
N-best Reranking by Multitask Learning

Kevin Duh Katsuhito Sudoh Hajime Tsukada Hideki Isozaki Masaaki Nagata
NTT Communication Science Laboratories

2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0237, Japan
{kevinduh,sudoh,tsukada,isozaki}@cslab.kecl.ntt.co.jp

nagata.masaaki@lab.ntt.co.jp

Abstract

We propose a new framework for N-best
reranking on sparse feature sets. The idea
is to reformulate the reranking problem as
a Multitask Learning problem, where each
N-best list corresponds to a distinct task.

This is motivated by the observation that
N-best lists often show significant differ-
ences in feature distributions. Training a
single reranker directly on this heteroge-
nous data can be difficult.

Our proposed meta-algorithm solves this
challenge by using multitask learning
(such asℓ1/ℓ2 regularization) to discover
common feature representations across N-
best lists. This meta-algorithm is simple to
implement, and its modular approach al-
lows one to plug-in different learning algo-
rithms from existing literature. As a proof
of concept, we show statistically signifi-
cant improvements on a machine transla-
tion system involving millions of features.

1 Introduction

Many natural language processing applications,
such as machine translation (MT), parsing, and
language modeling, benefit from the N-best
reranking framework (Shen et al., 2004; Collins
and Koo, 2005; Roark et al., 2007). The advan-
tage of N-best reranking is that it abstracts away
the complexities of first-pass decoding, allowing
the researcher to try new features and learning al-
gorithms with fast experimental turnover.

In the N-best reranking scenario, the training
data consists of sets of hypotheses (i.e. N-best
lists) generated by a first-pass system, along with
their labels. Given a new N-best list, the goal is
to rerank it such that the best hypothesis appears
near the top of the list. Existing research have fo-
cused on training asingle reranker directly on the

entire data. This approach is reasonable if the data
is homogenous, but it fails when features vary sig-
nificantly across different N-best lists. In partic-
ular, when one employssparse feature sets, one
seldom finds features that are simultaneously ac-
tive on multiple N-best lists.

In this case, we believe it is more advantageous
to view the N-best reranking problem as amulti-
task learning problem, where each N-best list cor-
responds to a distinct task. Multitask learning, a
subfield of machine learning, focuses on how to
effectively train on a set of different but related
datasets (tasks). Our heterogenous N-best list data
fits nicely with this assumption.

The contribution of this work is three-fold:

1. We introduce the idea of viewing N-best
reranking as a multitask learning problem.
This view is particularly apt to any general
reranking problem with sparse feature sets.

2. We propose a simple meta-algorithm that
first discovers common feature representa-
tions across N-bests (via multitask learning)
before training a conventional reranker. Thus
it is easily applicable to existing systems.

3. We demonstrate that our proposed method
outperforms the conventional reranking ap-
proach on a English-Japanese biomedical
machine translation task involving millions
of features.

The paper is organized as follows: Section 2 de-
scribes the feature sparsity problem and Section 3
presents our multitask solution. The effectiveness
of our proposed approach is validated by experi-
ments demonstrated in Section 4. Finally, Sections
5 and 6 discuss related work and conclusions.

2 The Problem of Sparse Feature Sets

For concreteness, we will describe N-best rerank-
ing in terms of machine translation (MT), though

our approach is agnostic to the application. In MT
reranking, the goal is to translate a foreign lan-
guage sentencef into an English sentencee by
picking from a set of likely translations. A stan-
dard approach is to use a linear model:

ê = arg max
e∈N(f)

wT · h(e, f) (1)

whereh(e, f) is a D-dimensional feature vector,
w is the weight vector to be trained, andN(f) is
the set of likely translations off , i.e. the N-best
list. The featureh(e, f) can be any quantity de-
fined in terms of the sentence pair, such as transla-
tion model and language model probabilities.

Here we are interested in situations where the
feature definitions can be quite sparse. A com-
mon methodology in reranking is to first design
feature templates based on linguistic intuition and
domain knowledge. Then, numerous features are
instantiated based on the training data seen. For
example, the work of (Watanabe et al., 2007) de-
fines feature templates based on bilingual word
alignments, which lead to extraction of heavily-
lexicalized features of the form:

h(e, f) =

1 if foreign word “Monsieur”
and English word “Mr.”
co-occur ine,f

0 otherwise
(2)

One can imagine that such features are sparse
because it may only fire for input sentences that
contain the word “Monsieur”. For all other input
sentences, it is an useless, inactive feature.

Another common feature involves word ngram
templates, for example:

h(e, f) =

1 if English trigram
“Mr. Smith said” occurs ine

0 otherwise
(3)

In this case, all possible trigrams seen in the N-
best list are extracted as features. One can see
that this kind of feature can be very sensitive to
the first-pass decoder: if the decoder has loose re-
ordering constraints, then we may extract expo-
nentially many nonsense ngram features such as
“Smith said Mr.” and “said Smith Mr.”. Granted,
the reranker training algorithm may learn that
these nonsense ngrams are indicative of poor hy-
potheses, but it is unlikely that the exact same non-

sense ngrams will appear given a different test sen-
tence.

In summary, the following issues compound to
create extremely sparse feature sets:

1. Feature templates are heavily-lexicalized,
which causes the number of features to grow
unbounded as the the amount of data in-
creases.

2. The input (f) has high variability (e.g. large
vocabulary size), so that features for different
inputs are rarely shared.

3. The N-best list output also exhibits high vari-
ability (e.g. many different word reorder-
ings). LargerN may improve reranking per-
formance, but may also increase feature spar-
sity.

When the number of features is too large, even
popular reranking algorithms such as SVM (Shen
et al., 2004) and MIRA (Watanabe et al., 2007;
Chiang et al., 2009) may fail. Our goal here is to
address this situation.

3 Proposed Reranking Framework

In the following, we first give an intuitive com-
parison between single vs. multiple task learning
(Section 3.1), before presenting the general meta-
algorithm (Section 3.2) and particular instantia-
tions (Section 3.3).

3.1 Single vs. Multiple Tasks

Given a set ofI input sentences{f i}, the training
data for reranking consists of a set ofI N-best lists
{(Hi,yi)}i=1,...,I , whereHi are features andyi

are labels.
To clarify the notation:1 for an input sentence

f i, there is a N-best listN(f i). For a N-best list
N(f i), there areN feature vectors corresponding
to theN hypotheses, each with dimensionD. The
collection of feature vectors forN(f i) is repre-
sented byHi, which can be seen as aD × N
matrix. Finally, theN -dimensional vector of la-
belsyi indicates the translation quality of each hy-
pothesis inN(f i). The purpose of the reranker
training algorithm is to find good parameters from
{(Hi,yi)}.

1Generally we use bold fonth to represent a vector, bold-
capital fontH to represent a matrix. Scripth andh(·) may
be scalar, function, or sentence (depends on context).

The conventional method of training a single
reranker (single task formulation) involves opti-
mizing a generic objective such as:

arg min
w

I
∑

i=1

L(w,Hi,yi) + λΩ(w) (4)

wherew ∈ R
D is the reranker trained on all lists,

and L(·) is some loss function.Ω(w) is an op-
tional regularizer, whose effect is traded-off by the
constantλ. For example, the SVM reranker for
MT (Shen et al., 2004) definesL(·) to be some
function of sentence-level BLEU score, andΩ(w)
to be the large margin regularizer.2

On the other hand, multitask learning involves
solving for multiple weights,w1,w2, . . . ,wI ,
one for each N-best list. One class of multitask
learning algorithms, Joint Regularization, solves
the following objective:

arg min
w1,..,wI

I
∑

i=1

L(wi,Hi,yi) + λΩ(w1, ..,wI)

(5)
The loss decomposes by task but the joint regu-

larizerΩ(w1, ..,wI) couples together the different
weight parameters. The key is to note that multi-
ple weights allow the algorithm to fit the heteroge-
nous data better, compared to a single weight vec-
tor. Yet these weights are still tied together so that
some information can be shared across N-best lists
(tasks).

One instantiation of Eq. 5 isℓ1/ℓ2 regular-
ization: Ω(w1, ..,wI) , ||W||1,2, whereW =
[w1|w2| . . . |wI]T is a I-by-D matrix of stacked
weight vectors. The norm is computed by first tak-
ing the 2-norm on columns ofW, then taking a
1-norm on the resultingD-length vector. This en-
courages the optimizer to choose a small subset of
features that are useful across all tasks.

For example, suppose two different sets of
weight vectorsWa andWb for a 2 lists, 4 fea-
tures reranking problem. Theℓ1/ℓ2 norm forWa

is 14; theℓ1/ℓ2 norm forWb is 12. If both have
the same lossL(·) in Eq. 5, the multitask opti-
mizer would preferWb since more features are
shared:

Wa :

»

4 0 0 3
0 4 3 0

–

Wb :

»

4 3 0 0
0 4 3 0

–

4 4 3 3 → 14 4 5 3 0 → 12

2In MT, evaluation metrics like BLEU do not exactly de-
compose across sentences, so for some training algorithms
this loss is an approximation.

3.2 Proposed Meta-algorithm

We are now ready to present our general reranking
meta-algorithm (see Algorithm 1), termed Rerank-
ing by Multitask Learning (RML).

Algorithm 1 Reranking by Multitask Learning

Input: N-best data{(Hi,yi)}i=1,...,I

Output: Common feature representationhc(e, f)
and weight vectorwc

1: [optional] RandomHashing({Hi})
2: W = MultitaskLearn({(Hi ,yi)})
3: hc = ExtractCommonFeature(W)
4: {Hi

c} = RemapFeature({Hi}, hc)
5: wc = ConventionalReranker({(Hi

c ,y
i)})

The first step, random hashing, is optional. Ran-
dom hashing is an effective trick for reducing the
dimension of sparse feature sets without suffer-
ing losses in fidelity (Weinberger et al., 2009;
Ganchev and Dredze, 2008). It works by collaps-
ing random subsets of features. This step can be
performed to speed-up multitask learning later. In
some cases, the original feature dimension may be
so large that hashed representations may be neces-
sary.

The next two steps are key. A multitask learn-
ing algorithm is run on the N-best lists, and a com-
mon feature space shared by all lists is extracted.
For example, if one uses the multitask objective
of Eq. 5, the result of step 2 is a set of weights
W. ExtractCommonFeature(W) then returns the
feature id’s (either from original or hashed repre-
sentation) that receive nonzero weight in any of
W.3 The new featureshc(e, f) are expected to
have lower dimension than the original features
h(e, f). Section 3.3 describes in detail different
multitask methods that can be plugged-in to this
step.

The final two steps involve a conventional
reranker. In step 4, we remap the N-best list
data according to the new feature representations
hc(e, f). In step 5, we train a conventional
reranker on this common representation, which by
now should have overcome sparsity issues. Us-
ing a conventional reranker at the end allows us
to exploit existing rerankers designed for specific
NLP applications. In a sense, our meta-algorithm
simply involves a change of representation for
the conventional reranking scenario, where the

3For example inWb, features 1-3 have nonzero weights
and are extracted. Feature 4 is discarded.

new representation is found by multitask methods
which are well-suited to heterogenous data.

3.3 Multitask Objective Functions

Here, we describe various multitask methods that
can be plugged in Step 2 of Algorithm 1. Our
goal is to demonstrate that a wide range of existing
methods from the multitask learning literature can
be brought to our problem. We categorize multi-
task methods into two major approaches:

1. Joint Regularization: Eq. 5 is an exam-
ple of joint regularization, withℓ1/ℓ2 norm being
a particular regularizer. The idea is to use the reg-
ularizer to ensure that the learned functions of re-
lated tasks are close to each other. The popular
ℓ1/ℓ2 objective can be optimized by various meth-
ods, such as boosting (Obozinski et al., 2009) and
convex programming (Argyriou et al., 2008). Yet
another regularizer is theℓ1/ℓ∞ norm (Quattoni et
al., 2009), which replaces the 2-norm with a max.

One could also define a regularizer to ensure
that each task-specificwi is close to some average
parameter, e.g.

∑

i ||w
i − wavg||2. If we inter-

pretwavg as a prior, we begin to see links toHier-
archical Bayesian methods for multitask learning
(Finkel and Manning, 2009; Daume, 2009).

2. Shared Subspace: This approach assumes
that there is an underlying feature subspace that
is common to all tasks. Early works on multi-
task learning implement this by neural networks,
where different tasks have different output layers
but share the same hidden layer (Caruana, 1997).

Another method is to write the weight vector
as two partsw = [u;v] and let the task-specific
function beuT · h(e, f) + vT · Θ · h(e, f) (Ando
and Zhang, 2005).Θ is aD′×D matrix that maps
the original features to a subspace common to all
tasks. The new feature representation is computed
by the projectionhc(e, f) , Θ · h(e, f).

Multitask learning is a vast field and relates to
areas like collaborative filtering (Yu and Tresp,
2005) and domain adaptation. Most methods as-
sume some common representation and is thus ap-
plicable to our framework. The reader is urged to
refer to citations in, e.g. (Argyriou et al., 2008) for
a survey.

4 Experiments and Results

As a proof of concept, we perform experiments
on a MT system with millions of features. We
use a hierarchical phrase-based system (Chiang,

10
0

10
1

10
2

10
3

10
4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
(f

ea
tu

re
 o

cc
ur

s
in

 x
 li

st
s)

x

Figure 1: This log-log plot shows that there are
many rare features and few common features. The
probability that a feature occurs inx number of N-
best lists behaves according to the power-lawx−α,
whereα = 2.28.

2007) to generate N-best lists (N=100). Sparse
features used in reranking are extracted according
to (Watanabe et al., 2007). Specifically, the major-
ity are lexical features involving joint occurrences
of words within the N-best lists and source sen-
tences.

It is worth noting that the fact that the first pass
system is a hierarchical system is not essential to
the feature extraction step; similar features can be
extracted with other systems as first-pass, e.g. a
phrase-based system. That said, the extent of the
feature sparsity problem may depend on the per-
formance of the first-pass system.

We experiment with medical domain MT, where
large numbers of technical vocabulary cause spar-
sity challenges. Our corpora consists of English
abstracts from PubMed4 with their Japanese trans-
lations. The first-pass system is built on hierarchi-
cal phrases extracted from 17k sentence pairs and
target (Japanese) language models trained on 800k
medical-domain sentences. For our reranking ex-
periments, we used 500 lists as the training set5,
500 lists as held-out, and another 500 for test.

4.1 Data Characteristics

We present some statistics to illustrate the feature
sparsity problem: From 500 N-best lists, we ex-
tracted a total of 2.4 million distinct features. By
type, 75% of these features occur inonly one N-
best list in the dataset. Less than 3% of features

4A database of the U.S. National Library of Medicine.
5In MT, training data for reranking is sometimes referred

to as “dev set” to distinguish from the data used in first-pass.
Also, while the 17k bitext may seem small compared to other
MT work, we note that 1st pass translation quality (around 28
BLEU) is high enough to evaluate reranking methods.

occur in ten or more lists. The distribution of fea-
ture occurrence is clearly Zipfian, as seen in the
power-law plot in Figure 1.

We can also observe thefeature growth rate (Ta-
ble 1). This is the number of new features intro-
duced when an additional N-best list is seen. It is
important to note that on average, 2599 new fea-
tures are added everytime a new N-best list is seen.
This is as much as2599/4188 = 62% of the ac-
tive features. Imagine an online training algorithm
(e.g. MIRA or perceptron) on this kind of data:
whenever a loss occurs and we update the weight
vector, less than half of the weight vector update
applies to data we have seen thus far. Herein lies
the potential for overfitting.

From observing the feature grow rate, one may
hypothesize that adding large numbers of N-best
lists to the training set (500 in the experiments
here) may not necessarily improve results. While
adding data potentially improves the estimation
process, it also increases the feature space dramat-
ically. Thus we see the need for a feature extrac-
tion procedure.

(Watanabe et al., 2007) also reports the possibil-
ity of overfitting in their dataset (Arabic-English
newswire translation), especially when domain
differences are present. Here we observe this ten-
dency already on the same domain, which is likely
due to the highly-specialized vocabulary and the
complex sentence structures common in research
paper abstracts.

4.2 MT Results

Our goal is to compare different feature represen-
tations in reranking: Thebaseline reranker uses
the original sparse feature representation. This is
compared to feature representations discovered by
three different multitask learning methods:

• Joint Regularization (Obozinski et al., 2009)
• Shared Subspace (Ando and Zhang, 2005)
• Unsupervised Multitask Feature Selection

(Abernethy et al., 2007).6

We use existing implementations of the above
methods.7 The conventional reranker (Step 5, Al-

6This is not a standard multitask algorithm since most
multitask algorithms are supervised. We include it to see
if unsupervised or semi-supervised multitask algorithms is
promising. Intuitively, the method tries to select subsetsof
features that are correlated across multiple tasks using ran-
dom sampling (MCMC). Features that co-occur in different
tasks form a high probability path.

7Available at http://multitask.cs.berkeley.edu

Nbest id #NewFt #SoFar #Active
1 3900 3900 3900
2 7535 11435 7913
3 6078 17513 7087
4 3868 21381 4747
5 1896 23277 2645
6 3542 26819 4747
....
100 2440 289118 4299
101 1639 290757 2390
102 3468 294225 4755
103 2350 296575 3824
Average 2599 – 4188

Table 1: Feature growth rate: For N-best listi in
the table, we have (#NewFt = number of new fea-
tures introduced since N-besti − 1) ; (#SoFar =
Total number of features defined so far); and (#Ac-
tive = number of active features for N-besti). E.g.,
we extracted 7535 new features from N-best 2;
combined with the 3900 from N-best 1, the total
features so far is 11435.

gorithm 1) used in all cases is SVMrank.8 Our
initial experiments show that the SVM baseline
performance is comparable to MIRA training, so
we use SVM throughout. The labels for the SVM
are derived as in (Shen et al., 2004), where top
10% of hypotheses by smoothed sentence-BLEU
is ranked before the bottom 90%. All multitask
learning methods work on hashed features of di-
mension 4000 (Step 1, Algorithm 1). This speeds
up the training process.

All hyperparameters of the multitask method
are tuned on the held-out set. In particular, the
most important is the number of common features
to extract, which we pick from{250, 500, 1000}.

Table 2 shows the results by BLEU (Papineni
et al., 2002) and PER. The Oracle results are ob-
tained by choosing the best hypothesis per N-best
list by sentence-level BLEU, which achieved 36.9
BLEU in both Train and Test. A summary of our
observations is:

1. The baseline (All sparse features) overfits. It
achieves the oracle BLEU score on the train
set (36.9) but performs poorly on the test
(28.6).

2. Similar overfitting occurs when traditionalℓ1

regularization is used to select features on
8Available at http://svmlight.joachims.org

the sparse feature representation9. ℓ1 reg-
ularization is a good method of handling
sparse features for classification problems,
but in reranking the lack of tying between
lists makes this regularizer inappropriate. A
small set of around 1200 features are chosen:
they perform well independently on each task
in the training data, but there is little sharing
with the test data.

3. All three multitask methods obtained features
that outperformed the baseline. The BLEU
scores are 28.8, 28.9, 29.1 for Unsupervised
Feature Selection, Joint Regularization, and
Shared Subspace, respectively, which all out-
perform the 28.6 baseline. All improvements
are statistically significant by bootstrap sam-
pling test (1000 samples,p < 0.05) (Zhang
et al., 2004).

4. Shared Subspace performed the best. We
conjecture this is because its feature projec-
tion can create new feature combinations that
is more expressive than the feature selection
used by the two other methods.

5. PER results are qualitatively similar to BLEU
results.

6. As a further analysis, we are interested in see-
ing whether multitask learning extracts novel
features, especially those that have low fre-
quency. Thus, we tried an additional feature
representation (feature threshold) which only
keeps features that occur in more thanx N-
bests, and concatenate these high-frequency
features to the multitask features. The fea-
ture threshold alone achieves nice BLEU re-
sults (29.0 forx > 10), but the combination
outperforms it by statistically significant mar-
gins (29.3-29.6). This implies that multitask
learning is extracting features that comple-
ment well with high frequency features.

For the multitask features, improvements of 0.2
to 1.0 BLEU are modest butconsistent. Figure
2 shows the BLEU of bootstrap samples obtained
as part of the statistical significance test. We see
that multitask almost never underperformbase-
line in any random sampling of the data. This im-
plies that the proposed meta-algorithm is very sta-

9Optimized by the Vowpal Wabbit toolkit:
http://hunch.net/vw/

ble, i.e. it is not a method that sometimes improves
and sometimes degrades.

Finally, a potential question to ask is: what
kinds of features are being selected by the
multitask learning algorithms? We found that
that two kinds of features are usually selected:
one is general features that are not lexicalized,
such as “count of phrases”, “count of dele-
tions/insertions”, “number of punctuation marks”.
The other kind is lexicalized features, such as
those in Equations 2 and 3, but involving functions
words (like the Japanese characters “wa”, “ga”,
“ni”, “de”) or special characters (such as numeral
symbol and punctuation). These are features that
can be expected to be widely applicable, and it is
promising that multitask learning is able to recover
these from the millions of potential features.10

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

50

100

150

200

250

300

BLEU(shared subspace)−BLEU(baseline sparse feature)

B
oo

ts
tr

ap
 s

am
pl

es

Figure 2: BLEU difference of 1000 bootstrap sam-
ples. 95% confidence interval is[.15, .90] The
proposed approach therefore seems to be a stable
method.

5 Related Work in NLP

Previous reranking work in NLP can be classified
into two different research focuses:

1. Engineering better features: In MT, (Och
and others, 2004) investigates features extracted
from a wide variety of syntactic representations,
such as parse tree probability on the outputs. Al-
though their results show that the proposed syntac-
tic features gave little improvements, they point to
some potential reasons, such as domain mismatch
for the parser and overfitting by the reranking

10Note: In order to do this analysis, we needed to run Joint
Regularization on the original feature representation, since
the hashed representations are less interpretable. This turns
out to be computationally prohibitive in the time being so we
only ran on a smaller data set of 50 lists. Recently new op-
timization methods that are orders of magnitude faster have
been developed (Liu et al., 2009), which makes larger-scale
experiments possible.

Train Test Test
Feature Representation #Feature BLEU BLEU PER
(baselines)
First pass 20 29.5 28.5 38.3
All sparse features (Main baseline) 2.4M 36.9 28.6 38.2
All sparse features w/ℓ1 regularization 1200 36.5 28.5 38.6
Random hash representation 4000 33.0 28.5 38.2
(multitask learning)
Unsupervised FeatureSelect 500 32.0 28.8 37.7
Joint Regularization 250 31.8 28.9 37.5
Shared Subspace 1000 32.9 29.1 37.3
(combination w/ high-frequency features)
(a) Feature thresholdx > 100 3k 31.7 27.9 38.2
(b) Feature thresholdx > 10 60k 35.8 29.0 37.9
Unsupervised FeatureSelect + (b) 60.5k 36.2 29.3 37.6
Joint Regularization + (b) 60.25k 36.1 29.4 37.5
Shared Subspace + (b) 61k 36.2 29.6 37.3
Oracle (best possible) – 36.9 36.9 33.1

Table 2: Results for different feature sets, with corresponding feature size and train/test BLEU/PER. All
multitask features give statistically significant improvements over the baselines (boldfaced), e.g. Shared
Subspace: 29.1 BLEU vs Baseline: 28.6 BLEU. Combinations ofmultitask features with high frequency
features also give significant improvements over the high frequency features alone.

method. Recent work by (Chiang et al., 2009) de-
scribes new features for hierarchical phrase-based
MT, while (Collins and Koo, 2005) describes
features for parsing. Evaluation campaigns like
WMT (Callison-Burch et al., 2009) and IWSLT
(Paul, 2009) also contains a wealth of information
for feature engineering in various MT tasks.

2. Designing better training algorithms: N-
best reranking can be seen as a subproblem of
structured prediction, so many general structured
prediction algorithms (c.f. (Bakir et al., 2007))
can be applied. In fact, some structured predic-
tion algorithms, such as the MIRA algorithm used
in dependency parsing (McDonald et al., 2005)
and MT (Watanabe et al., 2007) uses iterative
sets of N-best lists in its training process. Other
training algorithms include perceptron-style algo-
rithms (Liang et al., 2006), MaxEnt (Charniak and
Johnson, 2005), and boosting variants (Kudo et al.,
2005).

The division into two research focuses is conve-
nient, but may be suboptimal if the training algo-
rithm and features do not match well together. Our
work can be seen as re-connecting the two focuses,
where the training algorithm is explicitly used to
help discover better features.

Multitask learning is currently an active subfield

within machine learning. There has already been
some applications in NLP: For example, (Col-
lobert and Weston, 2008) uses a deep neural net-
work architecture for multitask learning on part-
of-speech tagging, chunking, semantic role label-
ing, etc. They showed that jointly learning these
related tasks lead to overall improvements. (De-
selaers et al., 2009) applies similar methods for
machine transliteration. In information extraction,
learning different relation types can be naturally
cast as a multitask problem (Jiang, 2009; Carlson
et al., 2009). Our work can be seen as following
the same philosophy, but applied to N-best lists.

In other areas, (Reichart et al., 2008) introduced
an active learning strategy for annotating multitask
linguistic data. (Blitzer et al., 2006) applies the
multitask algorithm of (Ando and Zhang, 2005)
to domain adaptation problems in NLP. We expect
that more novel applications of multitask learning
will appear in NLP as the techniques become scal-
able and standard.

6 Discussion and Conclusion

N-best reranking is a beneficial framework for ex-
perimenting with large feature sets, but unfortu-
nately feature sparsity leads to overfitting. We ad-
dressed this by re-casting N-best lists as multitask

learning data. Our MT experiments show consis-
tent statistically significant improvements.

From the Bayesian view, multitask formulation
of N-best lists is actually very natural: Each N-
best is generated by a different data-generating
distribution since the input sentences are different,
i.e. p(e|f1) 6= p(e|f2). Yet these N-bests are re-
lated since the generalp(e|f) distribution depends
on the same first-pass models.

The multitask learning perspective opens up
interesting new possibilities for future work, e.g.:

• Different ways to partition data into tasks,
e.g. clustering lists by document structure, or
hierarchical clustering of data

• Multitask learning on lattices or N-best lists
with larger N. It is possible that a larger hy-
pothesis space may improve the estimation of
task-specific weights.

• Comparing multitask learning to sparse on-
line learning of batch data, e.g. (Tsuruoka et
al., 2009).

• Modifying the multitask objective to incorpo-
rate application-specific loss/decoding, such
as Minimum Bayes Risk (Kumar and Byrne,
2004)

• Using multitask learning to aid large-scale
feature engineering and visualization.

Acknowledgments

We have received numerous helpful comments
throughout the course of this work. In partic-
ular, we would like to thank Albert Au Yeung,
Jun Suzuki, Shinji Watanabe, and the three anony-
mous reviewers for their valuable suggestions.

References

Jacob Abernethy, Peter Bartlett, and Alexander
Rakhlin. 2007. Multitask learning with expert ad-
vice. InCOLT.

Rie Ando and Tong Zhang. 2005. A framework for
learning predictive structures from multiple tasks
and unlabeled data.JMLR.

Andreas Argyriou, Theodoros Evgeniou, and Massim-
iliano Pontil. 2008. Convex multitask feature learn-
ing. Machine Learning, 73(3).

G. Bakir, T. Hofmann, B. Scholkopf, A. Smola,
B. Taskar, and S. V. N. Vishwanathan, editors. 2007.
Predicting structured data. MIT Press.

J. Blitzer, R. McDonald, and F. Pereira. 2006. Domain
adaptation with structural correspondence learning.
In EMNLP.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
and Josh Schroeder. 2009. Findings of the 2009
workshop on statistical machine translation. In
WMT.

Andrew Carlson, Justin Betteridge, Estevam Hruschka,
and Tom Mitchell. 2009. Coupling semi-supervised
learning of categories and relations. InNAACL
Workshop on Semi-supervised learning for NLP
(SSLNLP).

Rich Caruana. 1997. Multitask learning.Machine
Learning, 28.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and maxent discriminative
reranking. InACL.

David Chiang, Wei Wang, and Kevin Knight. 2009.
11,001 new features for statistical machine transla-
tion. In NAACL.

David Chiang. 2007. Hierarchical phrase-based trans-
lation. Computational Linguistics, 33(2).

Michael Collins and Terry Koo. 2005. Discriminative
reranking for natural langauge parsing.Computa-
tional Linguistics, 31(1).

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: deep
neural networks with multitask learning. InICML.

Hal Daume. 2009. Bayesian multitask learning with
latent hierarchies. InUAI.

Thomas Deselaers, Sasa Hasan, Oliver Bender, and
Hermann Ney. 2009. A deep learning approach to
machine transliteration. InWMT.

Jenny Rose Finkel and Chris Manning. 2009. Hier-
archical Bayesian domain adaptation. InNAACL-
HLT.

Kuzman Ganchev and Mark Dredze. 2008. Small sta-
tistical models by random feature mixing. InACL-
2008 Workshop on Mobile Language Processing.

Jing Jiang. 2009. Multitask transfer learning for
weakly-supervised relation extraction. InACL.

Taku Kudo, Jun Suzuki, and Hideki Isozaki. 2005.
Boosting-based parse reranking with subtree fea-
tures. InACL.

Shankar Kumar and William Byrne. 2004. Minimum
bayes-risk decoding for statistical machine transla-
tion. In HLT-NAACL.

P. Liang, A. Bouchard-Cote, D. Klein, and B. Taskar.
2006. An end-to-end discriminative approach to ma-
chine translation. InACL.

J. Liu, S. Ji, and J. Ye. 2009. Multi-task feature learn-
ing via efficient l2,1-norm minimization. InUAI.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large margin training of de-
pendency parsers. InACL.

Guillaume Obozinski, Ben Taskar, and Michael Jor-
dan. 2009. Joint covariate selection and joint sub-
space selection for multiple classification problems.
Statistics and Computing.

F.J. Och et al. 2004. A smorgasbord of features for
statistical machine translation. InHLT/NAACL.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic
evaluation of machine translation. InACL.

Michael Paul. 2009. Overview of the iwslt 2009 eval-
uation campaign. InIWSLT.

Ariadna Quattoni, Xavier Carreras, Michael Collins,
and Trevor Darrell. 2009. An efficient projection
for L1-Linfinity regularization. InICML.

Roi Reichart, Katrin Tomanek, Udo Hahn, and Ari
Rappoport. 2008. Multi-task active learning for lin-
guistic annotations. InACL.

Brian Roark, Murat Saraclar, and Michael Collins.
2007. Discriminative n-gram language modeling.
Computer Speech and Language, 21(2).

Libin Shen, Anoop Sarkar, and Franz Och. 2004. Dis-
criminative reranking for machine translation. In
HLT-NAACL.

Yoshimasa Tsuruoka, Jun’ichi Tsujii, and Sophia Ana-
niadou. 2009. Stochastic gradient descent training
for l1-regularized log-linear models with cumulative
penalty. InACL-IJCNLP.

Taro Watanabe, Jun Suzuki, Hajime Tsukada, and
Hideki Isozaki. 2007. Online large-margin train-
ing for statistical machine translation. InEMNLP-
CoNLL.

Kilian Weinberger, Anirban Dasgupta, John Langford,
Alex Smola, and Josh Attenberg. 2009. Feature
hashing for large scale multitask learning. InICML.

Kai Yu and Volker Tresp. 2005. Learning to learn and
collaborative filtering. InNIPS-2005 Workshop on
Inductive Transfer.

Ying Zhang, Stephan Vogel, and Alex Waibel. 2004.
Interpreting BLEU/NIST scores: How much im-
provement do we need to have a better system? In
LREC.

