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Abstract

We show that Alternating Direction Method of Multipliers is an effective method for large-
scale learning-to-rank on multi-cores and clusters, especially in scenarios requiring joint
distributed and streaming architectures.

1 Introduction
Learning-to-rank algorithms are important tools for building modern search engines. With the
growth of the Web, there is an increasing need for learning-to-rank algorithms to scale to ever larger
datasets. What are the desiderata for handling scale? We believe that distributed and streaming are
the two most important algorithmic properties. Distributed algorithms enable partitioning of train-
ing data, so as to speed-up training and enable usage of data that does not fit into a single machine’s
memory. On the other hand, streaming algorithms can continuously learn as new training samples
are added. This is very desirable since new data, such as click logs, often becomes available with
each additional user interaction with the search engine.
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Figure 1: Usage scenario

Fig. 1 illustrates this situation. First, large data necessitates that we
store data partitions across machines and use a distributed algorithm
to get an initial working ranker. Second, as new data streams in, we
hope to rapidly update the ranker without incurring the full cost of
re-training. Prior learning-to-rank research have mostly focused on
the distributed aspect: [17, 18, 20] discuss various ways to paral-
lelize gradient boosted trees for ranking. Generally, the training of
weak learners (e.g. finding node splits) is distributed, but the boost-
ing outer-loop is serial. We are not aware of an easy way to extend
this kind of distributed algorithm to streaming data, unless we can
un-learn weak learners from the ensemble.

In this paper, we explore the use of alternating direction method of
multipliers (ADMM) [9, 3] for learning-to-rank. ADMM is a dis-
tributed optimization method that can also handle streaming data. Our formulation is similar to [8],
though theirs is more complex as it deals with dynamic communication schemes. ADMM and its
cousin Dual Decomposition [7] are gaining attention recently, with applications in signal processing
[6], consensus optimization [13], and graphical models [10]. Here we show it is also effective for
scaling up learning-to-rank on distributed, streaming datasets.

2 Proposed Rank-ADMM Algorithm
ADMM is a general optimization method that is naturally suited for partially-decomposable prob-
lems like regularized empirical risk: minw Ω(w) +

∑
m `m(w), where Ω(w) is a regularizer that

controls the complexity of predictor w, and
∑

m`m(w) is a loss function summed across samples.
Here we are concerned with a RankSVM solution for learning-to-rank, framed as follows:

arg min
w

λ

2
||w||2 +

M∑
m=1

(1− ymwT xm)+ (1)
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Here, the feature vector xm is the difference of two document vectors d(1) − d(2) for a given search
query. If document d(1) is more relevant than d(2), we set label ym = 1; otherwise ym = −1. In
other words, the ranking problem is reduced to a binary classification problem with a hinge loss
(1 − ywT x)+ = max(0, 1 − ywT x) and L2 regularizer. The number of training samples M in
learning-to-rank tasks may easily exceed millions. To distribute training to N workers, we partition
the data into {Mn}n=1,..N subsets1 and frame an analogous objective:

arg min
w,vn

Nλ

2
||w||2 +

N∑
n=1

∑
m∈Mn

(1− ymvT
nxm)+ s.t. vn = w ∀n ∈ (1, . . . , N) (2)

We have introduced additional vectors vn, n = 1, 2, . . . , N , to de-couple the loss and regularizer
terms. Specifically, note that the loss term has been decomposed into N components, where each
component computes the loss on subsets of samples with respect to vn, not w. Intuitively, vn are
local RankSVM solutions while the constraints vn = w ∀n ensure all local solutions are eventually
consistent.

The formulation of Eq. 2 leads to a distributed algorithm where we iterate between parallel opti-
mization of vn and successive enforcement of constraints. ADMM achieves this by first formulating
an Augmented Lagrangian:

Lρ(w,vn,µn) :
Nλ

2
||w||2 +

N∑
n=1

[ ∑
m∈Mn

(1− ymvT
nxm)+ + µT

n (vn −w) +
ρ

2
||vn −w||2

]
(3)

Here, µn are dual variables for the constraints. The final term ρ
2 ||vn − w||2 with ρ > 0 ensures

strict convexity and increases robustness (Dual Decomposition can be viewed as having ρ = 0).
Following [3], we scale the dual variables (un = µn/ρ) and algebraically manipulate Eq. 3 to get
the following equivalent Augmented Lagrangian, which is simpler to work with:
Lρ(w,vn,un) : Nλ

2 ||w||2+
∑N

n=1

[∑
m∈Mn

(1− ymvT
nxm)+ + ρ

2 ||vn −w + un||2 − ρ
2 ||un||2

]
.

Now ADMM works by iteratively computing one of vn, w, un while holding the other variables
fixed in the following iterations k = 1, 2, . . . until convergence:

1. vn-update: Solve vk+1
n = arg minvn Lρ(wk,vn,uk

n) on N parallel workers.
For our case, this corresponds to solving standard RankSVM, with the addition of a bias
term (−w + un) in the regularizer:

vk+1
n := arg min

vn

∑
m∈Mn

(1− ymvT
nxm)+ +

ρ

2
||vn −wk + uk

n||2 (4)

2. w-update: Solve wk+1 = arg minw Lρ(w,vk+1
n ,uk

n)
For our case, this can be computed in closed-form:

wk+1 := arg min
w

Nλ

2
||w||2 +

ρ

2
||vk+1

n −w + uk
n||2 =

ρ

(λ + ρ)
(v̄n + ūn) (5)

where v̄n =
∑N

n=1 vn/N and ūn =
∑N

n=1 un/N . Intuitively, we average local
RankSVM and dual vectors from multiple machines and apply a proximity operator. For
L2 this scales the result toward origin, but other regularizers like L1 are also applicable [5].

3. un-update: Perform gradient ascent on dual variables to tighten the constraints.

uk+1
n := uk

n + (vk+1
n −wk+1) (6)

It can be proved that the above iterations will attain the optimal objective value of Eq. 2 at conver-
gence, where convergence is defined as

∑
n ||vk

n −wk|| < ε1 and ||wk+1 −wk|| < ε2 for suitably
small ε1, ε2 [3]. With regards to streaming, it can be shown that ADMM converges to the objective
given by the available subset of data [8]. Thus it handles both distributed and streaming conditions.

1{Mn} specifies a disjoint partitioning of sample indexes,
S

n Mn = (1, .., M),
T

n Mn = ∅. In contrast
to some distributed methods, we do not require the partitions to overlap or satisfy certain statistical properties.
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Figure 2: Learning curves: training time with respect to validation set error.

Table 1: Comparison of speed improvements. Note the skewed distribution of #samples/worker
since data is partitioned by queries (not documents). For 72-workers, the largest partition has 327k
samples, a 15.6x factor reduction compared to 5.1M. Speed-up is time with respect to 1-worker
case. Total time is defined as wall-clock time to reach the same error rate as the converged 1-worker
solution (error=33.33%). Last column indicates the final error at time=40000 seconds.

#Worker #Samples per worker |Mn| Time per iteration Total time Error
(N ) median max reduction seconds speedup iteration seconds speedup (%)
1 5.1M 5.1M - 533 - 42 19970 - 33.33
12 335k 1.3M 3.9x 142 3.8x 25 3613 5.5x 32.52
36 87k 522k 9.7x 85 6.3x 28 2422 8.2x 32.48
72 38k 327k 15.6x 51 10.5x 29 1519 13.1x 32.39

3 Practical Implementation
We implemented the ADMM algorithm using MPI. While Eq. 4 and Eq. 6 can be distributed among
workers, Eq. 5 requires communicating vn and un from all workers. One implementation is to have
a master process collect vn and un from N slaves and broadcast the updated w. But this creates
a possible single-point of failure. We opt for a de-centralized architecture (using MPI’s AllReduce
function) [3], where individual workers compute all of Eq. 4, 5, 6. This replicates the same w-update
computation, but in general proximity operators are not expensive.

Eq. 4 is solved using stochastic gradient descent (SGD) [2]. For each sample, we perform the update
vn−ηδvn with subgradient δvn = ρ(vn−w+un)−ymxm for misclassified samples and step size
η = 1

ρm inspired by [15, 14].2 We make only one-pass (1 epoch) through the data in each iteration,
since ADMM does not require exact minimization of Eq. 4.

It’s worth mentioning the ADMM parameter ρ interacts with vn-update and w-update in an inter-
esting way. A small ρ makes Eq. 4 aggressively reduce individual loss (leading to vectors with
large norms), which is later scaled back aggressively by Eq. 5. Conversely, a large ρ encourages the
individual RankSVMs to stay close to the global w. As a result the w-update is conservative.

4 Results and Discussion
We experiment with the Yahoo Learning to Rank Challenge Dataset [4]. The training data consists
of≈20k queries and 473k documents, for a total of 5.1 million pairwise samples for RankSVM. Our
computing environment consists of 6 blade servers, each with 2 units of 6-core 3.07GHz Xeon and
192GB memory (for a total of 72 cores) and 1Gb Ethernet connection between servers.

2We have also experimented with projection onto 1√
λ

ball like [15], but it appears to give unstable results
due to the difficulty of balancing the norms of various vn, un, and w after projection.
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Figure 3: Streaming with ADMM.

How does ADMM scale with more workers? We partition the data by queries into 1, 12, 36, and
72 subsets and evaluate the training speedup due to distributed optimization. Fig. 2(a) shows the
learning curve on the validation set; Table 1 gives detailed timing breakdown. The 1-worker case
(SGD on full data) begins to converge at around error = 33.33%; ADMM with 12, 36, and 72 workers
achieves the same error respectively with 5.5x, 8.2x, and 13.1x factor less time. The speedup is
substantial but does not seem linear in the number of workers. This is influenced by 3 reasons, in
order of importance: (1) size of the largest partition, which limits the end-time of vn-update, (2)
communication costs in w-update, and (3) the number of iterations to reach desired accuracy. For
example, consider the 72-worker case: largest partition is only a factor of 15.6 smaller than full data,
so we cannot expect time/iteration to be more than 15.6 times faster than 1-worker; it turns out to be
10.5 times faster, due to communication overhead across servers. In contrast, 12 workers fit on the
same server so the max sample size reduction (3.9x) and time/iteration speedup (3.8x) are similar;
further, the final speedup (total time) increases to 5.5x since fewer iterations are required than the
1-worker case. Finally, distributed solutions not only converge faster but are converging at a better
result (e.g. ∼1% better for 72-worker). This may be due to the ensemble generalization effect [19].

How does ρ impact convergence? Fig. 2(b) shows the learning curve for 72-workers with varying
ρ. Tuning ρ can matter much in practice. ρ = 0.1 gives the fastest convergence, achieving the same
33.33% error in only 8 iterations (total time of 171 seconds). A large ρ = 1 leads to smoother but
slower convergence, while extremely small ρ, e.g. ρ = λ = 10−7 leads to zig-zag behavior. In our
implementation, ρ serves double duty as Lagrangian penalty and SGD step size due to our desire to
limit the number of tunable parameters. We recommend selecting ρ by tuning SGD once on a single
partition; good settings there seem to carry over to ADMM.

How does ADMM behave with streaming data? To evaluate this, we start ADMM with 1 of the 72
data partitions, then add a new subset with each additional iteration. As a figure of merit, we com-
pare the distance of w obtained under streaming vs. w obtained by training with all 72 partitions in
batch from the start. Fig. 3(a) shows that distance rapidly decreases to 0.1, but takes long to reach
0. However, the streaming version tracks the validation error of the batch-data version without lag,
as seen in Fig. 3(b). Interestingly, it can decrease error faster initially (iterations 10-30) because
less data implies less stalling in vn-updates and not all samples are needed this large-scale data. Re-
cent work on parallel online learning [21, 11, 12] also shows promise in joint streaming/distributed
learning. We implemented a streaming version of Iterative Parameter Mixing [12] as comparison in
Fig. 3. In Fig. 3(b), this streamed version tracks the learning curve of its batch version very well
after iteration 50, but differs wildly beforehand. So ADMM appears more robust in this regard.

In conclusion, we advocate ADMM in large-scale applications, especially since it handles both
distributed and streaming conditions. Future work includes: (1) asynchronous update scheme [1],
since unequal data partition poses the most serious challenge to speed-up here, and (2) extension
of ADMM to non-linear functions, possibly by modifying the constraints in Eq. 2 with e.g. co-
regularization norms [16].
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Appendix: Additional Results
Additional numerical results and statistics from the experiments are reported here for reference.
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Figure 4: Evaluation by common Learning-to-Rank metrics. These learning curves are analogous to Fig.
3(b), except that they plot the improvement in application-specific metrics. Results are comparable to baselines
(Expected Reciprocal Rank = 0.43, NDCG = 0.75) reported in [4].
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(b) Convergence of Primal/Dual Residuals
Figure 5: ADMM converges to modest objective values very fast but slows down drastically in later iterations.
Observing the decrease in primal residuals (

P
n ||v

k
n −wk||) and dual residuals (||wk+1 −wk||), we would

recommend that less than 50 iterations is sufficient here. The convergence rate by iteration is approximately
the same for different number of workers (though of course the total wall-clock time differs substantially).
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Figure 6: Breakdown of time usage for each MPI process in one iteration. Black bars indicate time spent
in vn-update. White bars indicate time in w-update, which is dominated by AllReduce passing and summingP

n vn and
P

n un in Eq. 5. The time in un-update is negligible. Many workers are spending time in
AllReduce, likely waiting for the slowest worker to finish. The slowest worker, when finished, already has
partial summation results available so its AllReduce time is ∼0. Skewed data partition occurs in practice so we
believe asynchronous updates are the most promising future direction for practical speed-up improvements.
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