24.6| 27.1| 28.7| 29.6| 30.5| 47.7
FG+IW 23.3| 26.0| 27.6| 28.4| 29.0| 47.9
Pseudo Margin 26.1| 28.8| 30.1| 30.9| 31.8| 46.5
Importance Weighting by List Kerngl 25.1 | 27.0 | 28.0 | 28.8| 29.5| 48.0
Ranker Propagation 25.6| 27.3| 28.4| 29.4| 30.0| 47.5

124

Table 9.4: Overall Italian-English MT results.

Top-k BLEU k=1 | k=2 | k=3 | k=4 | k=5 | PER
Supervised Baseline: MERT 21.2| 23.1| 24.3| 25.0| 25.7 | 52.6
Supervised Baseline: RankBoost | 21.9| 23.6 | 24.7 | 25.4| 26.0| 51.7
Feature Generation (FG) 215|234 | 24.4| 249| 25.3| 52.5
Importance Weighting (IW) 21.9| 24.7| 25.8| 25.9| 26.5| 51.5
FG+IW 21.6| 235| 25.0| 249| 256 | 52.5
Pseudo Margin 24.3| 26.1| 27.0| 27.8| 28.4 | 48.6
Importance Weighting by List Kerngl 22.0 | 24.0 | 24.5| 25.8| 26.1 | 51.8
Ranker Propagation 22.3| 23.9| 254 26.0| 26.2| 50.9

Table 9.5: Overall GDT-TS Results for Protein Prediction

Top-k GDT-TS k=1 | k=2 | k=3 | k=4 | k=5
Supervised Baseline: MERT .581| .590| .597 | .601 | .604
Supervised Baseline: RankBoost | .579 | .590| .595 | .599 | .604
Feature Generation (FG) .569 | .586| .596 | .601 | .605
Importance Weighting (IW) .583 | .596 | .603 | .605 | .608
FG+IW .568 | .584 | .593 | .596 | .601
Pseudo Margin 574 | .590| .599 | .603 | .608
Importance Weighting by List Kernel .581 | .591 | .597 | .601 | .602
Ranker Propagation .591 | .600| .605| .609 | .612

125

Table 9.6: Overall z-score Results for Protein Prediction

Top-k z-score k=1 | k=2 | k=3 | k=4 | k=5
Supervised Baseline: MERT 1.07]1.17)| 1.26| 1.31| 1.34
Supervised Baseline: RankBoost | 1.13| 1.25| 1.30| 1.36 | 1.41
Feature Generation (FG) 1.07]1.24| 1.33| 1.40| 1.41
Importance Weighting (IW) 1.15] 1.26| 1.33| 1.35| 1.39
FG+IW 1.02]1.23|1.29| 1.32| 1.39
Pseudo Margin 1.03|1.24| 1.34| 1.40| 1.47
Importance Weighting by List Kerngl 1.08 | 1.20 | 1.25| 1.30| 1.31
Ranker Propagation 1.20]1.31| 1.37| 1.41| 1.44

9.2 Summary of Contributions

We present one of the first studies that investigate rankiolglems in the context of semi-supervised
learning. Drawing inspirations from related work in sempsrvised classification and domain

adaptation, we investigated several assumptions for winitdibeled data may be helpful:

e Change of Representation Assumption: use unlabeled dgentrate more salient features

e Covariate Shift Assumption: use unlabeled (test) data $oadier the training samples that
are similar in distribution to the test samples and placeesponding weights on the training

data to correct for the bias.

e Low Density Separation Assumption: use unlabeled datadoosler low density regions,

which are to be avoided by the ranking function.

e Manifold Assumption: use unlabeled data to discover logallarities and manifold struc-

ture, which can be exploited for smoothness regularization

Two main algorithmic contributions are introduced. Fitsg Local/Transductive Meta-algorithm

allows us to implement the first three assumptions, leadisgectively to the Feature Generation

126

Table 9.7: Summary of Results. + indicates improvement baseline, - indicates degradation.

indicates similar results. ++ indicates the best method fgiven dataset.

Information | Machine Protein
Retrieval | Translation| Prediction
Feature Generation + - =
Importance Weight (Local/Transductive) + = =
FG+IW ++ - =
Pseudo-Margin = ++ =
Importance Weight (List Kernel) = = =
Ranker Propagation = + ++

method, the Importance Weighting method, and the Pseudgimaethod. Second, a novel List

Kernel was developed, which enabled examination of the fdithAssumption.

We performed experiments on a total of six different reald/@atasets, which come from

Information Retrieval, Machine Translation, and Compotsl Biology (Protein Structure Predic-

tion). We observe that different methods perform well fdfadent datasets. Though it is difficult

to judge in advance which method works best for which kindatbdet, our analysis of the results

give the following guidelines:

e How well does Pairwise Accuracy correlate with the final aaéibn metric (e.g. MAP,

BLEU, GDT-TS)? If the correlation is relatively strong, Fe@ Generation methods may

benefit because there are more features to optimize witker@ike, Feature Generation may

overfit due to the larger feature space. Also important fatlie Generation is the question

of whether the assumption made by PCA (that high varianderfes are important) is valid

with the ranking task.

e How often do tie ranks occur in lists? If ties occur often,nthtseudo Margin is not a valid

approach because the low density separation assumptiariased.

e Importance Weighting (especially the Local/Transductigsion) is a relatively risk-free

127

method. It either performs better or equal to the baselimerarely rarely degrades results.
For any dataset where we believe there might be slight diffegs within each list, Importance

Weighting is a recommended approach.

e Ranker Propagation appears to be a method that improvdtsresiall datasets. In particular,

datasets with smaller feature sets (less than 25) seem ¢ditxmore.

9.3 Future Work

9.3.1 Computational Speedup for the Local/Transductiafework

The Local/Transductive Framework requires training dyriest time. Therefore, computational
speed is an issue if semi-supervised ranking were to beykaplo practical systems. For example,
in our Feature Generation experiments which are run on @&hX86-32 (3GHz CPU), KernelPCA
(implemented in Matlab/C-MEX) took on average 23sec/queryTREC and 4.3sec/query for
OHSUMED; RankBoost (implemented in C++) took 1.4sec/tierafor TREC and 0.7sec/iteration
for OHSUMED. The total compute time per query (assuming 1&@iions) is around 233sec/query
for TREC and 109sec/query for OHSUMED.

To achieve near real-time computation, a combination debe&ibde optimization, distributed
computation, and algorithmic improvements are needed. Wehighlight one algorithmic idea
here based on caching: In the context of local learning ikkirap [62] has shown that offline
solutions empirically approximate the accuracies of ankmearest neighbors. Therefore one al-
gorithmic solution is to precompute a set of RankBoost remked select the “best” one during test
time. For example, for Importance Weighting, multiple rar&kcan be pre-computed from various
random weighting of the training set; these are then mattheest lists during query time by a
fast distribution matching procedure (c.f. [65]). For kreatGeneration, we would precompute a
variety of RankBoost using Kernel PCA features generateah filifferent subsets of the training or
development set. During test time, we would then match tlsesheector of the test list with those
in the training/development set using, e.g., the List Keasalistance measure.

The performance of these solutions will be characterize@ peed vs. MAP/NDCG trade-

off that depends on the granularity of pre-computed compisndf there are more pre-computed

128

rankers, then the matching operation at query time will beezonore expensive, but the results can

be more suitable for the test list.

9.3.2 Nonlinear extensions to Ranker Propagation

The current Ranker Propagation method assumes that lineights (which represent a linear
ranker) are smoothly varying across the manifold. Thisdimessumption allows for a straightfor-
ward and computationally efficient propagation algorithfawever, in cases where linear rankers
are not sufficiert, we may desire an algorithm that propagates nonlinear oekeed rankers (e.g.

RankBoost or RankSVM with nonlinear kernels).

The first challenge would be the characterization of “smoedis” for non-linear rankers. Smooth-
ness is easy to quantify in the linear case using L2 norm,usech? differences in linear weights
has a correspondence to changes in ranking on a list. In woibrgs, imagine two identical linear
rankers: as we gradually adjust one of the weights of oneerartke corresponding ordering of
items will change in a monotonic way. On the other hand, ireptd quantify the difference in
orderings achieved by two non-linear rankers, we wouldyikeed to compute the ordering (rather
than directly comparing ranker parameters, as done in tieadicase). In other words, we would

like to minimize an objective like the following:

> Kij(D(a(Fi(x)), a(Fj(x))) +D(a(F(x)), o (Fj(x)))) (9.1)
]

wherea(Fj(x;)) represents the permutation of objectsxjrunder the rankeF; andD(-) is some
divergence between two permuations (or simply a rank-basatliation metric such as MAP). In
other words, we apply two neighboring rankers to the twoeetyge lists and want to ensure that
the final permutations will be similar. Depending on the fasfrF andD, this may present both

interesting computational and algorithmic challenges.

Lin our datasets, linear rankers appear to be sufficientlyessive. Note that we are fitting a separate linear ranker to
each list, as opposed to one linear ranker for the entireseata

129

9.3.3 Different formulations of the List Kernel

Our List Kernel attempts to quantify the shape/orientasonilarity between lists and is based on
geometric properties, e.g. principal component axes. Afetying assumption with using princi-
pal component analysis is that of Gaussianity. Therefothisirespect, our List Kernel also has
similarities to the Bhattacharyya kernel of [90] with asasn@Gaussianity.

In general, it would be interesting to explore differentdgpf list kernels under the application
of ranking. We described several properties, such as ishidtiant, scale-invariant, and rotation-
invariant, and it would be worthwhile to investigate whiames would be desirable in certain appli-
cations.

An additional avenue of future research is kernel learniniy [96]). One could first define a list
kernel that is parameterized. Then, we could learn the laranpeters based on our (labeled) data
which indicates which two lists should be similar. For exé&nmwe could train rankers on individual
labeled lists, measure how different the rankers are, amthesresulting distance to learn the kernel.

This kernel can then be applied to any unlabeled data.

9.3.4 Inductive semi-supervised ranking algorithms

All methods presented in this work are transductive in thesedhat the test data is required. In
the Local/Transductive Framework, we depend on observirggtest list. In Ranker Propagation
and Importance Weighting with List Kernels, we need therentist set. It would be worthwhile to
develop algorithms that explaiiny unlabeled data, in particular those that are not the test set

We note that not all methods should be extended to induciiy@ithms, however. For example,
the entire motivation of Importance Weighting rests on thsumption that there is a distribution
difference between training and test, so it is natural torateetransductively. However, for the
Feature Generation and Pseudo Margin approaches, it iffgo$s imagine unlabeled non-test
dataset giving exploitable information. These inductivetmods would need to be developed outside
of the Local/Transductive Framework.

For the Ranker Propagation Method, there are ways to coitviertan inductive method and
extend to out-of-sample lists, either by a k-nearest neiglsiearch (using List Kernel distances)

when a new test list arrives, or a warping of the function sgaanatch that of the manifold [136].

130

A brief sketch of the k-nearest neighbor search solutiorRfamker Propagation is as follows:

1. Construct graph on labeled and unlabeled (non-tess) list

2. Apply Ranker Propagation to obtain rankers on unlabaied-fest) lists

3. When a test list arrives, perform k-nearest neighborckean all labeled and unlabeled lists.
4. Each ranker within the neighborhood provides a rankirthedest list.

5. The ranking are aggregated using consensus rankingidgeeisnor ideas from social choice

theory. See, e.g. [114, 88].

9.3.5 Theory for the proposed methods

We have empirically examined the proposed methods underalestatasets and provided some
intuitions of “what method works for what kind of dataset” 8ection 9.2. In addition to these
empirical observations, it would be worthwhile to inveatig theoretically how each method can
help, using techniques from statistical learning theory (67, 149]).

While general theories and bounds for semi-supervisedilegi(e.g. [11]) may be difficult to
derive and challenging to fit to real-world scenarios, atpar-specific theories may be possible. In
other words, bounds tailored to specific methods such asifee@eneration or Importance Weight-
ing may be practically useful and insightful. For exampleg @romising direction is the work on
analysis of representations by [14]. This theory aims tdarpthe tradeoff in designing feature
representations for domain adaptation problems. Bridfl,generalization bounds indicate that a
good feature representation shosichultaneouslyachieve low error on the source (training) domain
while minimizing the “distance” between the induced maagidistributions of the two domaifs
Our Feature Generation Approach may be analyzed underhnisyt or variant thereof: for each
test list, we can compute whether the the new Kernel PCA featteduce training error while min-

imizing the distance between the test distribution and thming distribution. We have already

20ne of the main contributions of this work is a definition of iatance over distributions that is both practically
computable and meaningful for representing changes ieseptation.

131

observed that training error is minimized in both InforroatiRetrieval and Machine Translation
experiments. If we also observe that the distribution dista decreased for Information Retrieval,
but increased for Machine Translation, then we would haveearetical confirmation for why the
same method worked for one dataset but not another.

In summary, this dissertation presents one of the first celmgrsive evaluation of several ap-
proaches for semi-supervised ranking. We have observadiffiarent methods work well for
different datasets, and have provided empirical analy$ebeoreasons. A significant step for-
ward in future work would involve algorithm-specific bounidist seek to explain the results in a

theoretically-motivated way.

132

[1]
2]
[3]

[4]

[5]

[6]

[7]

BIBLIOGRAPHY

S. Abney. Understanding the Yarowsky algorith@omputational Linguistics30(3), 2004.
S. Agarwal. Ranking on graph data. ldML, 2006.

N. Ailon. Reconciling real scores with binary companso A unified logistic model for
ranking,. INNIPS 2008.

A. Alexandrescu and K. Kirchhoff. Data-driven graph stmiction for semi-supervised
graph-based learning in NLP. Proc. of NAACL Human Language Technologi2307.

Y. Altun, D. McAllester, and M. Belkin. Maximum margin s&-supervised learning for
structured variables. IRroceedings of Neural Information Proccessing Sysi&d@5.

R. Ando and T. Zhang. A framework for learning predictsteuctures from multiple tasks
and unlabeled data. Technical report, IBM T.J. Watson Rekdaabs, 2004.

R. Ando and T. Zhang. A framework for learning predictsteuctures from multiple tasks
and unlabeled dataMLR, 2005.

[8] A. Argyriou, M. Herbster, and M. Pontil. Combining grapdplacians for semi-supervised

[9]

[10]

[11]

[12]

[13]

[14]

learning. INNIPS 2005.
K. Arrow. Social Choice and Individual Value¥ale University Press, 2nd ed., 1970.

D. Baker. Protein structure prediction and structgeriomics. IrSciencevolume 294, pages
93-96. American Association for the Advancement of Scig8681.

M. Balcan and A. Blum. A pac-style model for learningrtdabeled and unlabeled data. In
Proceedings of Computational Learning Thed2@05.

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regulaation: a geometric framework for
learning from examples. Technical report, University ofc@igo, 2004.

M. Belkin, P. Niyogi, and V. Sindhwani. On manifold rdgtization. InNAISTAT 2005.

S. Ben-David, J. Blitzer, K. Crammer, and F. Pereiraaksis of representations for domain
adaptation. INIPS 2006.

133
[15] K. P. Bennett and A. Demiriz. Semi-supervised suppedtor machines. INIPS 12 pages
368-374, 1998.

[16] K. P. Bennett, A. Demiriz, and R. Maclin. Exploiting @aieled data in ensemble methods.
In Proc. of SIGKDD-2002Edmonton, Alberta, 2002.

[17] S. Bickel, M. Bruckner, and T. Scheffer. Discriminagilearning for differing training and
test distributions. INCML, 2007.

[18] J. Blitzer, R. McDonald, and F. Pereira. Domain adaptatvith structural correspondence
learning. INEMNLP, 2006.

[19] A. Blum and S. Chawla. Learning from labeled and unlatledata using graph mincuts. In
Proc. 19th International Conference on Machine LearningNIL-2001) 2001.

[20] A. Blum, J. Lafferty, M. Rewbangira, and R. Reddy. Sesupervised learning using ran-
domized mincuts. IrProc. International Conference on Machine Learning (ICK004)
2004.

[21] A. Blum and T. Mitchell. Combining labeled and unlalelgata with co-training. IiPro-
ceedings of Computational Learning Theot{98.

[22] L. Bottou and V. N. Vapnik. Local learning algorithmkleural Computation4(6):888-900,
1992.

[23] S. Boyd and L. Vandenbergh€onvex OptimizatianCambridge Univ. Press, 2004.

[24] S. Brin and L. Page. The anatomy of large scale hypergxteb search engine. Rroc. of
the 7th International World Wide Web Conferent898.

[25] A. Broder. A taxonomy of web searclBIGIR Forum 36(2):3-10, 2002.

[26] C. Burges, R. Ragno, and Q. Le. Learning to rank with soreoth cost functions. INIPS
2006.

[27] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. DeedsHamilton, and G. Hullender.
Learning to rank using gradient descent.I@ML, 2005.

[28] L. Busse, P. Orbanz, and J. Buhmann. Cluster analydigteifogenous rank data. IGML,
2007.

[29] D. Cai, X. He, and J. Han. Semi-supervised discrimirarglysis. INCCV, 2007.

134

[30] C. Callison-Burch, D. Talbot, and M. Osborne. Statigtimachine translation with word-
and sentence-aligned parallel corporaPhoc. ACL 20042004.

[31] Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y.-L. Huang, and H.-W. HonAdapting ranking SVM to
document retrieval. II5IGIR 2006.

[32] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learnirtg rank: from pairwise to listwise
approach. IrSIGIR 2007.

[33] V. Castelli and T. M. Cover. On the exponential value aiféled samplesPattern Recogn.
Lett, 16(1):105-111, 1995.

[34] V. Castelliand T. M. Cover. The relative value of lalblend unlabeled samples in pattern
recognition with an unknown mixing paramet&dEEE Transactions on Information Thegry
1996.

[35] O. Chapelle, V. Sindhwani, and S. Keerthi. Branch andrabfor semi-supervised support
vector machines. IAdvances in Neural Information Processing Systems (NIERG.

[36] O. Chapelle, J. Weston, and B. Schoelkopf. Clusterédsrfor semi-supervised learning. In
Proceedings of Neural Information Proccessing Syst&a3.

[37] O. Chapelle and A. Zien. Semi-supervised classificalip low density separation. Iaroc.
of the Tenth International Workshop on Artificial Intelligee and Statistics (AISTAT, D05.

[38] D. Chen, J. Yan, G. Wang, Y. Xiong, W. Fan, and Z. Chen.n$rank: A novel algorithm
for transfer of rank learning. IHEEE International Conference on Data Mining (ICDM),
Workshop on Domain Driven Data Mining008.

[39] D. Chivian and D. Baker. Homology modeling using parémealignment ensemble gen-
eration with consensus and energy-based model seledtiaoleic Acids Resear¢t34(17),
2006.

[40] W. Chu and Z. Ghahramani. Extension of gaussian presdss ranking. IMNIPS Workshop
on Learning to Rank2005.

[41] W. Cohen, R. Schapire, and Y. Singer. Learning to ortigs. Journal of Artificial Intelli-
gence Resear¢hi999.

[42] M. Collins. Discriminative reranking for natural langge processing. fCML, 2000.

[43] M. Collins and T. Koo. Discriminative reranking for naél langauge parsingcomputational
Linguistics 31(1), 2005.

135

[44] R. Collobert, J. Weston, and L. Bottou. Trading contestor scalability. InProc. of the
International Conference on Machine Learning (ICMEDO6.

[45] W. S. Cooper, F. C. Gey, and D. P. Dabney. Probabiligideval based on staged logistic
regression. I'BIGIR 1992.

[46] A. Corduneanu and T. Jaakkola. Stable mixing of congpbatd incomplete information.
Technical report, CSAIL, MIT, 2001.

[47] A. Corduneanu and T. Jaakkola. On information rega&tion. InProceedings of Uncer-
tainty in Artificial Intelligence 2003.

[48] A. Corduneanu and T. Jaakkola. Distributed infornmatiegularization on graphs. Iro-
ceedings of Neural Information Proccessing Systetif4.

[49] D. Cossock and T. Zhang. Subset ranking using regnes&cCOLT, 2006.

[50] N. Craswell and D. Hawking. Overview of the trec 2003 wedck. In E. M. Voorhees
and L. P. Buckland, editord\IST Special Publication 500-255:The Twelfth Text RE&liev
Conference (TREC 2003)IST, 2003.

[51] F. d’Alche Buc, Y. Grandvalet, and C. Ambroise. Semparvised marginboost. INIPS
2002.

[52] O. Dekel, C. Manning, and Y. Singer. Log-linear modelslfbel ranking. IMNIPS 2004.

[53] A. P. Dempster, N. M. Laird, and D. Rubin. Maximum likediod from incomplete data via
the EM algorithm.Journal of the Royal Statistical Societi(39):1-38, 1977.

[54] K. Duh and K. Kirchhoff. Learning to rank with partialhabeled data. I'SIGIR 2008.

[55] D. Eramian, M. Shen, D. Devos, F. Melo, A. Sali, and M. kM#&enom. A composite score
for predicting errors in protein structure modefyotein science2006.

[56] W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan. Adacostclassification cost-sensitive
boosting. Inin Proc. 16th International Conf. on Machine Learnjrimages 97—105. Morgan
Kaufmann, 1999.

[57] M. Fligner and J. VerducciProbability Models and Statistical Analyses for Rankingida
Springer, 1993.

[58] Y. Freund, R. lyer, R. Schapire, and Y. Singer. An efiitieoosting algorithm for combining
preferencesJournal of Machine Learning Reseatrch 2003.

136

[59] A. Fujii. Modeling anchor text and classifying querimsenhance web document retrieval.
In WWW 2008.

[60] A. Fujino, N. Ueda, and K. Saito. A hybrid generativaefdiminative approach to semi-
supervised classifier design. Rroc. of AAA] 2005.

[61] G. Fung and O. Mangasarian. Semi-supervised suppotbrvenachines for unlabeled data
classification. Technical Report TechReport 99-05, Umsisgrof Wisconsin, Data Mining
Institute, 1999.

[62] X. Geng, T.-Y. Liu, T. Qin, A. Arnold, H. Li, and H.-Y. Shm. Query dependent ranking
using k-nearest neighbor. BIGIR 2008.

[63] C. Goutte, H. Dé&jean, E. Gaussier, N. Cancedda, amil Renders. Combining labelled
and unlabelled data: a case study on Fisher kernels andltrethe inference for biological
entity recognition. InProc. 6th conference on Natural language learning (CoNlggges
1-7, 2002.

[64] Y. Grandvalet and Y. Bengio. Semi-supervised learrbggentropy minimization. IrPro-
ceedings of Neural Information Proccessing Systeti84.

[65] S. Guha, A. McGregor, and S. Venkatasubramanian. ®frepand sublinear approximation
of entropy and information distances. 3©DA 2006.

[66] J. He, M. Li, H.-J. Zhang, H. Tong, and C. Zhang. Manifofthking based image retrieval.
In ACM Conference on Multimedi2004.

[67] R. Herbrich, T. Graepel, and K. Obermayer. Supportoelgarning for ordinal regression.
In ICANN, 1999.

[68] W. R. Hersh, C. Buckley, T. J. Leone, and D. H. Hickam. @hed: An interactive retrieval
evaluation and new large test collection for researctiProteedings of the 17th Annual ACM
SIGIR Conferencel994.

[69] T. Hertz, A. Bar-Hillel, and D. Weinshall. Learning arkel function for classification with
small training samples. IfCML, 2006.

[70] A. Holub, M. Welling, and P. Perona. Exploiting unlaleel data for hybrid object classifica-
tion. InNIPS 2005 Workshop in Inter-Class Transf2005.

[71] H. Hotelling. Relationships betwen two sets of varsat@iometrikg 28:321-372, 1936.

[72] J. Huang, C. Guestrin, and L. Guibas. Fourier theogibabilistic inference over permuta-
tions. IMLR, 2009.

137

[73] J. Huang, A. J. Smola, A. Gretton, K. M. Borgwardt, andIholkopf. Correcting sample
selection bias by unlabeled data.NtPS 2007.

[74] Z. Huang, M. Harper, and W. Wang. Mandarin part-of-gietagging and discriminative
reranking. INEMNLP, 2007.

[75] T. Jaakkola and D. Haussler. Exploiting generative et®déh discriminative classifiers. In
NIPS 1998.

[76] T. Jaakkola, M. Meila, and T. Jebara. Maximum entropscdmination. InAdvances in
Neural Information Processing Syster899.

[77] K. Jarvelin and J. Kekalainen. IR evaluation methodsrérieving highly relevant docu-
ments. INSIGIR 2000.

[78] H. Ji, C. Rudin, and R. Grishman. Re-ranking algorithimis name tagging. IMNAACL
Workshop on Computationally Hard Problems and Joint Infes22006.

[79] J. Jiang. A literature survey on domain adaptation ditistical classifiers; url:
http://sifaka.cs.uiuc.edu/jiang4/domainadaptatiorvsy/, 2008.

[80] F. Jiao, S. Wang, C.-H. Lee, R. Greiner, and D. Schuusn&@emi-supervised conditional
random fields for improved sequence segmentation and tepelin COLING/ACL, pages
209-216, Sydney, Australia, July 2006. Association for @otational Linguistics.

[81] T.Joachims. Transductive inference for text clasaifan using support vector machines. In
International Conference on Machine Learnjri99.

[82] T.Joachims. Optimizing search engines using cliakiigh data. IiKDD, 2002.

[83] T. Joachims. Transductive learning via spectral gnaptiitioning. Ininternational Confer-
ence on Machine Learning (ICML2003.

[84] T.Joachims. Training linear SVMs in linear time. KIDD, 2006.

[85] A.Kapoor, Y. Qi, H. Ahn, and R. Picard. Hyperparameted &ernel learning for graph-based
semi-supervised classification. NiPS 2005.

[86] K. Kirchhoff and M. Yang. The university of washingtonachine translation system for the
iwslt 2007 competition. INWSLT, 2007.

[87] J. Kleinberg. Authoritative sources in a hyperlinkedieonment.Journal of the ACM46(5),
1999.

138

[88] A. Klementiev, D. Roth, K. Small, and I. Titov. Unsup&®d rank aggregation with domain
specific expertise. IRICAI, 2009.

[89] P. Koehn et al. Moses: open source toolkit for statstimachine translation. 1ACL, 2007.
[90] R. Kondor and T. Jebara. A kernel between sets of vectorkCML, 2003.

[91] R. Kondor and J. Lafferty. Diffusion kernels on graphmiather discrete input spaces. In
Proc. of the International Conference on Machine Learnidg02.

[92] T. Kudo, J. Suzuki, and H. Isozaki. Boosting-based @aesanking with subtree features. In
ACL, 2005.

[93] J. Lafferty and L. Wasserman. Challenges in statiktitachine learning.Statistica Sinica
16(2), 2006.

[94] J. Lafferty and L. Wasserman. Statistical analysisarhssupervised regression. NPS
2007.

[95] J. Lafferty, X. Zhu, and Y. Liu. Kernel conditional raonh fields: Representation and clique
selection. InProceedings of International Conference on Machine Lesgn2004.

[96] G. Lanckriet, N. Cristianini, P. Bartlett, L. Ghaoun@&M. Jordan. Learning the kernel matrix
with semi-definite programminglournal of Machine Learning Research 2004.

[97] J. Langford. Tutorial on practical prediction theoor tlassificationJMLR, 2005.

[98] A. Lavie and A. Agarwal. METEOR: An automatic metric fiot evaluation with high levels
of correlation with human judgments. Workshop on Statistical Machine Translatj&007.

[99] N. Lawrence and M. Jordan. Semi-supervised learnirth gaussian processes. Advances
in Neural Information Processing Syster2805.

[100] Q. Le and A. Smola. Direct optimization of ranking me@s. Technical report, NICTA,
2007.

[101] G. Lebanon and J. Lafferty. Cranking: combining raug/d using conditional probability
models on permuations. I€ML, 2002.

[102] C.-H. Lee, S. Wang, F. Jiao, D. Schuurmans, and R. @reinearning to model spatial de-
pendency: semi-supervised discriminative random fieldédvances in Neural Information
Processing Systems (NIRSPO06.

139

[103] B. Leskes. The value of agreement: A new boosting #@lyor In Proceedings of Computa-
tional Learning Theory2005.

[104] P. Li, C. Burges, and Q. Wu. Learning to rank using dfacsgtion and gradient boosting.
Technical Report MSR-TR-2007-74, Microsoft Research,7200

[105] W. Li and A. McCallum. Semi-supervised sequence miadelith syntactic topic models.
In AAAI-05, The 20th National Conference on Artificial Inigdince 2005.

[106] P. Liang, A. Bouchard-Cote, D. Klein, and B. Taskar. é&rd-to-end discriminative approach
to machine translation. IACL, 2006.

[107] T.-Y. Liu, T. Qin, J. Xu, W. Xiong, and H. Li. LETOR: Bemenark dataset for research on
learning to rank for informationretrieval. I8IGIR Workshop on Learning to Rank for IR
(LR4IR) 2007.

[108] A. Lopez. Statistical machine translatiohCM Computing Surveyd0(3), 2008.
[109] D. Luce and H. RaiffaGames and Decisions: Introduction and Critical SurvBypver, 1989.

[110] C. D. Manning, P. Raghavan, and H. Schiti@groduction to Information RetrievalCam-
bridge University Press, 2008.

[111] J. 1. Marden. Analyzing and Modeling Rank Dat&€hapman & Hall/CRC, 1996.
[112] L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boagts gradient descent. MIPS 2000.
[113] P. McCullagh and J. NeldeGeneralized Linear ModelsChapman and Hall, London, 1989.

[114] M. Meila, K. Phadnis, A. Patterson, and J. Bilmes. @&mssis ranking under the exponential
model. Technical report, UW Statistics, 2008.

[115] D. Metzler. Direct maximization of rank-based medricTechnical report, Univ. of Mas-
sachusetts, Amherst, CIIR, 2006.

[116] J. Moult, F. Kryzysztof, B. Rost, T. Hubbard, and A. ffrantano. Critical assessment of
methods of protein structure prediction (casp) - roun&@teins 61(S7):3—7, 2005.

[117] K. Nigam and R. Ghani. Analyzing the effectiveness apglicability of co-training. In
CIKM, 2000.

[118] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Texlassification from labeled and
unlabeled documents using eMachine Learning30(3), 2000.

140

[119] F. Och. Minimum error rate training in statistical rhame translation. IMACL, 2003.

[120] F. Och and H. Ney. Discriminative and maximum entropgdels for statistical machine
translation. INACL, 2002.

[121] C. Qliveira, F. Cozman, and I. Cohen. Splitting theupervised and supervised components
of semi-supervised learning. I€@ML 2005 Workshop on Learning with Partially Classified
Training Data 2005.

[122] K. Papineni, S. Roukos, ToddWard, and W.-J. Zhu. Blemethod for automatic evaluation
of machine translation. IACL, 2002.

[123] T.Qin, T.-Y. Liu, X.-D. Zhang, Z. Chen, and W. Y. Ma. Austy of relevance propagation for
web search. II5IGIR 2005.

[124] J. Qiu, W. Sheffler, D. Baker, and W. Noble. Ranking piotstructures with support vector
regressionProteins: Structure, Function, and Bioinformatj&)07.

[125] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Salight learning: Transfer learning
from unlabeled data,. IICML, 2007.

[126] S. Robertson. Overview of the Okapi projecisurnal of Documentatiqrb3(1), 1997.

[127] A.-V. 1. Rosti, N. F. Ayan, B. Xiang, S. Matsoukas, R. Bichwartz, and B. J. Dorr. Combin-
ing outputs from multiple machine translation systemsNAACL-HLT, 2007.

[128] C. Rudin. Ranking with a p-norm push. GOLT, 2006.

[129] R. E. Schapire and Y. Singer. Improved boosting atgors using confidence-rated predic-
tions. Machine Learning37(3), 1999.

[130] B. Scholkopf, A. Smola, and K.-R. Miller. Nonlineeomponent analysis as kernel eigen-
value problemNeural Computation10, 1998.

[131] A. Shashua and A. Levin. Taxonomy of large margin pptecalgorithms for ordinal regres-
sion. InNIPS 2002.

[132] J. Shawe-Taylor and N. Cristianinkernel methods for pattern analysi€ambridge Univ.
Press, 2004.

[133] L. Shen, A. Sarkar, and F. Och. Discriminative reragkfior machine translation. IHLT-
NAACL, 2004.

141

[134] H. Shimodaira. Improving predictive inference undewariate shift by weighting the log-
likelihood function. Journal of Statistical Planning and Inferen@0, 2000.

[135] V. Sindhwani, S. Keerthi, and O. Chapelle. Determiaignnealing for semi-supervised
kernel machines. IProc. of the International Conference on Machine Learnif@ML),
2006.

[136] V. Sindhwani, P. Niyogi, and M. Belkin. Beyond the pbatoud: from transductive to semi-
supervised learning. IlCML, 2005.

[137] A. Singh, R. Nowak, and X. Zhu. Unlabeled data: Now itpse now it doesn’t. INNIPS
2008.

[138] A. Smola and R. Kondor. Kernels and regularization capds. InConference on Learning
Theory (COLT)2003.

[139] A. Smola, O. Mangasarian, and B. Scholkopf. Sparsedideature analysis. Technical
Report 99-03, University of Wisconsin, Data Mining Inst#p1999.

[140] M. Snover, B. Dorr, R. Schwartz, L. Micciulla, and J. kieul. A study of translation edit
rate with targeted human annotation. AMTA 2006.

[141] M. Sugiyama, T. Suzuki, S. Nakajima, H. Kashima, P. B@mau, and M. Kawanbe. Direct
importance estimation for covariate shift adaptatiohnnals of the Institute of Statistical
Mathematics60(4), 2008.

[142] M. Szummer and T. Jaakkola. Information regular@atwith partially labelled data. In
Proceedings of Neural Information Proccessing Syst@H82.

[143] T. Takezawa, E. Sumita, F. Sugaya, H. Yamamoto, andagarhoto. Toward a broad-
coverage bilingual corpus for speech translation of traeelversation in the real world. In
LREGC 2002.

[144] B. Taskar, V. Chatalbashev, D. Koller, and C. Guesttiearning structured prediction mod-
els: Alarge margin approach. Rroceedings of International Conference on Machine Learn-
ing, 2005.

[145] T. Truong, M.-R. Amini, and P. Gallinari. Learning tank with partially labeled training
data. Ininternational Conference on Multidisciplinary Infomati&Gcience and Technology
2006.

[146] J.Tsai, R. Bonneau, A. V. Morozov, B. Kuhiman, C. A. Ramnd D. Baker. An improved pro-
tein decoy set for testing energy functions for proteinctite prediction.Proteins 53(76),
2003.

142

[147] M.-F. Tsai, T.-Y. Liu, T. Qin, H.-H. Chen, and W.-Y. Ma&Rank: A ranking method with
fidelity loss. InSIGIR 2007.

[148] I. Tsochantaridis, T. Hofmann, T. Joachims, and YuAlt Support vector machine learning
for interdependent and structured output space®raceedings of International Conference
on Machine Learning2004.

[149] V. Vapnik. Statistical Learning TheorySpringer, 1998.

[150] A. Veloso, H. Almeida, M. Goncalves, and W. M. Jr. Leamto rank at query-time using
association rules. IBIGIR 2008.

[151] J. Wang, M. Li, Z. Li, and W.-Y. Ma. Learning ranking fation via relevance propagation.
Technical report, Microsoft Research Asia, 2005.

[152] T. Watanabe, J. Suzuki, H. Tsukada, and H. Isozakiin@rarge-margin training for statis-
tical machine translation. IRMNLP-CoNLL 2007.

[153] J. Weston, R. Kuang, C. Leslie, and W. Noble. Proteirkirag by semi-supervised network
propagation BMC Bioinformatics 2006.

[154] L. Wolfand A. Shahsua. Learning over sets using kegpriecipal component angleSMLR,
2003.

[155] Q. Wu, C. J. Burges, K. Svore, and J. Gao. Ranking, lmapsand model adaptation. Tech-
nical report, Microsoft Research, 2008.

[156] F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li. Listwisgproach to learning to rank -
theory and algorithm. IhCML, 2008.

[157] J. Xu and W. B. Croft. Query expansion using local arabgl document analysis. KCM
SIGIR Conference on Research and Development in Inform&edrieva) 1996.

[158] J. Xu and H. Li. AdaRank: A boosting algorithm for infoation retrieval. IrSIGIR 2007.

[159] J. Xu, L. Yu, and M. Li. Consensus fold recognition bygicted model quality. I#roc. of
the 3rd Asia-Pacific Bioinformatics Conferen@905.

[160] L. Xu and D. Schuurmans. Unsupervised and semi-sigetvmulti-class support vector
machines. IFAAAI 2005.

[161] O. Yamaguchi, K. Fukui, and K. Maeda. Face recognitismg temporal image sequence.
In IEEE International Conference on Automatic Face & Gestueed)nition 1998.

143

[162] D. Yarowsky. Unsupervised word sense disambiguati@iing supervised methods. ACL,
1995.

[163] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A sapgpvector method for optimization
average precision. ISIGIR 2007.

[164] A. Zemla. LGA: a method for finding 3d similarities inqtein structures.Nucleic Acids
Research31:3370-3374, 2003.

[165] C. Zhai and J. Lafferty. A study of smoothing methods fEanguage models applied to
ad hoc information retrieval. IACM SIGIR Conference on Research and Development in
Information Retrieval2001.

[166] T.Zhangand F. J. Oles. A probability analysis on tHaeaf unlabeled data for classification
problems. InProc. 17th International Conference on Machine LearningNIL-2000) San
Franscisco, CA, 2000. Morgan Kaufmann.

[167] Y. Zhang, S. Vogel, and A. Waibel. Interpreting bldsfrscores: How much improvement do
we need to have a better system?2.REC 2004.

[168] D. Zhou, J. Weston, A. Gretton, O. Bousquet, and B.dBapf. Ranking on data manifolds.
In NIPS 2004.

[169] K. Zhou, G.-R. Xue, H. Zha, and Y. Yu. Learning to rankifies. InSIGIR 2008.

[170] X. Zhu. Semi-supervised learning literature survey. Technical Re-
port 1530, Computer Sciences, University of Wisconsin-igiaual, 2005.
http://www.cs.wisc.edujerryzhu/pub/sskurvey.pdf.

[171] X. Zhu and Z. Ghahramani. Towards semisupervisedsifieation with Markov random
fields. Technical Report CMU-CALD-02-106, Carnegie Mellgniversity, 2002.

[172] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supeditearning using gaussian fields and
harmonic functions. IfProc. of ICML-20032003.

[173] X. Zhu, Z. Ghahramani, and J. Lafferty. Nonparametansforms of graph kernels for semi-
supervised learning. INIPS 2005.

144

Appendix A
RANKER PROPAGATION OBJECTIVE FUNCTION

Algorithm 13 in Section 8.5 describes an method for propagatinkers across a graph defined

on lists. Here we show that the algorithm minimizes the feiltw objective:
Y Kijlwi — w2 (A.1)
]

whereK is a pairwise similarity measure amg € R is a vector representing a ranker situated on
listi. The sumij is over all pairs of lists. The objective essentially stdket if two lists are close
by Kij, then we want the differendéw; — w;||?> between their rankers to be small in the L2 sense.

To begin, we rewrite the objective in order to optimize eaichahsion separately:

S Kij | wi — w2
1
— Kii)i —w(t)j 2
% JZ(W()i —W(t);)
= ZZKij(W(t)i_W(t)j)z
1)

Y Kijlwi —w;|[?
]

wheret indexes a feature within the ranker vectar(i.e. w(t); is the t-th parameter of the ranker

for list i). Next, we proceed with a derivation similar to Label Progiamn [172]:

Z%Kij(w(t)i—w(t)j)z = Z%(Kijw(t)inrW(t)jz—2W(t)iW(t)j)
= Z(%Kijw(t)ﬁgKijW(t)?—ZgKijW(t)iW(t)j)
= Z(Z(W(t)?;Kij)+2(W(t)j2IZKij)—ngijW(t)iW(t)j)
= Z(ZZ(W(I)?XKU)—ZgKijW(t)iW(t)J‘)
= ZZ(Z(w(t)?DH)—gKijw(t)iw(t),-) (A2)

145

= ZZ () TDW(t) —W(t)TKW(t)) (A.3)
= Z —K)W(t))
= ZZ () TLW(t) (A.4)

Step A.2 above follows from the definitiddji = ¥ ; Kjj. Step A.3 is a simple rewrite in terms
of matrices, i.e., D is a diagonal matrix wilhi on the diagonal, and/(t) is a matrix containing a
stacking ofw(t); for all i. In Step A.4 we see the graph Laplaclas- D — K. Step A.4 is a concave
function with respect toV(t).

In order to minimize A.4 with respect W (t) for all t, we take the first derivative and set it to

Zero:

R2EWOTIW)

In order to optimize only on weights on unlabeled lists, whikeping weights on labeled lists

fixed, we write the Laplacian and weight matrices to sepdltedabeled and unlabeled parts:

L L Wty | 0
Lu Luu W(t)u
Finally we obtain the equation:

W(t)y = —inv(Lyy)*LaW(t) (A.5)

For each dimension of the ranker, we calcuate Equation Aobtain the weight values for that
dimension for all unlabeled lists. Note that since we do ngiase constraints on the weight vectors
for unlabeled lists, we can calculate the weights for eaatedsion separately, all in closed-form.
If we were to impose constraints (e.g. forcing the weightsioiabeled list to normalize), then we

would alternatively optimize the objective using, e.g.rej@cted subgradient method [23].

146

VITA

Kevin K. Duh received his Bachelor of Science in Electricatl &Computer Engineering from
Rice University in 2003. Thereafter he worked briefly at NTabls in Japan, and in 2004 he joined
the Signals, Speech, and Language Interpretation (SSibiak e University of Washington. He
received his Master of Science and Doctor of Philosophy ekegyin Electrical Engineering from
the University of Washington in 2006 and 2009, respectiviéhile a graduate student, he served
as co-chair for the Student Research Workshop of the Adsmtitor Computational Linguistics
(ACL) in 2006 and the Semi-supervised Learning for Naturahguage Processing Workshop of
the North American Association for Computational Lingicis{NAACL) in 2009. He was awarded

the National Science Foundation Graduate Research Féiipdrom 2005 to 2008.

