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Abstract entire data. This approach is reasonable if the data
is homogenous, but it fails when features vary sig-
nificantly across different N-best lists. In partic-
ular, when one employsparse feature sets, one
seldom finds features that are simultaneously ac-
tive on multiple N-best lists.

In this case, we believe it is more advantageous
This is motivated by the observation that to view the N-best reranking problem asrailti-
N-best lists often show significant differ- task learning problem, where each N-best list cor-
ences in feature distributions. Training @  responds to a distinct task. Multitask learning, a
single reranker directly on this heteroge-  subfield of machine learning, focuses on how to
nous data can be difficult. effectively train on a set of different but related
Our proposed meta-algorithm solves this ~ datasets (tasks). Our heterogenous N-best list data

challenge by using multitask learning fits nicely with this assumption.

We propose a new framework for N-best
reranking on sparse feature sets. The idea
is to reformulate the reranking problem as
a Multitask Learning problem, where each
N-best list corresponds to a distinct task.

(such ast; /¢y regularization) to discover The contribution of this work is three-fold:
common feat.ure represen.tatior.]s across N- 1. We introduce the idea of viewing N-best
best lists. This meta-algorithm is simple to reranking as a multitask learning problem.
implement, and its modular approach al- This view is particularly apt to any general
lows one to plug-in different learning algo- reranking problem with sparse feature sets.
rithms from existing literature. As a proof
of concept, we show statistically signifi- 2. We propose a simple meta-algorithm that
cant improvements on a machine transla- first discovers common feature representa-
tion system involving millions of features. tions across N-bests (via multitask learning)
) before training a conventional reranker. Thus
1 Introduction it is easily applicable to existing systems.

Many natural language processing applications, 3
such as machine translation (MT), parsing, and
language modeling, benefit from the N-best
reranking framework (Shen et al., 2004; Collins
and Koo, 2005; Roark et al., 2007). The advan-
tage of N-best reranking is that it abstracts away
the complexities of first-pass decoding, allowing The paper is organized as follows: Section 2 de-
the researcher to try new features and learning alscribes the feature sparsity problem and Section 3
gorithms with fast experimental turnover. presents our multitask solution. The effectiveness
In the N-best reranking scenario, the training®f our proposed approach is validated by experi-
data consists of sets of hypotheses (i.e. N-bedhents demonstrated in Section 4. Finally, Sections
lists) generated by a first-pass system, along wit/® and 6 discuss related work and conclusions.
their labels. Given a new N-best list, the goal is
to rerank it such that the best hypothesis appears The Problem of Sparse Feature Sets
near the top of the list. Existing research have fo+or concreteness, we will describe N-best rerank-
cused on training aingle reranker directly on the ing in terms of machine translation (MT), though

We demonstrate that our proposed method
outperforms the conventional reranking ap-
proach on a English-Japanese biomedical
machine translation task involving millions
of features.



our approach is agnostic to the application. In MTsense ngrams will appear given a different test sen-
reranking, the goal is to translate a foreign lan-tence.

guage sentenc¢ into an English sentence by In summary, the following issues compound to
picking from a set of likely translations. A stan- create extremely sparse feature sets:

dard approach is to use a linear model:
1. Feature templates are heavily-lexicalized,

¢ = arg maxw - h(e, f) 1) which causes the number of features to grow
eeN(f) unbounded as the the amount of data in-
creases.

whereh(e, f) is a D-dimensional feature vector,
w is the weight vector to be trained, aid(f) is 2. The input () has high variability (e.g. large

the set of likely translations of, i.e. the N-best vocabulary size), so that features for different

list. The featureh(e, f) can be any quantity de- inputs are rarely shared.

fined in terms of the sentence pair, such as transla-

tion model and language model probabilities. 3. The N-best list output also exhibits high vari-
Here we are interested in situations where the  ability (e.g. many different word reorder-

feature definitions can be quite sparse. A com- ings). LargerN may improve reranking per-

mon methodology in reranking is to first design formance, but may also increase feature spar-

feature templates based on linguistic intuition and Sity.

domain knowledge. Then, numerous features are

instantiated based on the training data seen. For When the number of features is too large, even
example, the work of (Watanabe et al., 2007) dePopular reranking algorithms such as SVM (Shen
fines feature templates based on bilingual worcet al., 2004) and MIRA (Watanabe et al., 2007;
alignments, which lead to extraction of heavily- Chiang et al., 2009) may fail. Our goal here is to
lexicalized features of the form: address this situation.

3 Proposed Reranking Framework
1 if foreign word “Monsieur”
and English word “Mr.”
co-occur ine, f
0 otherwise

In the following, we first give an intuitive com-

parison between single vs. multiple task learning

(Section 3.1), before presenting the general meta-
) algorithm (Section 3.2) and particular instantia-

h(e> f) =

One can imagine that such features are sparsqeonS (Section 3.3).
because it may only fire for input sentences that3 1 Singlevs. Multiple Tasks
contain the word “Monsieur”. For all other input '

sentences, it is an useless, inactive feature. Given a set off input sentence$/'}, the training
Another common feature involves word ngram data for reranking consists of a set/oN-best lists
templates, for example: {(H",y")}i=1,...1, whereH" are features ang’
are labels.
1 if English trigram To clarify the notation: for an input sentence
h(e, f) = “Mr. Smith said” occurs ire f?, there is a N-best lisiV(f*). For a N-best list
0 otherwise N(f"), there areN feature vectors corresponding

(3) totheN hypotheses, each with dimensiéh The

In this case, all possible trigrams seen in the N<ollection of feature vectors foN (f?) is repre-
best list are extracted as features. One can seented byH!, which can be seen as & x N
that this kind of feature can be very sensitive tomatrix. Finally, theN-dimensional vector of la-
the first-pass decoder: if the decoder has loose rdselsy* indicates the translation quality of each hy-
ordering constraints, then we may extract expopothesis inN(f?). The purpose of the reranker
nentially many nonsense ngram features such asaining algorithm is to find good parameters from
“Smith said Mr.” and “said Smith Mr.”. Granted, {(H%, y*)}.

the reranker training algorithm may learn that————
Generally we use bold forit to represent a vector, bold-

these nonsen_se_ ngr"’_‘ms are indicative of poor hy(:'apital fontH to represent a matrix. Scrigt andh(-) may
potheses, but it is unlikely that the exact same nonbe scalar, function, or sentence (depends on context).



The conventional method of training a single3.2 Proposed Meta-algorithm
reranker (single task formulation) involves opti- \we are now ready to present our general reranking

mizing a generic objective such as: meta-algorithm (see Algorithm 1), termed Rerank-
ing by Multitask Learning (RML).

I
arg min Z Liw,H',y") + A\Q(w)  (4)
i=1

Algorithm 1 Reranking by Multitask Learning
Input: N-best datg (H', y*)}i=1.1
wherew € RP is the reranker trained on all lists, Output: Common feature representatiop(e, f)
and L(-) is some loss function£2(w) is an op- and weight vectow,
tional reg)\ulalgzer, whos:a effﬁctlssvtlr\?ded-oi byfthe loptional RandomHashind’})
Ic\:/IoTnst;r:t . orI exzaorgz eEJI tf_eeB retr)an er for W = MultitaskLearn{ (H', y*)})
(Shen et al., ) definek(.) to be some h. = ExtractCommonFeatuné()
function of sentence-level BLEU score, afidw) Hi) =R Feat i,
be the large margin regularizér {H:} = emaprea U’} C)- ;
© . o w,. = ConventionalRerankef(H%, y")})
On the other hand, multitask learning involves

solving for multiple weights, w', w?2,..., w!, , . .
one for each N-best list. One class of multitask Thefirststep, random hashing, is optional. Ran

: . . o dom hashing is an effective trick for reducing the
learning algorithms, Joint Regularization, solves . ) :
the following objective: _dlmensmn qf sparse featL_Jre sets without suffer-
ing losses in fidelity (Weinberger et al., 2009;
I Ganchev and Dredze, 2008). It works by collaps-
arg min ZL(Wi’Hi’yi) + )\Q(w17 _.7WI) ing random subsets of features. This step can be
whowl i performed to speed-up multitask learning later. In
(5)  some cases, the original feature dimension may be
The loss decomposes by task but the joint reguso large that hashed representations may be neces-
larizerQ(wt, .., wf) couples together the different sary.
weight parameters. The key is to note that multi- The next two steps are key. A multitask learn-
ple weights allow the algorithm to fit the heteroge-ing algorithm is run on the N-best lists, and a com-
nous data better, compared to a single weight veanon feature space shared by all lists is extracted.
tor. Yet these weights are still tied together so thator example, if one uses the multitask objective
some information can be shared across N-best listsf Eq. 5, the result of step 2 is a set of weights

a s wnNe

(tasks). W. ExtractCommonFeatuté() then returns the
One instantiation of Eq. 5 ig;/¢; regular- feature id’s (either from original or hashed repre-
ization: Q(w!,..,w!) £ [|[W]||12, whereW =  sentation) that receive nonzero weight in any of

[wilw?|...|w!]T is aI-by-D matrix of stacked W.3 The new features. (e, f) are expected to

weight vectors. The norm is computed by first tak-have lower dimension than the original features

ing the 2-norm on columns oW, then taking a h(e, f). Section 3.3 describes in detail different

1-norm on the resulting>-length vector. This en- multitask methods that can be plugged-in to this

courages the optimizer to choose a small subset aftep.

features that are useful across all tasks. The final two steps involve a conventional
For example, suppose two different sets Ofreranker. In step 4, we remap the N-best list

weight vectorswW, and Wy, for a 2 lists, 4 fea- dat ding to th feat tati
tures reranking problem. Th& /¢> norm for W, ata according to the new feature representations

is 14; thet, /{5 norm for Wy, is 12. If both have he(e, ). In step 5, we train a conventional
the same losd.(-) in Eq. 5, the multitask opti- reranker on this common representation, which by

mizer would preferWy, since more features are now should have overcome sparsity issues. Us-
shared: ing a conventional reranker at the end allows us

to exploit existing rerankers designed for specific
} NLP applications. In a sense, our meta-algorithm
_ simply involves a change of representation for
the conventional reranking scenario, where the
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2|n MT, evaluation metrics like BLEU do not exactlyde- —
compose across sentences, so for some training algorithms 3For example inWy,, features 1-3 have nonzero weights
this loss is an approximation. and are extracted. Feature 4 is discarded.



new representation is found by multitask methods
which are well-suited to heterogenous data.
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3.3 Multitask Objective Functions
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Here, we describe various multitask methods that
can be plugged in Step 2 of Algorithm 1. Our
goal is to demonstrate that a wide range of existing )
methods from the multitask learning literature can
be brought to our problem. We categorize multi-

task methods into two major approaches: ) : ) ) ¥ ’
1. Joint Regularization: Eq. 5 is an exam- Figure 1: This log-log plot shows that there are
ple of joint regularization, with: /£> norm being many rare features and few common features. The

a particular regularizer. The idea is to use the regProPability that a feature occurs innumber of N-

ularizer to ensure that the learned functions of re-beSt lists behaves according to the power-law,

lated tasks are close to each other. The populafherea = 2.28.
¢4 /¢, objective can be optimized by various meth-

ods, such as boos_ting (Obo;inski et al., 2009) an§007) to generate N-best lists (N=100). Sparse
convex prograrr_]mm_g (Argyriou et al., 2008)'_ Yet features used in reranking are extracted according
another regularizer is thg /¢ norm (Quattoni et 1, \yatanabe et al., 2007). Specifically, the major-
al., 2009), which replaces the 2-norm with & maX.iy, are |exical features involving joint occurrences

One could also define a regularizer to ensurgy yyords within the N-best lists and source sen-
that each task-specifie’ is close to some average onceg.
parameter, e.gy_, [[w* — w™9||. If we inter- It is worth noting that the fact that the first pass
pret‘_’vavg asaprior, we begin to see links I’fber_— system is a hierarchical system is not essential to
archical Bayesian methods for multitask leaming e eatyre extraction step; similar features can be
(Finkel and Manning, 2009_; Daume, 2009). extracted with other systems as first-pass, e.g. a

2. Shared Subspace: This approach assumes ppraqe.hased system. That said, the extent of the
that there is an underlying feature subspace thaf i re sparsity problem may depend on the per-
is common to all tasks. Early works on multi- 5-mance of the first-pass system.
task learning implement this by neural networks, experiment with medical domain MT, where
where different tasks_have different output Iayerslarge numbers of technical vocabulary cause spar-
but share the same .hldden I.ayer (Carqana, 1997)sity challenges. Our corpora consists of English

Another method is to write the weight Vector gpqiracts from PubMédvith their Japanese trans-
as two partsw = [u;v] and let the task-specific |ations. The first-pass system is built on hierarchi-
function beu” - he, f) + v - © - h(e, f) (Ando 5| phrases extracted from 17k sentence pairs and
and Zhang, 2005)9 is aD’ x D matrix that maps  rget (Japanese) language models trained on 800k
the original features to a subspace common 10 allegjcal-domain sentences. For our reranking ex-
tasks. The new feature representation is Compmeﬂeriments, we used 500 lists as the training set

- - A
by the projectiorh.(e, f) = © - h(e, f). 500 lists as held-out, and another 500 for test.
Multitask learning is a vast field and relates to

areas like collaborative filtering (Yu and Tresp,4.1 Data Characteristics

2005) and domain adaptation. MOSt mef[hods ASve present some statistics to illustrate the feature
sume some common representation and is thus agbarsity problem: From 500 N-best lists, we ex-
plicable to our framework. The reader is urged to ' ’

refer to citations in, e.g. (Argyriou et al., 2008) for
a survey.

P(feature occurs

tracted a total of 2.4 million distinct features. By
type, 75% of these features occuranly one N-
best list in the dataset. Less than 3% of features

4 Experiments and Results “A database of the U.S. National Library of Medicine.
5In MT, training data for reranking is sometimes referred

As a proof of Concept, we perform experimentsto as “dev set” to distinguish from the data used in first-pass

MT t ith mill f feat Wi Also, while the 17k bitext may seem small compared to other
on a system with miffions of features. e MT work, we note that 1st pass translation quality (around 28

use a hierarchical phrase-based system (ChiangLEU)is high enough to evaluate reranking methods.



occur in ten or more lists. The distribution of fea- Nbest id | #NewFt | #SoFar | #Active
ture occurrence is clearly Zipfian, as seen in the | 1 3900 3900 3900
power-law plot in Figure 1. 2 7535| 11435 7913
We can also observe tlfieature growth rate (Ta- 3 6078 | 17513 7087
ble 1). This is the number of new features intro- 4 3868 | 21381 4747
duced when an additional N-best list is seen. Itis | 5 1896 | 23277 2645
important to note that on average, 2599 new fea- | 6 3542 | 26819 4747
tures are added everytime a new N-best list is seen. | ....
This is as much a8599/4188 = 62% of the ac- 100 2440 | 289118 4299
tive features. Imagine an online training algorithm 101 1639 | 290757 2390
(e.g. MIRA or perceptron) on this kind of data: 102 3468 | 294225 4755
whenever a loss occurs and we update the weight | 103 2350 | 296575 3824
vector, less than half of the weight vector update | Average 2599 - 4188
applies to data we have seen thus far. Herein lies
the potential for overfitting. Table 1: Feature growth rate: For N-best lish

From observing the feature grow rate, one maythe table, we have (#NewFt = number of new fea-
hypothesize that adding large numbers of N-bestures introduced since N-best- 1) ; (#SoFar =
lists to the training set500 in the experiments Total number of features defined so far); and (#Ac-
here) may not necessarily improve results. Whiletive = number of active features for N-beéstE.g.,
adding data potentially improves the estimationwe extracted 7535 new features from N-best 2;
process, it also increases the feature space dramaiembined with the 3900 from N-best 1, the total
ically. Thus we see the need for a feature extracfeatures so far is 11435.
tion procedure.

(Watanabe et al., 2007) also reports the possibilgorithm 1) used in all cases is SVM*8 Our
ity of overfitting in their dataset (Arabic-English jpitial experiments show that the SVM baseline
newswire translation), especially when domainperformance is comparable to MIRA training, so
differences are present. Here we observe this tefye yse SVM throughout. The labels for the SVM
dency already on the same domain, which is likelyare derived as in (Shen et al., 2004), where top
due to the highly-specialized vocabulary and thejgo of hypotheses by smoothed sentence-BLEU
complex sentence structures common in researdy ranked before the bottom 90%. All multitask
paper abstracts. learning methods work on hashed features of di-
42 MT Results mension 4000 (Step 1, Algorithm 1). This speeds

_ _ up the training process.
Our goal is to compare different feature represen- - A hyperparameters of the multitask method
tations in reranking: Théaseline reranker Uses 4o tuned on the held-out set. In particular, the

the original sparse feature representation. This ig, st important is the number of common features
compared to feature representations discovered hy, extract, which we pick fromf250, 500, 1000}
three different multitask learning methods: Table 2 shows the results by BLEU (Papineni
« Joint Regularization (Obozinski et al., 2009) €t al., 2002) and PER. The Oracle results are ob-
« Shared Subspace (Ando and Zhang, 2005) t_auned by choosing the best hyppthesm_ per N-best
list by sentence-level BLEU, which achieved 36.9
BLEU in both Train and Test. A summary of our
observations is:
We use existing implementations of the above
methods’ The conventional reranker (Step 5, Al-

e Unsupervised Multitask Feature Selection
(Abernethy et al., 2007

1. The baseline (All sparse features) overfits. It
R achieves the oracle BLEU score on the train
6'.I'his is not a standard multitask algorithm since most set (36.9) but performs poorly on the test
multitask algorithms are supervised. We include it to see
if unsupervised or semi-supervised multitask algorithss i (28.6).
promising. Intuitively, the method tries to select subgats L . .
features that are correlated across multiple tasks using ra 2. Similar overfitting occurs when traditionéj
dom sampling (MCMC). Features that co-occur in different regularization is used to select features on
tasks form a high probability path.
"Available at http:/multitask.cs.berkeley.edu 8Available at http://svmlight.joachims.org



the sparse feature representafion?; reg- ble, i.e. it is not a method that sometimes improves
ularization is a good method of handling and sometimes degrades.

sparse features for classification problems, Finally, a potential question to ask is: what

but in reranking the lack of tying between kinds of features are being selected by the
lists makes this regularizer inappropriate. Amultitask learning algorithms? We found that

small set of around 1200 features are chosenthat two kinds of features are usually selected:
they perform well independently on each taskone is general features that are not lexicalized,
in the training data, but there is little sharing such as “count of phrases”, “count of dele-

with the test data. tions/insertions”, “number of punctuation marks”.

The other kind is lexicalized features, such as

3. Allthree multitask methods obtained featuresy,gse in Equations 2 and 3, but involving functions
that outperformed the baseline. The BLEU,;rgs (like the Japanese characters “wa”, “ga’,

scores are 28.8, 28.9, 29.1 for Unsupervised» «ge”) or special characters (such as numeral
Feature Selection, Joint Regularization, andsympo| and punctuation). These are features that
Shared Subspace, respectively, which all outy.5 pe expected to be widely applicable, and it is

perform the 28.6 baseline. All improvements 5 mising that multitask learning is able to recover
are statistically significant by bootstrap sam-hese from the millions of potential featurds.
pling test (1000 sampleg, < 0.05) (Zhang

et al., 2004).

4. Shared Subspace performed the best. We
conjecture this is because its feature projec-
tion can create new feature combinations that
is more expressive than the feature selection
used by the two other methods.
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5. PER results are qualitatively similar to BLEU
results.
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6. Asafurther analysis, we are interested in seeFigure 2: BLEU difference of 1000 bootstrap sam-
ing whether multitask learning extracts novelples. 95% confidence interval is15,.90] The
features, especially those that have low fre-proposed approach therefore seems to be a stable
quency. Thus, we tried an additional featuremethod.
representation (feature threshold) which only
keeps features that occur in more tham- _
bests, and concatenate these high-frequendy Related Work in NLP
features to the multitask features. The fea-ppq,iq s reranking work in NLP can be classified
ture threshold alone achieves nice BLEU r-into two different research focuses:
sults (29.0 forx > 10), but the combination 1. Engineering better features: In MT, (Och
o_utperforms it by Stat_'St_'Ca”Y significant Mar and others, 2004) investigates features extracted
gins {29'3'29'6)' Th's implies that multitask from a wide variety of syntactic representations,
learning is gxtra_lctlng features that Cornple'such as parse tree probability on the outputs. Al-
ment well with high frequency features. though their results show that the proposed syntac-

For the multitask features, improvements of 0.2'[iC features gave litle improvements, th_ey pgint 0

to 1.0 BLEU are modest butonsistent. Figure some potential reasons, guc_:h as domain m|smatch

2 shows the BLEU of bootstrap samples obtainecjOr the parser and overfitting by the reranking

as part of the statistical significance test. We see °Note: In order to do this analysis, we needed to run Joint

that multitask almost never underperforrnase-  Regularization on the original feature representationcei
linein any random sampling of the data. This im-:)huet S)asgi%r;epresentatlons are less interpretable. Tiis tu
putationally prohibitive in the time being so we
plies that the proposed meta-algorithm is very staenly ran on a smaller data set of 50 lists. Recently new op-
timization methods that are orders of magnitude faster have

®Optimized by the Vowpal Wabbit toolkit: been developed (Liu et al., 2009), which makes larger-scale
http://hunch.net/vw/ experiments possible.



Train | Test Test
Feature Representation #Feature | BLEU | BLEU | PER
(basdlines)
First pass 20| 29.5 28.5 38.3
All sparse features (Main baseline) 2.4M | 36.9 28.6 38.2
All sparse features wf; regularization 1200 | 36.5 28.5 38.6
Random hash representation 4000| 33.0 28.5 38.2
(multitask learning)
Unsupervised FeatureSelect 500 | 32.0 28.8 37.7
Joint Regularization 250| 31.8 28.9 375
Shared Subspace 1000 | 32.9 29.1 37.3
(combination w/ high-frequency features)
(a) Feature threshold > 100 3k | 31.7 27.9 38.2
(b) Feature threshold > 10 60k | 35.8 29.0 37.9
Unsupervised FeatureSelect + (b) 60.5k | 36.2 29.3 37.6
Joint Regularization + (b) 60.25k | 36.1 29.4 375
Shared Subspace + (b) 61k | 36.2 29.6 37.3
Oracle (best possible) —136.9 36.9 33.1

Table 2: Results for different feature sets, with corresiiog feature size and train/test BLEU/PER. Al
multitask features give statistically significant improvents over the baselines (boldfaced), e.g. Shared
Subspace: 29.1 BLEU vs Baseline: 28.6 BLEU. Combinatiomauifitask features with high frequency
features also give significant improvements over the higgdency features alone.

method. Recent work by (Chiang et al., 2009) dewithin machine learning. There has already been
scribes new features for hierarchical phrase-basesome applications in NLP: For example, (Col-
MT, while (Collins and Koo, 2005) describes lobert and Weston, 2008) uses a deep neural net-
features for parsing. Evaluation campaigns likework architecture for multitask learning on part-
WMT (Callison-Burch et al., 2009) and IWSLT of-speech tagging, chunking, semantic role label-
(Paul, 2009) also contains a wealth of informationing, etc. They showed that jointly learning these
for feature engineering in various MT tasks. related tasks lead to overall improvements. (De-
2. Designing better training algorithms: N-  selaers et al., 2009) applies similar methods for
best reranking can be seen as a subproblem d@hachine transliteration. In information extraction,
structured prediction, so many general structuredearning different relation types can be naturally
prediction algorithms (c.f. (Bakir et al., 2007)) cast as a multitask problem (Jiang, 2009; Carlson
can be applied. In fact, some structured predicet al., 2009). Our work can be seen as following
tion algorithms, such as the MIRA algorithm usedthe same philosophy, but applied to N-best lists.
in dependency parsing (McDonald et al., 2005) In other areas, (Reichart et al., 2008) introduced
and MT (Watanabe et al., 2007) uses iterativean active learning strategy for annotating multitask
sets of N-best lists in its training process. Othedinguistic data. (Blitzer et al., 2006) applies the
training algorithms include perceptron-style algo-multitask algorithm of (Ando and Zhang, 2005)
rithms (Liang et al., 2006), MaxEnt (Charniak andto domain adaptation problems in NLP. We expect
Johnson, 2005), and boosting variants (Kudo et althat more novel applications of multitask learning
2005). will appear in NLP as the techniques become scal-
The division into two research focuses is conve-2ble and standard.
nient, but may be suboptimal if the training algo- . . .
rithm and feat)l/Jres do ncf)t match well togett?er. gé)ur6 Discussion and Conclusion
work can be seen as re-connecting the two focusesi-best reranking is a beneficial framework for ex-
where the training algorithm is explicitly used to perimenting with large feature sets, but unfortu-
help discover better features. nately feature sparsity leads to overfitting. We ad-
Multitask learning is currently an active subfield dressed this by re-casting N-best lists as multitask



learning data. Our MT experiments show consis-J. Blitzer, R. McDonald, and F. Pereira. 2006. Domain
tent statistically significant improvements. adaptation with structural correspondence learning.

From the Bayesian view, multitask formulation In EMNLP.

of N-best lists is actually very natural: Each N- Chris Callison-Burch, Philipp Koehn, Christof Monz,
best is generated by a different data-generating and Josh Schroeder. 2009. Findings of the 2009

distribution since the input sentences are different, Workshop on statistical machine translation. In
i.e. p(e|f') # p(e|f?). Yet these N-bests are re- '

lated since the generale|f) distribution depends Andrew Carlson, Justin Betteridge, Estevam Hruschka,
on the same first-pass models. and Tom Mitchell. 2009. Coupling semi-supervised

; i ; learning of categories and relations. NAACL
. The multltask 'ea.m.'f‘g perspective opens l.Jp Workshop on Semi-supervised learning for NLP
interesting new possibilities for future work, e.q.: (SSLNLP).

» Different W_ays_to partition data into tasks, Rich Caruana. 1997. Multitask learningViachine
e.g. clustering lists by document structure, or  |earning, 28.

hierarchical clustering of data )
Eugene Charniak and Mark Johnson. 2005. Coarse-

e Multitask learning on lattices or N-best lists ~ to-fine n-best parsing and maxent discriminative
with larger N. It is possible that a larger hy- ~ "éranking. InACL.

pothesis space may improve the estimation obavid Chiang, Wei Wang, and Kevin Knight. 2009.
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