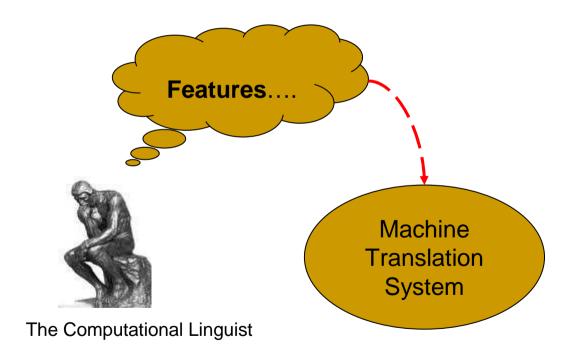
N-best Reranking by Multitask Learning

Kevin Duh, Katsuhito Sudoh, Hajime Tsukada, Hideki Isozaki, Masaaki Nagata

NTT Communication Science Laboratories

Our Goal

Incorporate *millions of features* into MT without overfitting!



Main Ideas

- Some features are just very sparse
- Overfitting is inevitable for conventional training
- 3. But multitask learning can help by discovering lower-dimensional feature space

Outline

- WHY: Motivations
 - The challenge of sparse features
- 2. **HOW**: Proposed training algorithm
- 3. WHAT: Reranking experiments
- 4. Conclusions

Background

Goal: given f, score translations e based on:

$$\hat{e} = \operatorname*{arg\,max} \mathbf{w}^T \cdot \mathbf{h}(e, f)$$

$$e \in N \text{-best List} \text{ Trained weights} \text{ Features}$$

 We're interested in systems employing millions of features

Note: Here we focus on N-best reranking but extension to 1st-pass training is possible

Sparse features for MT

 [Watanabe2007] proposed heavily-lexicalized features, e.g.

$$h(e,f) = \begin{cases} 1 & \text{if foreign word ``Monsieur''} \\ & \text{and English word ``Mr.''} \\ & \text{co-occur in } e, f \end{cases}$$

$$0 & \text{otherwise}$$

$$h(e,f) = \begin{cases} 1 & \text{if English trigram} \\ & \text{`Mr. Smith said''} \text{`occurs in } e \end{cases}$$

$$0 & \text{otherwise}$$

$$0 & \text{otherwise}$$

$$0 & \text{Many reordering possibilities} \\ & \text{many potential features} \end{cases}$$

'said Smith Mr.", "Smith Mr. said",...

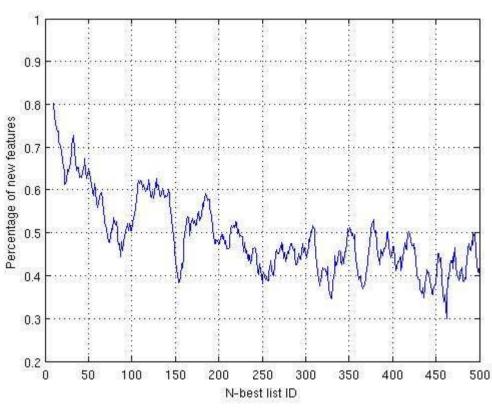
Why does overfitting occur?

Because there exist very little feature overlap between any two N-best lists.

Visualizing feature overlap (or lack thereof)

Feature Growth Rate

Definition: ratio of new-feature to active feature In the limit, 45% of active features are never seen before!



Conditions for this long-tail behavior

- -Feature templates are heavily-lexicalized
- -Input (f) has high variability
- -Output (e) has high variability

Outline

- WHY: Motivations
- 2. HOW: Proposed training algorithm
 - What is multitask learning
 - How N-best can be viewed as multitask problem
- 3. WHAT: Reranking experiments
- 4. Conclusions

What is Multitask Learning?

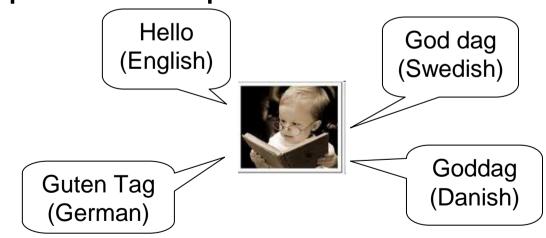
A set of machine learning techniques for exploiting heterogeneous training data

- Contrasts with i.i.d. assumption of traditional setup
- Instead assumes some underlying commonality

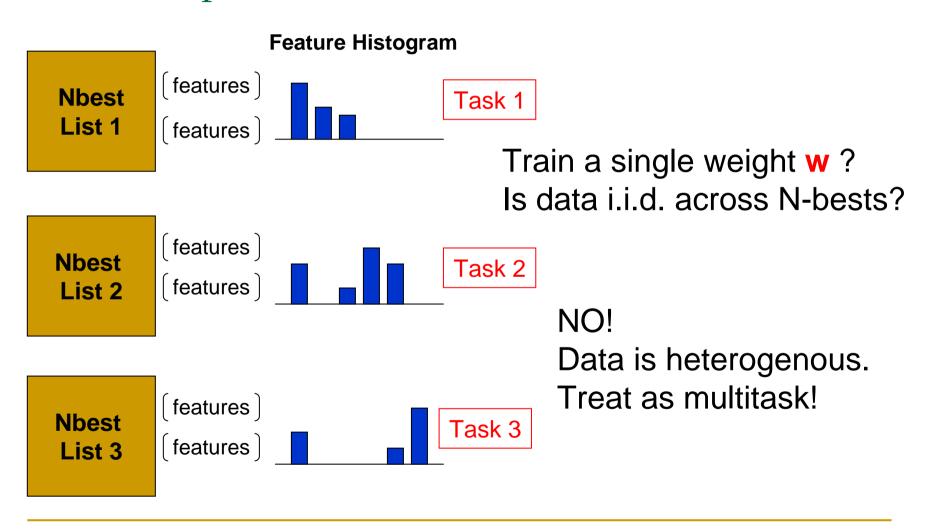
Examples of "Tasks"

Multiple domains:

Multiple related problems:



N-bests with sparse features can be viewed as a Multitask problem



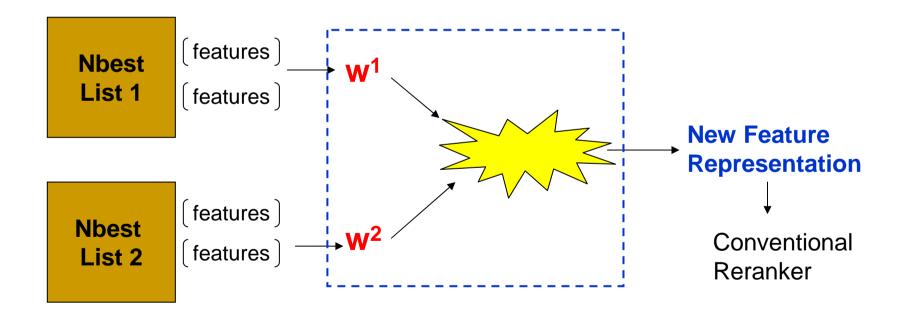
Our Meta-Algorithm

STEP 1: Train weights independently for each N-best

←Plug in your favorite

STEP 2: Find commonality among weights (and iterate) Multitask Learning method

STEP 3: Train conventional reranker on discovered common features



L1/L2 Joint Regularization

(one example multitask learning method)

$$\underset{w^{1}, w^{2}, \dots, w^{I}}{\operatorname{arg\,min}} \sum_{i=1}^{I} Loss(w^{i}, nbest^{i}) + \lambda ||W||_{1,2}$$

 $||W||_{1,2}$ computed by

- 1. Stacking the weights into a matrix
- 2. Take L2 norm on columns, then L1 norm on result Effect: encourage sharing of features

Exercise: which is the better solution?

$$\mathbf{W_a} : \begin{bmatrix} 4 & 0 & 0 & 3 \\ 0 & 4 & 3 & 0 \end{bmatrix} \quad \mathbf{W_b} : \begin{bmatrix} 4 & 3 & 0 & 0 \\ 0 & 4 & 3 & 0 \end{bmatrix}$$

$$4 \quad 4 \quad 3 \quad 3 \to 14 \qquad 4 \quad 5 \quad 3 \quad 0 \to 12$$

Many multitask methods are available!

Joint Regularization:

- □ L1/L2 [Obozinski09, Argyriou08]
- L1/L-infinity [Quattoni09]

Bayesian Prior: [Daume09, Finkel09]

$$\sum_{i} ||\mathbf{w}^{i} - \mathbf{w}^{avg}||_{2}$$

Shared Feature Subspace:

- SVD-based [Ando05]
- Neural network [Caruana97]
- Deep Learning [Collobert08]

Outline

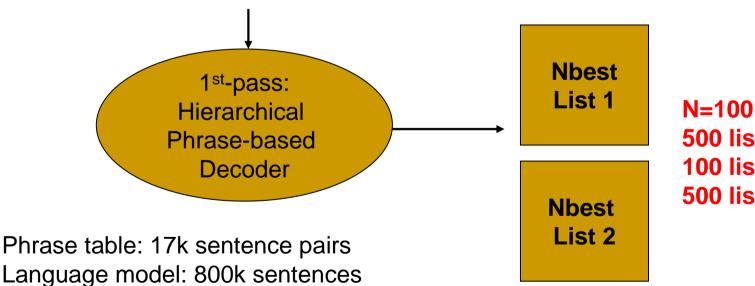
- WHY: Motivations
- 2. HOW: Proposed training algorithm
- 3. WHAT: Reranking experiments
 - Data
 - Results
- 4. Conclusions

Data

English → Japanese translation of PubMed abstracts

Abstract

BACKGROUND:: Up to 80% of thyroid nodules with an indeterminate diagnosis on fine-needle aspiration (FNA) (eg, "suspicious for follicular neoplasm") prove to be benign at the time of surgical resection. Ancillary tests in current use are limited in their ability to improve the preoperative detection of malignant follicular thyroid nodules. Studies using paraffinembedded tissue have indicated that high mobility group AT-hook 2 (HMGA2) overexpression is present in a high percentage of malignant thyroid neoplasms but not in benign thyroid neoplasms. In the current study, the ability of HMGA2 overexpression analysis to preoperatively distinguish benign from malignant thyroid nodules by reverse transcriptase-



N=100 500 lists for train 100 lists for tune 500 lists for test

Experiment comparison

What is best feature representation?

Baselines:

- 1. Original Feature Representation
- 2. Feature selection by L1 regularization

Features discovered by Multitask:

- 1. Joint Regularization (L1/L2)
- 2. Shared Subspace (SVD)

Specifics:

Base reranker is RankSVM, similar to [Shen04]

VS.

- Original: 2.4 million features
- Tune multitask feature dimension: {250,500,1000}

Results

Feature Representation	No. of features	Train BLEU	Test BLEU
First pass system features	20	29.5	28.5
Baseline 1: Original Sparse Features	2.4M	36.9	28.6
Baseline 2: Original, with L1 regularization	1200	36.5	28.5
Oracle		36.9	36.9
Multitask 1: Joint Regularization (L1/L2)	250	31.8	28.9
Multitask 2: Shared Subspace (SVD)	1000	32.9	29.1
Feature Threshold (occurs in 10+ lists)	60k	35.8	29.0
+ Multitask 1: Joint Regularization	60.25k	36.1	29.4
+ Multitask 2: Shared Subspace	61k	36.2	29.6

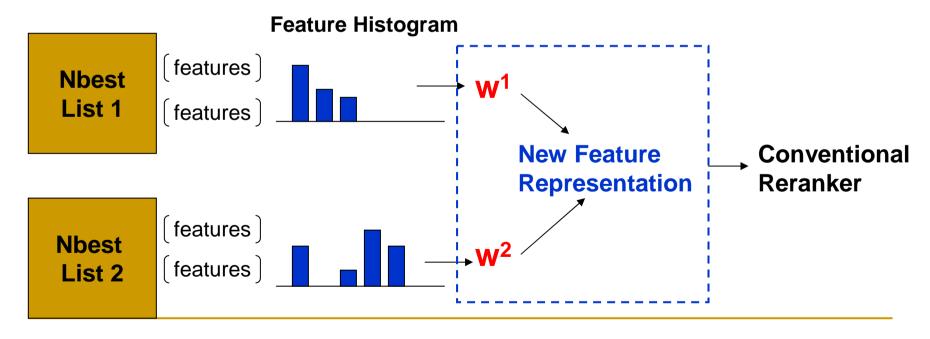
Improvements in **red** are statistically significant by bootstrap test (p<0.05)

Outline

- WHY: Motivations
- HOW: Proposed training algorithm
- 3. WHAT: Reranking experiments
- 4. Conclusions (2 slides)

Contributions

- N-best Lists with sparse features may be cast as multitask problem
- Proposed meta-algorithm uses multitask methods to learn better features for reranking



Final Words

MORE FEATURES IS THE WAY TO GO:

Translation is a delicate process requiring many fine-grained knowledge



Thanks! Questions? Suggestions?

Citations:

- [Ando05]: A framework for learning predictive structures from multiple tasks, JMLR
- [Argyriou08]: Convex multitask feature learning, MLJ
- [Chiang09]: 11,001 new features for SMT, NAACL
- [Collobert08]: A unified architecture for NLP: deep neural networks with multitask learning, ICML
- [Daume09]: Bayesian multitask learing with latent hierarchices, UAI
- [Marton08]: Soft syntactic constraints for hierarchical phrase based translation, ACL
- [Finkel09]: Hierarchical Bayesian domain adaptation, NAACL
- [Quattoni09]: An efficient projection for L1-Linf regularization, ICML
- [Shen04]: Discriminative reranking for MT, NAACL
- [Watanabe07]: Online large margin training for SMT, EMNLP

Acknowledgments:

We thank Jun Suzuki, Shinji Watanabe, Albert Au Yeung and the three reviewers for their valuable comments!

		Train	Test	Test
Feature Representation	#Feature	BLEU	BLEU	PER
(baselines)				
First pass	20	29.5	28.5	38.3
All sparse features (Main baseline)	2.4M	36.9	28.6	38.2
All sparse features w/ ℓ_1 regularization	1200	36.5	28.5	38.6
Random hash representation	4000	33.0	28.5	38.2
(multitask learning)				
Unsupervised FeatureSelect	500	32.0	28.8	37.7
Joint Regularization	250	31.8	28.9	37.5
Shared Subspace	1000	32.9	29.1	37.3
(combination w/high-frequency features)				
(a) Feature threshold $x > 100$	3k	31.7	27.9	38.2
(b) Feature threshold $x > 10$	60k	35.8	29.0	37.9
Unsupervised FeatureSelect + (b)	60.5k	36.2	29.3	37.6
Joint Regularization + (b)	60.25k	36.1	29.4	37.5
Shared Subspace + (b)	61k	36.2	29.6	37.3
Oracle (best possible)	_	36.9	36.9	33.1

Open Questions

- Interactive feature engineering?
- Different partition of tasks?
- Multitask on lattices or larger N-bests?
- Comparison to online learning?

A Bayesian perspective

1st Pass Decoder P(e|f) generates data conditioned on f

- f is task-specific "parameter"
- P(e|f) is common across tasks

