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‘ Our Goal

Incorporate millions of features into MT
without overfitting!

The Computational Linguist
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Main Ideas

Some features are just very sparse

Overfitting Is inevitable for conventional training

But multitask learning can help by discovering
lower-dimensional feature space
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Outline

HOW: Proposed training algorithm
WHAT: Reranking experiments
Conclusions
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Background

Goal: given f, score translations e based on:

Pt

¢ = argmaxw’ - h(e, f)

€€/N(f ) Tra?ned weights ‘\Features
N-best List

We're interested in systems employing
millions of features

Note: Here we focus on N-best reranking but extension to 1st-pass training is possible
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Sparse features for M'T

[Watanabe2007] proposed heavily-lexicalized
features, e.qg.

/— = —

1 1f foreign word< M0n51eur ) o _

= ]
and English word M7~ <\|r'\"9Ver used if input |

hie, f) = " , | sentence does not |
co-occur 1n €, f | contain “Monsieur” |

0 otherwise = ————————-

if English - trlg_ram
hie, f) = “Mr. Smith sald >“occurs in e

'-——_—-—

0 otherwise F—>————————————————
Many reordering possibilities

I
- many potential features |
| “said Smith Mr.”, “Smith Mr. said”,.. I
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‘ Why does overtitting occur?

Because there exist
very little feature overlap
between any two N-best lists.
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Visualizing feature overlap (or lack thereof)

Feature Growth Rate
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Definition: ratio of new-feature to active feature
In the limit, 45% of active features are never seen before!

Conditions for this long-tail behavior

M-hest list ID

200

-Feature templates are heavily-lexicalized
-Input (f) has high variability
-Output (e) has high variability
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Outline

WHY: Motivations

2. HOW: Proposed training algorithm
: o What is multitask learning
|

I
I
I
o How N-best can be viewed as multitask problemI

WHAT: Reranking experiments
Conclusions
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What 1s Multitask Learning?

A set of machine learning techniques
for exploiting heterogeneous training data

o Contrasts with 1.1.d. assumption of traditional setup
0 Instead assumes some underlying commonality
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‘ Examples of “Tasks”

= Multiple domains:

= Multiple related problems:

Hello God dag
(English) | (Swedish)

- ! Goddag
a3
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N-bests with sparse features can be viewed as a
Multitask problem

Feature Histogram

[features] Task 1
[features] II.

Train a single weight w ?

Is data i.1.d. across N-bests?

[ features ]
Task 2

[features]
NO!

Data is heterogenous.
Treat as multitask!

[ features ]

Task 3

_ E

[ features ]
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Our Meta-Algorithm

i STEP 1: Train weights independently for each N-best :ép|ug in your favorite
| STEP 2: Find commonallty among welghts (and |terate). Multitask Learning method

[ features ] ;

[ features ]

1

I

|

|

1

I

|

! New Feature
! Representation
|

: l

|

|

1

I

Conventional
Reranker

[ features ]

[ features ] |
1
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‘ [.1/1.2 Joint Regularization

(one example multitask learning method)

|
argmin ) Loss(w',nbest') + A [W || ,

whw?,ow! =g

[W]|, , computed by
1. Stacking the weights into a matrix
2. Take L2 norm on columns, then L1 norm on result

Effect: encourage sharing of features

Exercise: which is the better solution?
4 0 0 3 4 3 0 0
Wa'lozigowwb'{()zl?,o}
4 4 3 3 —=14 4 5 3 0—12

N-best Reranking by Multitask Learning 14



Many multitask methods are available!

Joint Reqularization:
o L1/L2 [Obozinski09, Argyriou08]
o L1/L-infinity [QuattoniO9]

Bayesian Prior: [Daume09, Finkel09]
2 [lwh = w5

Shared Feature Subspace:
o SVD-based [AndoO5]
o Neural network [Caruana97]
o Deep Learning [Collobert08]
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Conclusions
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Data

English->Japanese translation of PubMed abstracts

- Limits  Advanced search Help
Pmeed.gﬂv SEErCh.lPubMed " |
U.S. Hational Library of Medicine | |m

Mational Institutes of Health

Abstract

BACKGROUMD:: Up to 80% of thyraid nodules with an indeterminate diagnasis on fine-needle aspiration (FRAY (2q,
"suspicious far fallicular neoplasm™ prave to be henign at the time of surgical resection. Ancillary tests in current use are
limited in their ahility to improve the preoperative detection of malignant follicular thyroid nodules. Studies using parafiin-
embedded tissue have indicated that high rmobility group AT-hook 2 (HMGAZ) overexpression is present in a high percentage
of malignant thyroid neoplasms hut nat in benian thyroid neoplasms. Inthe current study, the ability of HMGAZ
overexpression analysis to preoperatively distinguish benign from malignant thyroid nodules by reverse transcriptase-

N=100

500 lists for train
100 lists for tune
500 lists for test

Phrase table: 17k sentence pairs
Language model: 800k sentences
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Experiment comparison

What is best feature representation?

/Baselines: \ / \

Features discovered by Multitask:

1. Original Feature

Representation vs.| 1. Joint Regularization (L1/L2)
2. Feature selection by 2. Shared Subspace (SVD)
k L1 regularization / K /
Specifics:

o Base reranker is RankSVM, similar to [Shen04]
o Original: 2.4 million features
o Tune multitask feature dimension: {250,500,1000}
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Results

Feature Representation No. of Train | Test
features | BLEU |BLEU
First pass system features 20 29.5 |285
Baseline 1: Original Sparse Features 2.4M 36.9 |28.6
Baseline 2: Original, with L1 regularization | 1200 36.5 |28.5
Oracle -- 36.9 |[36.9
Multitask 1: Joint Regularization (L1/L2) 250 31.8 |28.9
Multitask 2: Shared Subspace (SVD) 1000 329 |29.1
Feature Threshold (occurs in 10+ lists) 60k 35.8 [29.0
+ Multitask 1: Joint Regularization 60.25k [36.1 |294
+ Multitask 2: Shared Subspace 61k 36.2 [29.6

Improvements in red are statistically significant by bootstrap test (p<0.05)

N-best Reranking by Multitask Learning

19




Outline

WHY: Motivations
HOW: Proposed training algorithm
WHAT: Reranking experiments

N-best Reranking by Multitask Learning

20



‘ Contributions

= N-best Lists with sparse features may be cast
as multitask problem

= Proposed meta-algorithm uses multitask
methods to learn better features for reranking

Feature Histogram

[features] ; |
II —r w1l :

 features | \ :
|

New Feature : Conventional

Representation Reranker

|
features | , / i
[features] I .II _.L'W :

———————————————————
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‘ Final Words

MORE FEATURES IS THE WAY TO GO:

Translation is a delicate process requiring many fine-grained knowledge

But we must avoid overfitting:
1. Careful definition of features:
e.g. [Chiang09,Marton08]
2. Feature mining
[This work]

The Computational Linguist
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Thanks! Questions? Suggestions?
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Q
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U

(W
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Train | Test Test
Feature Representation #Feature | BLEU | BLEU | PER
(baselines)
First pass 20 | 29.5 28.5 38.3
All sparse features (Main baseline) 24M | 36.9 28.6 38.2
All sparse features w/ (4 regularization 1200 | 36.5 28.5 38.6
Random hash representation 4000 | 33.0 28.5 38.2
(multitask learning)
Unsupervised FeatureSelect 500 | 32.0 28.8 37.7
Joint Regularization 250 | 31.8 28.9 37.5
Shared Subspace 1000 | 32.9 29.1 37.3
(combination w/ high-frequency features)
(a) Feature threshold = > 100 3k | 31.7 27.9 38.2
(b) Feature threshold x > 10 60k | 35.8 29.0 37.9
Unsupervised FeatureSelect + (b) 60.5k | 36.2 29.3 37.6
Joint Regularization + (b) 60.25k | 36.1 294 37.5
Shared Subspace + (b) 61k | 36.2 29.6 37.3
Oracle (best possible) — 1 369 36.9 33.1
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Open Questions

Interactive feature engineering?
Different partition of tasks?
Multitask on lattices or larger N-bests?

Comparison to online learning?
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A Bayesian perspective

1st Pass Decoder P(elf) generates data conditioned on f
o fis task-specific “parameter”
o P(elf) Is common across tasks

fl
v
P(elf=f1)

/ f2 -
p(elf) e Plelf=P) '
R

\ :

v
P(e|f=F3)
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