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Abstract

Ranking functions are an important component of information retrieval sys-
tems. Recently there has been a surge of research in the field of “learning
to rank”, which aims at using labeled training data and machine learning al-
gorithms to construct reliable ranking functions. Machine learning methods
such as neural networks, support vector machines, and least squares have
been successfully applied to ranking problems, and some are already being
deployed in commercial search engines.

Despite these successes, most algorithms to date construct ranking func-
tions in a supervised learning setting, which assume that relevance labels
are provided by human annotators prior to training the ranking function.
Such methods may perform poorly when human relevance judgments are not
available for a wide range of queries. In this paper, we examine whether
additional unlabeled data, which is easy to obtain, can be used to improve
supervised algorithms. In particular, we investigate the transductive setting,
where the unlabeled data is equivalent to the test data.

We propose a simple yet flexible transductive meta-algorithm: the key
idea is to adapt the training procedure to each test list after observing the
documents that need to be ranked. We investigate two instantiations of this
general framework: The Feature Generation approach is based on discovering
more salient features from the unlabeled test data and training a ranker
on this test-dependent feature-set. The Importance Weighting approach is
based on ideas in the domain adaptation literature, and works by re-weighting
the training data to match the statistics of each test list. We demonstrate
that both approaches improve over supervised algorithms on the TREC and
OHSUMED tasks from the LETOR dataset.
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Learning
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1. Introduction

Ranking functions are integral to information retrieval systems: given a
query that represents a user’s information need, the ranking function orders
the retrieved documents such that the most relevant ones appear first. The
performance of such ranking functions often significantly influences the per-
formance of the information retrieval system; thus the area of ranking has
been at the forefront of information retrieval research.

A large class of ranking functions are human-engineered “metrics” that
compute a score for each query-document pair. Documents are then ranked
by their respective scores. For example, using the vector space model, one
can measure the score of a query-document pair as the distance between
suitably-defined query and document vectors. Particular methods include
TF-IDF and BM25, which have been shown to work well in many evaluations.

Recently, the machine learning paradigm has emerged as a promising ap-
proach to solving ranking problems. In this “Learning to Rank” setup, one
first prepares a training set comprising queries and documents labeled by
their relevance. These query-document pairs are represented by feature vec-
tors, which could include a variety of metrics (e.g. BM25). Then a machine
learning algorithm learns the optimal combination of these features for pre-
dicting relevance rankings. The advantage of the machine learning approach
is that it can automatically tune the ranking function for the given dataset.
However, this also leads to a disadvantage: the ranking function can only be
as good as the quality and the size of labeled training data.

The motivation of our work is to address the fundamental limitation of
finite labeled training data. Ideally, the training data should cover a broad
set of queries, but in practice, only the most important or prevalent queries
are labeled with human judgments. Although approaches such as pseudo-
relevance feedback and learning from click-through data may augment the
finite labels, this information is inherently more noisy. Rather than exam-
ining whether potentially noisy labels can be usefully leveraged, as done in
many previous work ([46, 47]), we focus on the orthogonal problem of whether
data without labels can be used at all.

Our goal is to examine whether additional unlabeled data can be used to
improve the ranking performance. Importantly, we consider the case when
the test data is the unlabeled data. This is called transductive learning,
whose core idea is that tailoring a learning algorithm to a specific test set
should outperform a learner that has been trained to perform well on any



given dataset. Both transductive learning and the more general inductive
semi-supervised learning (which will be explained further in Section 2) have
become active research areas in the machine learning community, but most
work has focused on classification problems. There is little work addressing
semi-supervised or transductive learning for ranking, which is the aim of this
paper.

We focus on the “dynamic ranking” problem, where one predicts rank-
ing of documents given a particular query. Dynamic ranking is in contrast
to static ranking, which predicts document importance regardless of query.
Further, our algorithms work on the sub-problem of “subset ranking”, which
assumes that an initial retrieval engine has generated a finite subset of docu-
ments, and the dynamic ranker is only required to sort or re-rank this finite
list. For example, the subset for each query may be defined as the set of
documents that have a boolean term match with the query.

To be precise, let ¢ = query, d = list of retrieved documents, and y = list
of relevance judgments. Let S = {(q;,d;,y:) }i=1..L be the training set con-
sisting of L tuples of query-document-labels. Documents within the set d;
will be indexed by superscripts, i.e. dl(] ) where j = 1.N; (N, is the number
of documents retrieved for query ¢;). The traditional task of “supervised
learning” is to learn a ranking function using S; the ranker is then evaluated
on a previously unseen and unlabeled test set £ = {(qy, dy) }u=1.1, where U
is the number of test queries. In transductive learning, both S and F are
available when building the ranking function, which is also then evaluated on
E. This has the potential to outperform supervised learning since (1) it has
more data, and (2) it can adapt to the test set. A pictorial representation of
our problem is shown is Figure 1.

The organization of the paper is as follows: we first discuss related work
(Section 2). The proposed transductive meta-algorithm framework is pre-
sented in Section 3. T'wo particular algorithmic instantiations, Feature Gen-
eration and Importance Weighting, are detailed in Section 4 and Section 5,
respectively. The experimental setup and main results are presented in Sec-
tions 6, 7. Finally, Section 8 discusses additional experiments and further
detailed analyses of the proposed method.

2. Related Work

We first discuss prior work in supervised ranking and semi-supervised/transductive
classification before focusing on the main topic, semi-supervised/transductive
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Figure 1: Supervised learning, inductive semi-supervised learning, and transductive learn-
ing: here we focus on the transductive setting, where test query is observed during training.

ranking and domain adaptation.

2.1. Supervised Learning for Ranking

A variety of approaches have been explored for the ranking problem in the
supervised learning setting. Most algorithms learn a function f to predict
a score for each query-document pair, then rank the documents according
to this score. Methods differ by the objective used to obtain such a scoring
function. These methods can roughly be taxonomized as regression-based,
pairwise preference, and list-based methods.

In regression-based methods [24, 26], each document in the set has a tar-
get score value, and f is estimated by regression techniques to directly predict
this value. The loss is measured by, for example, the residual between pre-
dicted and target scores. The idea of pairwise preference methods is to learn
f such that f(d?) > f(d\"”) if d” > d”, where > indicates “ranked higher
than.” For V; documents, there can be (N;)(N; — 1)/2 such pairwise prefer-
ences. Popular pairwise methods include RankBoost [30] (to be explained in
detail in later sections), RankSVM [37, 44], and RankNet [18].

The main advantage of regression and pairwise methods is that existing
techniques in regression and classification can be applied to ranking. The
main disadvantage is the optimization of an objective function that may
not match popular information retrieval evaluation metrics (which generally
consider the ordering of documents). Much recent work has therefore focused
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on optimizing an objective that is closer to the true loss function (e.g. [17, 70,
55, 60]). Some of these methods are called list-based methods [78], because
they operate with lists as the the fundamental unit and attempt to optimize
objectives defined on lists, such as evaluation measures like NDCG/MAP
[81, 80] or likelihoods of probabilistic permutation models [19].

2.2. Semi-supervised/Transductive Learning for Classification

The goal of semi-supervised learning and transductive learning is to com-
bine unlabeled and labeled data such that the resulting learned function is
superior than that trained on each individual dataset alone. The difference
between (inductive) semi-supervised learning and transductive learning lies
in the definition of the test data. In transductive learning, the test data is
equivalent to the unlabeled data presented to the learning algorithm, mean-
ing that the algorithm knows which points it should do well on to achieve low
test error. In inductive semi-supervised learning, the unlabeled data used for
training may be distinct from the test data. This means that the learned
function must be defined over the entire space. Vapnik [71] has argued that
transductive learning is inherently an easier problem and more gains can be
achieved from the unlabeled test data than general unlabeled data.

Regardless of transductive vs. inductive differences, semi-supervised clas-
sification is a broad field with a variety of techniques (see [84] for a concise
and updated survey). Different technique makes different assumptions on
how unlabeled data can help learning. Some important classes of algorithms
include:

Bootstrapping: Assume that the predicted labels of unlabeled data can
be used for learning. Methods such as self-training [27, 1], co-training [15],
and mixture models with EM [56, 20] fall into this class. The challenges with
these methods are to ensure that incorrectly classified samples do not corrupt
the training data and that baseline classifiers need to have sufficiently high
accuracy.

Low Density Separation (Cluster Assumption): Assume that the
classification boundary exists in low density regions, and that unlabeled data
can help identify those regions. For example, transductive support vector
machines [9, 68, 32] achieve this by forcing a large distance between unla-
beled samples and the decision boundary. Other techniques employing this
assumption include null category noise model [50], information regularization
[25], entropy minimization [35], and MarginBoost [10].



Graph-based Methods: Assume that samples similar to each other
have the same label, and samples indirectly linked by a chain of close sam-
ples also have the same label. A graph defined over both labeled and unla-
beled data captures this global and local closeness information. Prominent
examples include: Mincut [13, 14], Spectral Graph Transducer [45], Discrete
Markov Random Fields (MRF) [76], and its continuous relaxation: Gaussian
Random Fields and Harmonic Functions [77], Manifold Regularization [6, 7],
and Graph Kernels [65, 49, 40, 3]. The assumption used in graph-based
method can also be called a “manifold assumption” since they all assume
that data lie in some manifold defined by the graph, and that the decision
function varies slowly over this manifold.

Change of Representation: Assume that a better feature represen-
tation (e.g. more parsimonious or expressive) for learning exists and that
unlabeled data can help discover this representation. Our Feature Genera-
tion approach is based on the Change of Representation assumption, which
essentially involve a two-step procedure:

1. Learn a better feature/kernel representation using large unlabeled data

2. Apply supervised learning on the new feature/kernel representation of
labeled data

Many possibilities exist for learning better feature representations from un-
labeled data. One approach is to cluster the samples and use the cluster
identities as new features [51]. Alternatively, one may learn dependencies
between the original features and collapse them into more parsimonious la-
tent variables. [4, 5, 12] use multiple-task learning to find the dependent
features; [57] learns the latent variables via principal components analysis
or independent components analysis. Rather than learning features, one can
also learn kernels from unlabeled data, as in Fisher kernels [41, 38, 34] and
cluster kernels [21].

2.3. Semi-supervised Learning applied to Ranking

There are generally two interpretations of “learning to rank with partially-
labeled data.” In the scenario we consider here, the document lists in our
dataset are either fully labeled or not labeled at all. The second scenario
arises when a document list d is only partially-labeled, i.e. some documents
in d have relevance judgments, while other documents in the same list d
do not. This second problem can arise when, e.g. (a) the document list
retrieved by one query is too long and the annotator can only label a few



documents, (b) one uses a implicit feedback mechanism [44] to generate la-
bels and some documents simply cannot acquire labels with high confidence.
Currently there is no precise terminology to differentiate the two problems.
Here we will call Problem One “Semi-supervised Rank Learning” and Prob-
lem Two “Learning to Rank with Missing Labels”. See Figure 2 for a pictorial
comparison.

Several methods have been proposed for the Missing Labels problem,
e.g. [83, 74, 36, 73]: the main idea there is to build a manifold/graph over
documents and propagate the rank labels to unlabeled documents. One can
use the propagated labels as the final values for ranking [83] (transductive),
or one can train a ranking function using these values as true labels [36, 73]
(inductive). One important point about these label propagation methods
is that they do not explicitly model the relationship that document d¥) is
ranked above, say, d®). Instead it simply assumes that the label value for
d"Y) is higher than that of d*), and that this information will be preserved
during propagation.

An alternative approach that explicitly includes pairwise ranking accu-
racy in the objective is proposed in [2]. It also builds a graph over the
unlabeled documents, which acts as a regularizer to ensure that the pre-
dicted values are similar for closely-connected documents. [23] also proposes
a graph-based regularization term, but in contrast to [2], it defines the graph
nodes not as documents, but as document pairs. Just as the pairwise formula-
tion allows one to extend Boosting to RankBoost, this formulation allows one
to adopt any graph-based semi-supervised classification technique to rank-
ing. However, generating all possible pairs of documents in a large unlabeled
dataset quickly leads to intractable graphs.

Most prior work consist of graph-based approaches for the Missing La-
bels problem. However, they may be extended to address the Semi-supervised
Rank Learning problem if one defines the graph across both d; and d,,. For in-
stance, [73] investigates label propagation across queries, but concluded that
it is computationally prohibitive. Beyond the computational issue, however,
how to construct a graph across different queries (whose features may be at
different scales and not directly comparable) is an open research question.

To the best of our knowledge, [69] is the only work that tractably ad-
dresses the Semi-supervised Rank Learning problem. First, it uses a super-
vised ranker to label the documents in an unlabeled document list; next, it
takes the most confident labels as seeds for label propagaton. A new super-
vised ranker is then trained to maximize accuracy on the labeled set while
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Figure 2: Two partially-labeled data problems in ranking. We focus here on semi-
supervised rank learning, where labels are entirely lacking for some queries. A different
problem is that of “missing labels”, where not all documents retrieved by a query are
labeled. Note that these two problems are not mutually-exclusive.

minimizing ranking difference to label propagation results. Thus this is a
bootstrapping approach that relies on the initial ranker producing relatively
accurate seeds. Our previous work [28] proposed another method using the
change of Representation assumption; this paper is an extension of that work.

2.4. Relations to Domain Adaptation

Domain adaptation (c.f. [43] for a survey) is a field of machine learning
that focuses on the problem of training and testing under different distribu-
tions. Our interest in domain adaptation stems from the fact that transduc-
tive learning can be considered an extreme form of domain adaptation, i.e.
where one adapts to the given test set. Recent work such as [8, 58] applied
the Change of Representation idea from semi-supervised learning to domain
adaptation. Our work in Section 5 goes in the opposite direction, applying
domain adaptation techniques to semi-supervised learning. In particular, our
Importance Weighting approach treats each test list as a new domain and
adapts the training procedure towards it.

Generally speaking, domain adaptation can be divided into supervised
and unsupervised domain adaptation: for supervised adaptation, small amounts
of labeled data are available for the test domain and the goal is to leverage
the additional large amount of different but labeled data. In unsupervised



adaptation, no labels are available for the test domain. We will discuss only
unsupervised adaptation since the use of unlabeled data relates more closely
to the semi-supervised/transductive scenario.

The most common approach in domain adaptation is importance weight-
ing [64], which involves re-weighting the training samples such that samples
more representative of the test domain are emphasized during training. This
approach is based on the assumption of “covariate shift”, i.e. the sample
distribution differs between train and test, but the functional relationships
between input and output remain unchanged. To illustrate, consider a clas-
sification problem with labeled training set {(x;, 2;) };=1. 1 and unlabeled test
set {(xy)bum1.v.l Let pirain(r) and pis(x) be the true training and test
distributions, which are assumed to be significantly different.

It has been shown [64] that training on a dataset where each training
sample {(z;)};=1.1 is weighted by the ratio w(z;) = z%
variance shift. In practice, computing the density estimates pyq(z) (from
{(z) }1=1..0) and prest(x) (from {(z,)}u=1.v, is undesirable in high dimen-
sions, so much recent work has focused on directly computing the impor-
tance weights w(x;) (without computing pres:(-) and prese(+)) [11, 39, 67]. A
supervised algorithm applied to this weighted dataset would therefore focus
on correctly classifying training samples close to the test distribution (i.e.
high w(x;)), while ignore samples far from it (low w(x;)).

We are aware of only a few recent works addressing the domain adap-
tation problem in ranking [75, 22|. However, their methods are under the
supervised adaptation framework, and therefore are not directly applicable
to the transductive problem we are interested in here.

corrects for co-

3. A General Transductive Meta-Algorithm for Ranking

We now introduce our general framework for transductive ranking;:

Suppose we observe a particular test query ¢, (let © = 1) and
the corresponding list of N,—; retrieved documents that need to

'Regarding notation: In the ranking context, we use d and y to refer to lists of doc-
uments and labels; in the classification context, we use x and z to refer to input feature
vectors and class labels. The subscript [ in ; and d; is overloaded to index both labeled
features vectors and labeled document lists, respectively. Similarly, the subscript v in
and d,, is overloaded to index for unlabeled feature vectors and unlabeled document lists.



be ranked (i.e. d,—1 = {dfﬁl},j = 1..N,=1). Each document in
this list is a k-dimensional feature vector comprising BM25, TF-
IDF, etc. What information can we exploit from this £ x N,—;
set of numbers in order to improve our ranking for this query?

It is important to note that we set up the problem so that only one test
query/list is in focus at a time, even though there may be U test queries in
total. The rationale is that different test queries are essentially independent
problems from the perspective of the ranking function, and that it is likely
easier to extract information that will be helpful for one list, rather than
many lists. 2

Algorithm 1 presents our general framework (meta-algorithm) for trans-
ductive ranking in pseudo-code. The methods in Sections 4 and 5 are two
particular instantiations. For each test list u, first we obtain some informa-
tion from the raw document feature vectors d, (line 2). Then, we use this
additional information, together with the original labeled training data, to
obtain a ranking function (line 3). After the ranking function F, () re-sorts
the test list u, it can be discarded (line 4). The loop (lines 1-5) need not
be a sequential operation, but can be computed in parallel since the ranking
functions are trained independently.

Algorithm 1 Transductive Meta-Algorithm
Input: Train set S = {(q,d;,yi1}i1=1..

Input: Test set £ = {(qu,dw) }u=1.v

Output: Predicted rankings for test: {y,}u=1.v

1: foru=1to U do .

2:  Observe the test documents d,, = {dg])}jzl..]u for query q,.

3:  Train a ranking function F,(- ) using the Train Set .S and the additional
observed information.

4:  Predict the test ranking: y, = F,(d,)

5: end for

Our proposed meta-algorithm can be contrasted with the established
method of pseudo-relevance feedback, which can be seen as a kind of trans-

2The motivation here has some analogies to query classification (c.f. [31]), which believes
that different classes of queries are best served by different ranking functions. We push
this to the extreme by making every query be served by its own ranking function.
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ductive ranking technique. Pseudo-relevance feedback (c.f. [79], [53] chap-
ter 9) uses words in the initial top retrieved documents to generate a new
query, which is then used to retrieve a new list of documents. Although this
new query may contain some noise, as in the semi-supervised method of self-
training, it may retrieve more relevant documents that have little match with
the original query. Note that pseudo-relevance feedback occurs at query-time
and the result is query-specific. In this respect it is similar to our transductive
meta-algorithm. The three main differences are:

1. Pseudo-relevance feedback usually uses textual information from the
test list, whereas our transductive meta-algorithm works purely from
the document feature vectors

2. Pseudo-relevance feedback usually creates a new query, whereas our
meta-algorithm creates new ranking function.

3. Pseudo-relevance feedback depends on a self-training/bootstrapping as-

sumption, whereas our meta-algorithm leaves the assumption unspeci-
fied.

Finally, we can also compare our meta-algorithm to local learning. Local
learning differs from traditional supervised learning in that it does not use
the entire training set, but rather selects a subset of samples close to each
test sample [16]. The intuition is that fitting a smooth function over a small
partition of the feature space is easier than fitting a function over the entire
space. Our meta-algorithm could be termed local, due to properties such
as training at query-time and fitting test-specific functions; however, our
meta-algorithm is more general in that it is not restricted to techniques that
subsample the training data. In the information retrieval literature, local
learning by k-nearest neighbors [33] and by query-time association rules [72]
have achieved promising results.

4. The Feature Generation Approach to Transductive Ranking

The Feature Generation (FG) Approach is an instantiation of the general
transductive meta-algorithm in Section 3. It employs the semi-supervised
“Change of Representation” assumption and requires two components:

e First, an unsupervised method (e.g. principal components analysis) is
applied to discover salient features for the test list.
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e Second, a supervised method for learning to rank (e.g. RankBoost) is
applied to labeled training data with this new representation, which
ideally is more pertinent to the test list in question.

Algorithm 2 Feature Generation (FG) Approach to Transductive Ranking

Input: Train set S = {(q;,d;,y:}i=1.L

Input: Test set E = {(qu,dw) }u=1.U

Input: DISCOVER(), unsupervised algorithm for discovering salient pat-
terns

Input: LEARNY(), a supervised ranking algorithm

Output: Predicted rankings for test: {y,}u=1.v

1: foru=1to U do

2: P, = DISCOVER(d,) # find transform on test data
3 d,=P,-d, # project test data along P,

4: forl=1to L do

5: al = P, - d; # project train data along P,

6 end for R

7. F,(-) = LEARN({(q¢. di, y1) }i=1.2)

8:  y.= F.(d,) # predict test ranking

9: end for

Algorithm 2 shows the pseudocode for this Feature Generation approach?.
DISCOVER() is a generic unsupervised method that is applied to each test list
d, separately (line 2). LEARN() is a generic supervised method for learning
rank functions. Since the feature-based representations of the training docu-
ments ({d; };=1.1) are enriched with additional test-specific features (line 5),
we learn a different ranking function F,(-) for each test query (line 7).

The usefulness of test-specific features and test-specific ranking functions
is illustrated in Figures 3(a) and 3(b). These are plots of documents from
two TREC’04 queries. The x-axis shows the (normalized) HITS Hub score
of a document, while the y-axis shows the (normalized) BM25 score of the
extracted title (both are important features for learning). Irrelevant docu-
ments are plotted as small crosses whereas relevant documents are large dots.

3Here, line 2 corresponds to line 2 in the Algorithm 1, lines 3-7 correspond to line 3 in
Algorithm 1.
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Figure 3: Plots of documents for 2 different queries in TREC’04 (y-axis = BM25, x-axis
= HITS score). Relevant documents are dots, irrelevant ones are crosses. Note that (a)
varies on the y-axis whereas (b) varies on the x-axis, implying that query-specific rankers
would be beneficial.

For the first query (Fig. 3(a)), we see that the data varies mostly along the
y-axis (BM25); for the second query (Fig 3(b)), the variation is on the x-axis
(HITS). These two document lists would be better ranked by two different
rankers, e.g. one which ranks documents with BM25 > 2.5 as relevant, and
the second which ranks documents with HITS > 1.25 as relevant. A sin-
gle ranker would find it difficult to simultaneously rank both lists with high
accuracy.

In this paper, we use kernel principal components analysis (Kernel PCA) [62]
as the unsupervised method and RankBoost [30] as the supervised ranker.
Kernel PCA is advantageous in its flexibility in generating many different
types of features by the use of different kernels. This is a good combination
with RankBoost, which has been shown to be relatively robust to variations
in tuning parameters and feature sets. For completeness, we present brief
reviews of these two methods in the following subsections.

4.1. Unsupervised feature extraction: Kernel PCA

Principal components analysis (PCA) is a classical technique for extract-
ing patterns and performing dimensionality reduction from unlabeled data.
It computes a linear combination of features, which forms the direction that
captures the largest variance in the data set. This direction is called the
principal axis, and projection of a data point on it is called the principal
component. The magnitude of the principal component values indicates how
close a data point is to the main directions of variation.
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Kernel PCA [62] is a powerful extension to PCA that computes arbitrary
non-linear combinations of features. As such, it is able to discover patterns
arising from higher-order correlations between features. We can imagine
Kernel PCA as a procedure that first maps each data point into a (possibly)
non-linear and higher-dimensional space, then performs PCA in that space.
More precisely, let d be a list of m documents and d¥) be the original feature
vector of document j.* Then Kernel PCA can be seen as the following
procedure:

1. Map each document d") to a new space d¥) s ®(dV)), where ®(-) is
the (non-linear/high-dimension) mapping.

2. Compute covariance matrix in this new space:
c=1 > ®(d9)®(dUNT. (T = transpose. ® should be centered at
zero mean—if not, this can be achieved by some simple operations in kernel
space [63])

3. Solve the eigen-problem: Av = Cv.

4. The eigenvectors v with the largest eigenvalues A\ form a projection
matrix P. Datapoints can now be projected to the principal axes of
the non-linear space defined by ®(-).

In practice, Kernel PCA uses the dual formulation to avoid solving the
above eigen-problem in high dimensional space (this is known as the kernel
trick). See [62] for the derivation; here we only present the steps needed for
this paper:

1. Define a kernel function k(-,-) : (d9),dV)) — R which maps two
document vectors to a real number indicating the similarity between
the two documents.

2. There exist kernels of the form
k(d9),dU)) = (®(dD)), ®(dY))), (i.e. dot product of the document
mappings in high-dimensional space) such that the mapping does not
need to be computed explicitly to get the kernel value.

3. Let the m x m matrix K be the kernel values of all pairs of documents
in the list. i.e. Kj; = k(dY),d")) V4,5 € {1,2,...,m}. This kernel
matrix can be centered to ensure that the features ® are zero-mean.

4In the context of Kernel PCA, we drop the subscript in d, to avoid clutter. d, or d
is a document list; d) is one document vector within the list.
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4. Kernel PCA reduces to solving the eigen-problem mAa = Ka. We
pick only the o with the largest eigenvalues.

5. For a new document d™, its principal component is computed as
S agk(dD), d).

The kernel function defines the type of non-linear patterns to be ex-
tracted. In this work, we use the following kernels:

e Polynomial: Computes dot product of all monomials of order p,
/{;(d(j)’d(j’)) = <d(j)’d(j’)>p.

e Gaussian / Radial basis function: k(d"),dV") = exp (—%jm”).

This is an isotropic kernel, with bandwidth ¢ adjusting for smoothness.

e Diffusion kernel [49]: This is suitable for graph data. We generate a
k-nearest neighbor graph with documents as nodes and edges defined by
the inverse Euclidean distance 1/||d") — dW"||. k(d"),dY") is defined
by running a lazy random walk from d¥) to dU). A time-constant
parameter 7 adjusts how long to run the random walk (e.g. larger 7
leads to a more uniform distribution). Performing Kernel PCA with
diffusion kernels is equivalent to running PCA on a non-linear manifold.

e Linear: k(d"),dV") = (d9) dY")). Equivalent to PCA.

Kernel PCA scales as O(m?), due to solving the eigen-problem on the
m X m kernel matrix K. Nevertheless, extremely fast versions have been
proposed; for instance, Sparse kernel feature analysis [66] is based on sparsity
constraints and can extract patterns in O(m).

4.2. Supervised Ranking Algorithm: RankBoost

RankBoost [30] is an extension of the boosting approach [61] for ranking.
In each iteration, RankBoost searches for a weak learner that maximizes the
(weighted) pairwise ranking accuracy (defined as the number of document
pairs that receive the correct ranking). A weight distribution is maintained
for all pairs of documents. If a document pair receives an incorrect ranking,
its weight is increased, so that the next iteration’s weak learner will focus on
correcting the mistake.

It is common to define the weak learner as a non-linear threshold function
on the features (decision stump). For example, a weak learner h(-) may be
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h(d9) = 1if “BM25 score > 17 and h(d)) = 0 otherwise. The final ranking
function of RankBoost is a weighted combination of T" weak learners:

F(d9) = 3" 6,hu(d), (1)

where T is the total number of iterations. #; is computed during the Rank-
Boost algorithm and its magnitude indicates the relative importance of a
given weak learner (feature). Finally, a ranking over a document list d is
obtained by calculating 3’ = F(dY)) for each document and sorting the list
by the value of y.

Algorithm 3 RankBoost
Input: Train set S = {(q;,d;,y:}i=1.L
Input: Initial distribution D(i, j) over (i,j)
Output: Ranking function F(-).
: fort=1to T do
Find weak ranker h(-) on weighted data D.

1
2
3:  Choose step size 6,

4. Update weights D(i, j) = D(i, j) exp 0;(hy(d?) — hy(d"))). Normalize.
5

6

: end for
. Output final ranking function F(d™) = S 6;hy(d™).

In theory, many algorithms can be plugged in for DISCOVER () and LEARN ().
In practice, it is important to consider the interaction between feature and
learning, and to ensure that DISCOVER() generates features that LEARN()
is able to exploit. We believe that there are several advantages to using
RankBoost with Kernel PCA in our transductive framework:

1. Inherent feature selection: RankBoost selects T' features that are most
conducive to good rankings. Since there are no guarantees that the
Kernel PCA’s directions of high variance always correspond to direc-
tions of good ranking, RankBoost’s inherent feature selection reduces
the need for tuning. For a LEARN() algorithm without inherent feature
selection, we may have to tune for (a) number of Kernel PCA features,
(b) relative importance of Kernel PCA features compared to original
features.
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2. Non-linear thresholding in weak learners A(-): One could define the
weak learner to be simply the feature values (e.g. h(- ) = raw BM25 score).
This assumes that good ranking is directly correlated to the feature val-
ues (e.g. large BM25 implies more relevance). Kernel PCA, however,
may generate features that have a non-linear relationship to ranking
(e.g. large positive and negative deviation from the principal axes
implies less relevance). Non-linear rankers can handle this possibility
more robustly.

3. “Anytime” training: Boosting can be seen as gradient descent in func-
tion space [54] and each iteration improves on the training accuracy.
If training time is a concern (e.g. in practical deployment of the trans-
ductive framework), then RankBoost can be stopped before reaching
T iterations. The resulting ranker may be less optimized, but it should
still give reasonable predictions.

5. The Importance Weighting Approach to Transductive Ranking

The Importance Weighting (IW) Approach is another instantiation of the
general transductive meta-algorithm. The main idea is to treat each test list
as a new domain for domain adaptation. It requires two components:

e An domain adaptation algorithm, ADAPT (), that generates importance
weights specific to each test list.

e A supervised learning to rank algorithm, WEIGHTED-LEARN (), that can
train on weighted data. Essentially, only a weighted subset of the
training data most similar to the test list will be used in computing the
ranking function.
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Algorithm 4 Importance Weighting (IW) Approach to Transductive Rank-

ing

Input: Train set S = {(q,d;,yi1}1=1..

Input: Test set E = {(qu,dw) }u=1.U

Input: ADAPT(), a domain adaptation algorithm

Input: WEIGHTED-LEARN(), a supervised ranking algorithm that han-
dles weighted data

Output: Predicted rankings for test: {y,}u=1.v

1: foru=1to U do

2: W = ADAPT(d., {(q,d;,y1) }1=1..) # find weighting over training
samples such that samples close to test have high weights

3 F,(-) = WEIGHTED-LEARN(W. {(q1, d1, y0) h-1..1)

4:  y, = F,(d,) # predict test ranking

5: end for

Algorithm 4 shows the pseudo-code for the Importance Weighting (IW)
approach. In our instantiation, WEIGHTED-LEARN () is the AdaCost version
of RankBoost [29] and ADAPT() is the Kullback-Liebler Importance Estima-
tion Procedure (KLIEP) [67]. KLIEP is currently a state-of-the-art method
in importance weighting, its main advantages being its automatic model se-
lection procedure and proven convergence properties. The main issue here
is how to adjust the importance weighting method developed for classifica-
tion to a ranking problem. The samples to which importance weights are
applied depends on WEIGHTED-LEARN(). Since AdaCost-Rankboost is a pair-
wise ranking algorithm, our importance weights will be applied to samples
consisting of document pairs. If WEIGHTED-LEARN () were a regression-based
method, then we would define importance weights for each training docu-
ment; for listwise methods, the importance weights would be defined on the
level of each query/list.

5.1. Computing the Importance Weights
Our domain adaptation method ADAPT() works in the following steps:

1. Extract all pairs of documents from the training set S = {(¢;, d;, y: }i=1..L
where there are rank differences (i.e. y/_, # yf,). This is the same
set of document pairs that would be extracted from a pairwise rank-
ing algorithm which maximizes pairwise accuracy, such as RankBoost.
Suppose there are L,q;, such document pairs.
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2. Extract all pairs of documents from the test list d,—; = {dffll}, J =
1..Ny=1. There will be a total of Upu;r = Ny—1 * (V=1 — 1) such pairs.

3. For each train/test document pair, derive a single vector representa-
tion by taking the difference of the original document feature vectors.
For instance, for the document pair (d;’ ), dl(k)) we derive the difference
vector x = dl(j ) — dl(k). The set of difference vectors from the training
set will be {z;};—1.. Lyair; the set of difference vectors from the test list
will be {xu}u=1..Upai7--5

4. Run the KLIEP importance weighting algorithm [67] using {2y fu=1..0,...
as samples from the target domain. The method will generate weights
w(x;) for each sample in {2;}1—1.1,,,,-

For completeness, we briefly review KLIEP; for details, refer to [67].
KLIEP computes importance weights w(z;) without directly estimating the
densities prest(x) and Prese(z). The main idea is to minimize the Kullback-
Liebler divergence between the test distribution py.s(z) and the weighted
training distribution w(z) * Pyin(T):

Dtest (x )
) * Derain (ZL’ )

== /ptest (I) log pr@))dx - /ptest (LU) logw(x)(a'f@

Ptrain (SL’

KL(ptest (l’)//’w(l') * ptrain(x)) = /ptest (I) 10g 'LU(ZIZ' dx (2)

The first term does not depend on w and can be dropped in the following
objective:

Okriep = /ptest(SC) log w(:c)dx (4)
1 Upair
~ U ; log w(z,,) (5)
1 Upai'r B
= 7 > log > Bn(x) (6)
parr 1 b=1

®Note that for notational simplicity we have again overloaded the indexes u and I to
index both lists and individual vectors.
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where the last line follows from parameterizing the weights w as a weighted
average of basis functions: w(z) = Y20, Byp(x). In this work, these bases
are Gaussian kernels centered at the test samples: 1,(x) == exp (—%)
The kernel bandwidth ¢ are set by KLIEP’s automatic model selection pro-

cedure. In addition, we will need the constraints that 3 > 0 (so that the
weights w are positive) and 1 = [ w(2)pirain(v)dr ~ Lpasr ZbB Bytb(x:)

Lpair' z=1

(so that it is a proper distribution). The resulting problem can be solved by
linear programming. In the end, we have a weights w(z;) for each document
pair in the training data, where large values represent training document
pairs that are similar to test document pairs.

5.2. AdaCost: RankBoost with Importance Weights

The weights {w(x;) }i=1..1,,,,, are given to the AdaCost-Rankboost learning
algorithm. AdaCost will ensure that training document pairs with large
weights are ranked correctly during training, possibly at the expense of other
document pairs with smaller importance weights.

Algorithm 5 shows the AdaCost modification. Note that the only change
from traditional RankBoost (Algorithm 3 is the cost factor ¢(i,j) in Line 4
and its incorporation into the update equation in Line 5. The cost factor
c(i,7) is computed such that:5

e If importance weight w(d® — d9)) is large and prediction is incorrect
(ie. hy(d®D > hy(dD))), then D(i,j) is increase much (i.e. c(i,7) is
large)

e If importance weight is small and prediction is incorrect, then D(i, j)
increases only slightly.

e If importance weight is large and prediction is correct, then D(i, )
decreases only slightly.

e If importance weight is small and prediction is correct, then D(i,j)
decreases much.

6We use the formula c(i,7) = 0.5 w(d® — d¥)) 4+ 0.5 if the pair is correctly ranked,
and c(i,j) = —0.5 x w(d® — d¥)) + 0.5 otherwise. 0 is w normalized to [0, 1].
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Algorithm 5 RankBoost - AdaCost version
Input: Train set S = {(q,d;,yi1}1=1..
Input: Initial distribution D(i, j) over (i,j)
Input: Weights on each training document pair w
Output: Ranking function F(-).

1: fort=1to T do

2:  Find weak ranker h(-) on weighted data D.

3:  Choose step size 6,

4:  Compute cost factor ¢(i,j) depending on importance weight w

5. Update weights D(i,j) = D(i,7)exp (c(i, )0 (hy(d®D) — hy(d9)))).
Normalize.

6: end for

7: Output final ranking function F(d™) = Zle Ouhy (™).

6. Data and Experimental Setup

We perform experiments on the LETOR dataset (version 2) [52], which
contains three sets of document retrieval data: TREC’03, TREC’04, and
OHSUMED. This is a re-ranking (subset ranking) problem, where an initial
set of documents have been retrieved and the goal is to sort the set in an
order most relevant to the query. The TREC data is a Web Track Topic
Distillation task. The goal is to find webpages that are good entry points
to the query topic in the .gov domain. The OHSUMED data consists of
medical publications and the queries represent medical search needs. For
TREC, documents are labeled {relevant,irrelevant}; an additional label
{partially relevant} is provided for OHSUMED.

The LETOR dataset conveniently extracts many state-of-the-art features
from documents, including BM25 [59], HITS [48], and Language Model [82].
Table 1 summarizes the data (e.g. in TREC’03, the ranker needs to sort on
average 983 documents per query, with only 1 document in the set being
relevant); see [52] for details.

The evaluation metrics are mean average precision (MAP) and normalized
discount cumulative gain (NDCG@n) [42]. MAP is defined using precision,
the percentage of relevant documents up to a given rank. For a set of R
relevant documents, average precision (AP) is:

1

AP
|R]

Z precision@Qrank(j)
ddeRr
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Table 1: Data characteristics

TREC’03 | TREC’04 | OHSUMED
#query 50 75 106
#document 49k 74k 16k
avg #document/query 983.4 988.9 152.3
#relevant documents 516 1600 4.8k
avg #relevant/query 1 0.6 28
avg #document pairs 302k 262k 369k
#feature (original) 44 44 25
#feature (transductive) 69 69 50

For example, for a set of documents with the following ranking: {relevant,
irrelevant, relevant}, the precision at rank 1, 2, 3 are 1/1, 1/2, 2/3, respec-
tively, and the AP is 1(1/1 +2/3) = 0.8. MAP is the mean of AP over
all queries. NDCG is an alternative metric that takes into account multiple
levels of judgment (not only relevant vs. irrelevant). Similar to precision,
NDCG is measured at a given position:

r(G) _
NDCG(n) =2 ol

Here r(j) = 0,1,..M represents the M-level numerical rating for docu-
ment d) (Higher value indicates more relevance). The log is base 2 and we
set log(1) =1 (not 0) in the above equation. Z is a normalization constant
that represents the score of the best possible ranking and allows NDCG to
be bounded by [0, 1].

In this paper, we report results from the average of 5-fold cross-validation
and judge statistical significance using the dependent t-test. We used our
own implementation of Kernel PCA, RankBoost, and AdaCost-Rankboost;
the KLIEP software is available from [67].

7. Main Results: Transductive vs. Supervised Learning

Our experimental setup compares three rankers. The Baseline is a su-
pervised RankBoost, trained on the original training data. This is com-
pared with the two proposed transductive approaches: Feature Generation
(FG) and Importance Weighting (IW). Figure 4 compares the three systems
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Figure 4: Main result (MAP and NDCG@n) for (a) OHSUMED, (b) TREC’03, (c)
TREC’04. Both Feature Generation (FG) and Importance Weighting (IW) systems out-
perform the supervised Baseline in all datasets and most metrics.

on the three datasets. Table 2 shows the same results in numbers (bold-
faced MAP/NDCG numbers indicate a statistically significant improvement

(p < 0.05) over Baseline.) *
The main observations from Figure 4 are:

1. In general, both tranductive approaches (Feature Generation and Im-
portance Weighting) outperform the Baseline on all datasets and most
metrics. The improvements are statistically significant for some but
not all metrics.

2. Between the two transductive methods, Feature Generation usually

"Our Feature Generation results here are slightly different to our previous work [28]
due to a fix in a minor bug in our RankBoost implementation. The general results trend

and conclusions of that paper are still replicated here.

23



Table 2: Main result (Figure 4 in table form). Both transductive methods improve over
baseline. Statistically significant improvements are bold-fonted. The Combined FG+IW
row is a combination of the transductive methods and will be explained in Section 8.

| [ MAP | Noi | Na3 [ N@5 | Nai0 | Naid ]
TREC’03
Baseline (supervised) | .2482 | .3200 | .3455 | .3404 | .3388 | .3401
Feature Generation 3058 | .5200 | 4332 | .4168 | .3861 | .3994
Importance Weighting | .2932 | .4800 | .3858 | .3862 | .3713 | .3755

Combined FG+IW 3219 | .5250 | 4321 | .4138 | .4023 | .3990
TREC’04

Baseline (supervised) 3712 | 4800 | 4237 | 4144 | .4471 | .4686
Feature Generation 3760 | .4800 | .4514 | .4415 | .4665 | .4910

Importance Weighting | .3834 | 4800 | .4456 | .4353 | .4653 | .4810
Combined FG+IW 3891 | .4833 | .4487 | .4483 | 4554 | .4873
OHSUMED
Baseline (supervised) | .4424 | .4906 | .4543 | .4501 | .4230 | .4218

Feature Generation 4444 | 5094 | 4787 | .4600 | .4469 | .4377
Importance Weighting | .4451 | .5000 | .4483 | .4466 | .4319 | .4280
Combined FG+IW 4497 | 5010 | .4897 | 4765 | .4431 | .4422

performs better than Importance Weighting.

We also performed data ablation experiments to see how the three rankers
compare for low data scenarios. For each fold, we artificially limited the
training data by taking the first 40%, 60%, and 80% of the training data
(i.e. TREC’03 has 30 queries for training in each fold, so we would take
the first 12, 18, and 24 queries as ablated data). The results for MAP and
NDCG@10 are shown in Figure 5. The Importance Weighting approach
consistently improves over the Baseline and can therefore be considered a
relative safe/stable algorithm. On the other hand, Feature Generation per-
forms well for 80% and 100% but is usually worse than Baseline for 40% and
60% cases. (This corresponds to 18 and 27 training queries in TREC’04; 25
and 38 training queries in OHSUMED.) We believe this is due to the fact that
Feature Generation creates more features, and is therefore more sensitive to
the amount of training data.
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Figure 5: Data ablation results (MAP and NDCG@Q10) of (a) OHSUMED, (b) TREC’03,
(¢) TREC’04 for 40%, 60%, and 80% subsets of training data. Importance Weighting
consistently improves over the Baseline. Feature Generation performs well for larger data
but poorly in the 40% and 60% cases.
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8. Analysis and Discussion

We perform additional experiments in order to analyze the properties of
the proposed approaches.

1. Are the Feature Generation and Importance Weighting approaches mutu-
ally compatible?

The samples used in training Rankboost in Feature Generation can be
weighted by importance weights. Therefore one may wonder whether the two
transductive approaches are mutually compatible. To test this, we enhance
the Feature Generation method by weighting each training sample (document
pair) with the importance weights obtained by running KLIEP on the KPCA
features. This combined method allows us to select (soft) subsets of the
training data while training with test-specific features. The results in the
(Combined FG4+IW) rows of Table 2 show that the combined method nicely
outperforms both Feature Generation and Importance Weighting in all tasks
for the MAP metric. The results are more varied for NDCG: for instance, in
OHSUMED, NDCG@3 and NDCG@b5 showed improvments, but NDCG@Q1
and NDCG@Q10 only outperformed one of FG or IW approaches it was built
upon. In general, for virtually all NDCG metrics and all task, FG+IW did
not perform worse than FG or IW individually.

2. How important is it to adapt to the test query?

Does the Feature Generation approach obtain gains because Kernel PCA
extracts good features per se, or particularly because the features are ex-
tracted on the test set (i.e. the local/transductive aspect)? In order to
answer this question, a new system (KPCA on train) was built based on
feature transformations estimated from training data alone: Kernel PCA
was run on each training list (as opposed to projecting the training lists to
principal directions of the test lists). The subsequent rank learner and eval-
uation remain identical: we train RankBoost on this data, which is the same
training data as Baseline except for the additional Kernel PCA features and
evaluated this new ranking function on the test set. The results (Table 3)
show that KPCA on train is worse than Feature Generation (e.g. .2511 vs.
.3058 MAP for TREC’03), implying that the transductive aspect of adapting
to each test query is essential.
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Table 3: Feature Generation (transductive) outperforms KPCA on train (inductive);

adapting to test queries is a useful strategy.

TREC’03 | TREC’04 | OHSUMED
Feature Generation .3058 .3760 4444
KPCA on train 2511 .3625 4418
Baseline .2482 3712 4424

3. What are the most useful features?

For the Feature Generation system, what weak learners A(-) in the multi-
ple ranking functions (F,(-) = 3., 6;h(+)) achieve large |6;|? For instance,
how often are Kernel PCA features chosen compared to the original features?
To analyze this, we look at the 25 FG ranking functions in TREC’04 that
improve more than 20% over the Baseline. For each ranking function, we
look at the top 5 features and note their type: {original, polynomial,
rbf, diffusion, linear}. 24 of 25 functions have both original and Ker-
nel PCA features in the top 5, indicating that Kernel PCA features are quite
useful. It is even more interesting to note the distribution of top 5 feature
combinations (Figure 4): no single combination is more prevalent than oth-
ers. This again supports the intuition that test-specific rankers are better
than a single general ranker.

Table 4: Top 5 feature combinations employed in RankBoost, by count. There is a diversity
of feature combinations, indicating that different test queries require different rankers.

Chosen Features Count
Original + Diffusion 7
Original + Polynomial

Original 4+ Polynomial + Linear
Original 4+ Polynomial + Diffusion
Original 4 Linear

Orignal + Diffusion + Linear
Orignal + Diffusion + Gaussian
Orignal only

o WO R

4. What are the statistics for the importance weights?

We are interested in seeing how well-matched is the training set to the
test query, and whether KLEIP is indeed selecting subsets of the training
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Figure 6: Importance weight histogram from some OHSUMED queries. The x-axis is the
importance weight value; y-axis is the histogram count. The large variety in distribution
implies that the target test statistics differ drastically.

data. Figure 6 shows histograms of importance weight values associated
with a random set of test queries. Note that the histograms vary widely,
i.e. for the same pairs of training documents, the corresponding importance
weight varies a lot depending on the test list in question. This supports our
rationale for treating each test list as a new domain adaptation problem.
Further, we compute general statistics on the importance weights, shown
in Table 5. First, note that the cardinality of the importance weight dis-
tribution is similar for both OHSUMED and TREC’03: there are roughly
150k-230k training pairs for OHSUMED and 130k-270k training pairs for
TREC’03 (the variation is due to different folds). Therefore we may compare
weight values across datasets to draw some conclusions. The median value for
importance weights is 0.91 for OHSUMED and 0.51 for TREC’03. The 25th
Quantile value is also much lower for TREC’03, implying that KLIEP assigns
relatively more low values to TREC'03 as compared to OHSUMED. Simi-
larly, the higher standard deviation in TREC’03 suggests that the weight
distribution for TREC’03 is more skewed and broad than OHSUMED. In
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Table 5: Importance weight statistics. Median respresents the average median value of
importance weights, across all test lists. Similarly, the 25th/75h quantile capture the value
of the 25th and 75th portion of the weight’s cumulative distribution function (CDF). Stan-
dard deviation and entropy shows how much the importance weight differs from uniform.
Uniform distribution would achieve an entropy of 2.48 (entropy is calculated discretely by
dividing the weight histogram into 12 bins).

OHSUMED | TREC’03 | TREC’04
Median 0.9142 0.5140 0.0461
75th Quantile | 1.2808 1.3642 0.5137
25th Quantile | 0.6104 0.1420 0.0011
Mode 0.9031 0.0416 0.3041
Std Deviation | 0.5712 1.2951 3.2136
Entropy 1.8582 1.9653 1.2753

other words, we can say that the Importance Weighting approach ignores
more training data in TREC’03 than in OHSUMED. We are not certain why
this is so, but this may be due to the fact that the TREC data has more
features, thus more chance of domain variety.

9. Conclusions

In this paper, we proposed a flexible transductive meta-algorithm for
learning ranking functions (Algorithm 1). The main question we addressed
is how information extracted from a test list can be exploited to learn better
test-specific ranking functions. We presented two particular instantiations of
the general transductive meta-algorithm: The Feature Generation approach
(Algorithm 2) builds test-specific rankers by incorporating salient features
discovered from the test list. The Importance Weighting approach (Algo-
rithm 4) treats each test list as a new domain in domain adaptation and trains
a ranking function only from similarly distributed training samples. In both
cases, we have demonstrated how existing methods from semi-supervised
classification, supervised ranking, and domain adaptation can be modified
and combined to achieve transductive ranking.

In our experiments with the LETOR dataset, we demonstrate that both
transductive ranking approaches outperform the supervised baseline. This
points to promising directions on other ways to exploit test data in ranking.
This particular problem formulation (Semi-supervised Rank Learning in Fig-
ure 2) is pertinent because there is usually a long tail in search queries (i.e.
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many test queries in practice will not have been seen in the training set).
Future work will include exploring other ways to use unlabeled data, such as
using the low density separation assumption under the general transductive
framework.
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