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Abstract

Minimum Bayes Risk (MBR) has been
used as a decision rule for both single-
system decoding and system combination
in machine translation. For system com-
bination, we argue that common MBR
implementations are actually not correct,
since probabilities in the hypothesis space
cannot be reliably estimated. These imple-
mentations achieve the effect of consensus
decoding (which may be beneficial in its
own right), but does not reduce Bayes Risk
in the true Bayesian sense.

We introduceGeneralizedMBR, which
parameterizes the loss function in MBR
and allows it to be optimized in the
given hypothesis space of multiple sys-
tems. This extension better approximates
the true Bayes Risk decision rule and
empirically improves over MBR, even in
cases where the combined systems are of
mixed quality.

1 Introduction

Minimum Bayes Risk (MBR) is a theoretically-
elegant decision rule that has been used for single-
system decoding and system combination in ma-
chine translation (MT). MBR arose in Bayes deci-
sion theory (Duda et al., 2000) and has since been
applied to speech recognition (Goel and Byrne,
2000) and machine translation (Kumar and Byrne,
2004). The idea is to choose hypotheses that mini-
mizeBayes Riskas oppose to those that maximize
posterior probability. This enables the use of task-
specific loss functions (e.g BLEU).

However, the definition of Bayes Risk depends
critically on the posterior probability of hypothe-
ses. In single-system decoding, one could approx-
imate this probability using model scores. How-
ever, for system combination, the various systems

have incompatible scores. In practice, MT design-
ers resort to uniform probability, but the result is
that the chosen hypothesis no longer has anything
to do with Bayes Risk. This hypothesis can be
seen as aconsensusof multiple hypotheses, and
in practice the consensus translation is often good,
but it cannot be accurately thought of as MBR.

Here, we propose a method that better achieves
MBR in system combination settings. The insight
is to generalize the loss function in the MBR equa-
tion and allow it to be parameterized. The param-
eters are then tuned on a small development data
so that the loss function is converted to one that
gives low Bayes Risk under the assumption of uni-
form posteriors. We will show that a small bitext
is sufficient for tuning this generalized loss, and
that it vastly outperforms the conventional MBR
approach in system combination.

In the following, we first review MBR and ex-
plain the difficulty in applying it to system combi-
nation (Section 2). Then, we propose our Gener-
alized MBR (Section 3) and evaluate it under the
NTCIR Patent Translation tasks (Section 4). Fi-
nally, we conclude in Section 5.

2 The Difficulty with MBR

Consider the task of translation from a French sen-
tence (f ) to an English sentence (e). Our goal is
to find a decision ruleδ(f) → e′, which takesf as
input and generates ae′ as output, to minimize the
expected loss (i.e. Bayes Risk) over the possible
space of sentence pairs (p(e, f)):

Ep(e,f)[L(δ(f)|e)] (1)

Note that we write lossL(δ(f)|e) rather than the
conventionalL(δ(f), e) to emphasize that it is
asymmetric. The loss allows us to incorporate
task-specific knowledge. For example, with 1-
BLEU as the loss function, we can quantify that
the sentence with 2-word mismatch is preferable



to one that has 3-word mismatch, even though both
do not perfectly match the reference. The incor-
poration of the task-specific loss is why MBR is
attractive in applications.

What decision rule minimizes the expected
loss? By reorganizing Eq. 1 as follows:

Ep(e,f)[L(δ(f)|e)] =
∑

e,f

L(δ(f)|e)p(e, f)

=
∑

e,f

L(δ(f)|e)p(e|f)p(f)

=
∑

f

[

∑

e

L(δ(f)|e)p(e|f)

]

p(f) (2)

we observe that expected loss can be minimized if
the term in the bracket (known as theconditional
risk) is minimized for eachf :

arg min
δ(f)

∑

e

L(δ(f)|e)p(e|f) (3)

≈ arg min
e′∈N(f)

∑

e∈N(f)

L(e′|e)p(e|f) (4)

Eq. 3 is the Minimum Bayes Risk (MBR) deci-
sion rule. Eq. 4 is the N-best approximation com-
monly used in practice:N(f) contains the set of
hypotheses in the N-best list, and the argmin and
sum is only performed within this finite set. There
are two difficulties with Eq. 4:

1. The N-best approximation is much smaller
than thetrue space ofall English hypothe-
ses in the argmin and sum of Eq. 3. The ap-
proximation in the argmin causes search er-
rors, while the approximation in the sum in-
troduces bias. This problem can be somewhat
mitigated by increasing the N-best list size or
extending this space using lattices and hyper-
graphs (Tromble et al., 2008; DeNero et al.,
2009; Kumar et al., 2009). We do not address
this issue here.

2. The posterior probabilityp(e|f) in Eq.3 and
Eq. 4 refers to thetrue posterior probability
arising fromEp(e,f)[·] in the derivation of Eq.
2. In practice, this can only be estimated from
the MT decoder’s model scores:

p(e|f) ≈
(exp

∑

i λihi(e, f))α
∑

e′∈N(f)(exp
∑

i λihi(e′, f))α

(5)

where hi(e, f) are features,λi are feature
weights, andα is a scaling factor that deter-
mines the flatness of the posterior distribu-
tion (Ehling et al., 2007). It is important to
emphasize that we areassumingthat the de-
coder’s score is an accurate surrogate for the
true posterior distributionp(e|f).

The second difficulty poses a particular problem
for system combination. Although the assumption
in Eq. 5 is reasonable for single-system MT,
it becomes unclear how to compare the model
scores

∑

i λihi(e, f) in a multi-system setting. To
illustrate, consider two MT systems, their 2-best
lists, and corresponding model scores:

• System A:e1, score=7;e2, score=3;

• System B:e3, score=90;e4, score=10;

It is unclear what is the ranking of posterior
probabilities in the space of these four hypotheses.
The possibilities include:

• p(e1|f) > p(e2|f) > p(e3|f) > p(e4|f),

• p(e3|f) > p(e4|f) > p(e1|f) > p(e2|f),

• p(e1|f) > p(e3|f) > p(e2|f) > p(e4|f), . . .

From the model scores, we can assume that
p(e1|f) > p(e2|f) andp(e3|f) > p(e4|f) but we
cannot say anything about how, e.g.,p(e1|f) and
p(e3|f) compare because the scores are not cali-
brated across systems. If we cannot even rank the
posteriors, there is little hope of estimating its ac-
tual values.

Due to this difficulty, previous work in MBR
system combination disregard the estimation and
assume thatp(e|f) is an uniform distribution. The
effect is consensus decoding, i.e. picking a sen-
tence most similar to others in the N-best list. Con-
sensus decoding may be beneficial in its own right,
as shown by positive results in (de Gispert et al.,
2009; Sim et al., 2007), but the consensus rule and
the MBR rule aredifferent.

In fact, the consensus rule may suffer if the N-
best list contains many poor translations that are
similar to each other. On the other hand, if these
poor translations all have small posterior (which
ought to be), it does not affect the MBR rule what-
soever. Unfortunately, the bottleneck is the diffi-
culty in estimating the posteriors.



3 Generalized MBR

3.1 Theory

The idea ofGeneralizedMBR (GMBR) is to pa-
rameterize the loss function in Eq. 4 and allow it
to adapt to the hypothesis space of a set of given
systems. Specifically, we write a loss function
L(e′|e;θ), parameterized byθ, as a linear com-
bination of sub-components:

L(e′|e; θ) =
K

∑

k=1

θkLk(e
′|e) (6)

The sub-components are related to the origi-
nal loss function in some fashion. For exam-
ple, suppose the desired loss function is 1-BLEU.
Then the sub-components could be:L1(e

′|e)=1 -
1gramPrecision, L2(e

′|e)=1 - 2gramPrecision,
L3(e

′|e)=1 - 3gramPrecision,L4(e
′|e)=1 - 4gram-

Precision,L5(e
′|e)=brevaltyPenalty.

The GMBR rule is defined generically as:

arg min
e′∈N(f)

∑

e∈N(f)

L(e′|e;θ)p(e|f) (7)

And in the case of system combination, we will
assume uniformp(e|f) and re-write the GMBR
decision rule as:

arg min
e′∈N(f)

∑

e∈N(f)

L(e′|e;θ)
1

|N(f)|
(8)

= arg min
e′∈N(f)

∑

e∈N(f)

K
∑

k=1

θkLk(e
′|e) (9)

Our goal is to minimize the expected loss (Eq.
1) under the constraint of uniformp(e|f). The
central idea is this: we will tuneθk, k = 1, . . . ,K
so that the generalized loss in the uniform hy-
potheses space gives the same decision as the orig-
inal loss in the true spacep(e|f).

This can be done if a small dev set is available:
For any two hypothesese1, e2, and a reference
er (not in N(f)) we first compute the true loss:
L(e1|er) andL(e2|er). If L(e1|er) < L(e2|er),
then we would wantθ such that:

∑

e∈N(f)

K
∑

k=1

θkLk(e1|e) <
∑

e∈N(f)

K
∑

k=1

θkLk(e2|e)

(10)
so that GMBR would select the hypothesis achiev-
ing lower loss. Conversely, ife2 is a better
hypothesis, then we want the opposite relation:

Algorithm 1 Tuningθ for GMBR
Input: Development dataD, with (er, f) ∈ D
Input: N-best listN(f) ∀f ∈ D.
Input: Regularization hyperparameterc

Output: θk, k = 1, . . . ,K such that Eq. 9 mini-
mizesL() onD.

1: P = ∅
2: for f ∈ D do
3: Compute true lossL(e|er) ∀e ∈ N(f)
4: for All pair ei, ej ∈ N(f) do
5: Add (ei, ej) to P if L(ei|er) < L(ej |er)
6: end for
7: end for
8: arg minθ ||θ||

2 + c
∑

ij ξij

s.t.
∑

k θkCk(ej) −
∑

k θkCk(ei) ≥ 1 − ξij

∀(ei, ej) ∈ P

∑

e

∑

k θkLk(e1|e) >
∑

e

∑

k θkLk(e2|e). Thus,
in light of the fact that posterior probabilities
p(e|f) are not reliable, we directly compute the
true loss (using a development set) and ensure that
our GMBR decision rule minimizes this loss.

The disadvantage of GMBR is, of course, that
a development set is needed. Note, however, that
MBR may also require tuning the global scaling
factor (Eq. 5). Empirically, we observe that a
small set (500 sentences) seems sufficient.

3.2 Implementation

We now describe how GMBR and the tuning pro-
cedure can be implemented in practice. First,
note that we can reorganize the sums in the
GMBR decision rule:

∑

e

∑

k θkLk(e
′|e) =

∑

k θk

∑

e Lk(e
′|e) =

∑K
k=1 θkCk(e

′), where
Ck(e

′) =
∑

e Lk(e
′|e) represents the com-

bined loss fore′. So we first computeCk(·)
for all hypotheses, for anO(|N(f)|2) run-time.
To find the GMBR decision then requires a
searcharg mine′∈N(f)

∑K
k=1 θkCk(e

′). So in test,
GMBR is on the same order as conventional MBR.

To tuneθ, we first extract all pairs of hypothe-
ses where a difference exists in the true loss, then
optimizeθ in a formulation similar to RankSVM
(Joachims, 2006). The pair-wise nature of Eq.
10 makes the problem amenable to solutions in
“learning to rank” literature (He et al., 2008a).
The pseudocode is shown in Algorithm 1. The
RankSVM (line 8) tries to satisfy the relations (Eq.
10) in its constraints while allowing for some slack
ξ, whose amount depends on hyperparameterc.



4 Experiments

We experiment with the NTCIR-9 (2011) English-
to-Japanese Patent Translation task1. This in-
cludes 3 million sentences for training individual
MT systems; the official dev set is split into 1000
sentences for MERT of individual systems, 500 for
system combination optimization (MBR, GMBR),
and 500 for final evaluation. We combine three
systems:

• Phrase-based Moses with lexical reordering,
distortion=6 (Koehn and others, 2007)

• Forest-to-string system (Mi et al., 2008)

• Weighted finite-state Transducer (WFST)
(Zhou et al., 2006) with rule-based reorder-
ing as preprocessing (Isozaki et al., 2010b).

Each system generates a 100-best list, so our
system combination task involves hypothesis se-
lection out of 300 hypotheses. As evaluation mea-
sure, we focus on BLEU, Normalized Kendall’s
Tau (NKT), a metric that has been shown to cor-
relate well with humans on this language pair
(Isozaki et al., 2010a)2, and a combination thereof.
The loss function used for MBR is therefore
the sum of BLEU and NKT. For GMBR, the
sub-components of this loss function are derived
from the n-gram precisions, brevity penalty, and
Kendall’s score. We also multiply the n-gram pre-
cisions with the Kendall score as additional loss
sub-components. Finally we add identity features
indicating which of the three systems the hypoth-
esis comes from, for a total ofK = 14 sub-
components. The hyperparameterc in Algorithm
1 is chosen by 80/20% cross-validation from the
set{0.001, 0.01, 0.1, 1, 10, 100}.

The test scores for MBR, GMBR, and the single
systems are shown in Table 1. The single systems
are anonymized by A, B, C and sorted by decreas-
ing performance. The top1 indicates the first hy-
pothesis in the 100-best list, while bottom1 indi-
cates the 100st (last) hypothesis. Observations:

1. GMBR outperforms MBR on all metrics.

2. GMBR is able to improve upon the best sin-
gle system (A), despite the fact that a poor
system (C) is included. This implies that cri-
teria like Eq. 10 is effective.

1http://ntcir.nii.ac.jp/PatentMT/
2Code available athttp://www.kecl.ntt.co.

jp/icl/lirg/ribes

3. For MBR, the inclusion of C drastically de-
grades performance since it implements con-
sensus decoding, not Bayes Risk.

We also summarize results for Chinese-English
and Japanese-English tasks in NTCIR9. The sys-
tem combination setting is similar (3-way com-
bination of 100-best lists) but uses different MT
systems. In Chinese-English, GMBR outperforms
the best single system by 1 BLEU point (32.08 vs.
31.08); in Japanese-English, GMBR outperforms
by 1.85 BLEU points (29.39 vs. 27.54).

We conclude that GMBR is a robust method for
system combination. It consistently improves over
the top system, even when the combinations are of
varying quality (e.g., the range of BLEU score in
the 300-best list can be more than 10 BLEU points
between A-top1 and C-bottom1). This degrades
MBR and consensus decoding, but does not im-
pact GMBR because these poor translation would
achieve high loss on the development set, and
thereforeθ will be optimized away from them.3

BLEU NKT (BLEU+NKT)/2
GMBR 36.65 77.50 57.08
MBR 35.45 76.25 55.85
A top1 35.87 76.87 56.37
B top1 34.20 75.93 55.07
C top1 24.23 67.68 45.96
A bottom1 34.92 76.20 55.56
B bottom1 33.97 75.99 54.93
C bottom1 22.95 65.99 44.47
oracle 45.82 84.32 65.07

Table 1: Test results on English-Japanese.

5 Conclusions

We introducedGeneralizedMBR, which enables
one to adapt the loss function of MBR to a given
hypothesis space. By tuning this generalized
loss under the constraint of uniform posteriors,
we show that GMBR can consistently outperform
MBR in system combination. Future work in-
cludes (1) combination with methods that can gen-
erate novel hypotheses (Rosti et al., 2007; He et
al., 2008b; Matusov et al., 2006; Bangalore et al.,
2001), and (2) comparison with recent work that
attempts to directly estimate posteriors with mix-
ture models (Duan et al., 2010).

3It’s worth noting that system identity features account
for less than 30% of weights in all GMBR systems, implying
that the flexibility of adjustable loss function is important and
a straightforward weighted version of MBR is insufficient.
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