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Abstract

Ranking is a central component in information retrieval systems; as such,

many machine learning methods for building rankers have been developed in

recent years. An open problem is transfer learning, i.e. how labeled training

data from one domain/market can be used to build rankers for another. We

propose a flexible transfer learning strategy based on sample selection. source

domain training samples are selected if the functional relationship between

features and labels do not deviate much from that of the target domain. This

is achieved through a novel application of recent advances from density ratio

estimation. The approach is flexible, scalable, and modular. It allows many

existing supervised rankers to be adapted to the transfer learning setting.

Results on two datasets (Yahoo’s Learning to Rank Challenge and Microsoft’s

LETOR data) show that the proposed method gives robust improvements.
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Assumption, Density Ratio Estimation

1. Introduction

The ranker is at the heart of many information retrieval systems. Its task

is to order a list of documents such that the ones most relevant to the query

appears first. Numerous machine learning techniques have been developed

for building rankers. However, most work thus far focus on the traditional

supervised learning setting, where identical distributions in training and test

are assumed. An increasingly important problem is transfer learning, i.e.

how labeled training data from one domain/market can be leveraged to im-

prove ranking in another domain. For example, a search engine developer

may desire to use its abundant data for its English-speaking market to boot-

strap a ranker for its Chinese market.

This work proposes a transfer learning strategy for ranking. In particular,

we focus on the following scenario, where two datasets both with relevance

judgment labels are available:

• (A) Small dataset for target domain of interest (e.g. Chinese market)

• (B) Large dataset for another domain, which we term “source domain”

(e.g. English market).

The goal of transfer learning is to build a ranker that performs well on the

target domain using both datasets (A) and (B). We are deemed successful

if this ranker outperforms a ranker trained only on dataset (A), on a test

set coming from the same distribution as (A). This scenario is also termed
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“supervised domain adaptation” in some literature since the target domain

contains labels; here we use the general term “transfer learning.”

Transfer learning is a challenging problem because the traditional machine

learning theory which states that “minimizing (regularized) empirical risk

leads to lower generalization error” [1] is no longer valid in the case when

training and test distributions differ. Transfer learning is also a rewarding

problem because solving it has not only theoretical importance, but also

practical ramifications in terms of building better systems with lower cost.

We believe there are several criteria that ought to be satisfied for transfer

learning in ranking: First, the proposed method ought to be able to incor-

porate many of the existing research in supervised ranking. Much effort has

been devoted to developing better algorithms in the non-transfer setting, and

it would be a waste to re-invent the wheel. Second, the proposed method

should be computationally scalable so that large amounts of source domain

data could be effectively exploited. Finally, ease of implementation is al-

ways a plus (but not a necessity), as it allows for faster development and

experimentation cycles.

We propose a transfer learning strategy (based on sample selection) that

satisfies all the above three criteria. Intuitively, our strategy first selects

labeled source domain samples that are “related” to the target domain, then

train a conventional ranker on the combined data. We define two ranked lists

as “related” if the labeling process is similar (i.e. the definition of what is

a relevant document is the same). We will show that this nicely models the

so-called “functional change assumption” in transfer learning, and we

compute this relatedness measure by employing state-of-the-art algorithms
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from density ratio estimation [2].

In the following, Section 2 explains the intuition and algorithm of our

proposed transfer learning strategy. Then, Sections 4 and 5 describes exper-

imental results on the Yahoo Learning to Rank Challenge and the Microsoft

LETOR datasets. Finally, we conclude with discussions about related work

(Section 3) and future directions (Section 6).

2. Sample Selection for Ranking

2.1. Notation

In the machine learning approach to ranking, we are given datasets con-

sisting of queries, document lists, and relevance judgment labels. Specifically,

let qi be a query and Xi be the corresponding list of documents retrieved by

an initial search engine. We can think of Xi as a K × D matrix represent-

ing the D-dimensional feature vectors of the K query-document pairs. An

annotator provides a relevance label to each query-document pair, forming

the vector yi ∈ R
K . The triple (qi,Xi,yi) is referred to as a “sample” and

indicates the desired ranking of a list of documents, given a particular query.

We have two datasets in transfer learning. The target domain training

data consists of N t samples St = {(qt
i ,X

t
i,y

t
i)}i=1,...,Nt . The source domain

training data consists of N s samples Ss = {(qs
i ,X

s
i ,y

s
i )}i=1,...,Ns. Throughout

the paper, we use the subscript i as index for the samples and the superscripts

t/o to indicate target and source domain.

In the non-transfer setting, the dataset St is fed to a machine learning

algorithm to generate a ranker, parameterized by the vector wt. We assume

a linear ranker throughout this paper, so documents are ranked by order of
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the dot product between wt and query-document pair feature vector. In the

transfer setting, the dataset Ss (or subsets thereof) is also incorporated. Our

proposed transfer learning strategy amounts to selecting a subset of samples

in Ss to be added to St, and training a ranker wt+s based on the combined

dataset. Generally, Ss is large while St is scarce (i.e. N s ≫ N t).

2.2. Intuition

The issue with a small target dataset St is that the observed {qt
i ,X

t
i}i=1,...,Nt

does not fully cover the whole range of queries and documents that may ex-

ist in the domain of interest. The task of machine learning, of course, is

to extrapolate from finite samples, but the accuracy suffers if the dataset is

simply too small.

The idea of our sample selection strategy is to increase the coverage by

adding samples from source domain Ss. However, one needs to be very care-

ful because the labels of an source domain sample (qs
i ,X

s
i ,y

s
i ) may lead to

a ranker wt+s that is very different from the true target domain function

(initially approximated by wt). source domain samples may be labeled dif-

ferently because the definition of relevance may vary across domains. For

example, for a query submitted to a multilingual collection, what is relevant

depends on whether the annotator prefers Chinese or English documents.

This is known as the “functional change” assumption in transfer learning [3].

Our strategy only adds source domain samples that are “related” or

“close” to the target domain. The key to defining “relatedness” is to note

that a sample-specific ranker wi (i.e. a ranker trained on just a single sample

(qi,Xi,yi)) can characterize the functional relationship between Xi and yi.

We assume that two samples are more related if their wi are similar. Thus
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our sample selection strategy works as follows: First, train a linear ranker

independently for each sample. The trained rankers/weights of the target

domain wt
i forms a probability density distribution in RD space. source do-

main sample rankers ws
i appearing near dense regions of wt

i are more likely to

be selected. These selected samples are those that may increase the coverage

of the training set but do not significantly change the functional relationship

between features and labels.

Figure 1 illustrates the intuition using Microsoft’s LETOR dataset. The

target domain is a topic distillation task, while source domain is a home-

page finding task.1 The plot represents the distribution of weights given by

sample-specific rankers for two features. We observe that while there are

some overlap between the target and source domain distributions, there are

some source domain samples that are outliers with respect to the target dis-

tribution. For example, some source domain samples place large negative

weights on the PageRank feature compared to what is usually given by tar-

get domain samples. These source domain outliers are the ones that will not

be selected by our sample selection strategy.

In general, in transfer learning there are two main assumptions that ex-

plicitly clarify how target and source domains differ. Here we address the

“functional change” assumption, which says that the labeling process changes

1Topic distillation aims to find “overview” webpages, whereas homepage finding aims

to retrieve specific webpages. Consider the query “Data mining conference”: A good result

for topic distillation may be a resourceful page that lists all data mining conferences of the

year; but a good answer for homepage finding might be a particular conference website,

e.g. “International Conference on Data Mining.”
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Figure 1: Distribution of sample-specific rankers/weights. Note that some source domain

samples are outliers with respect to the target distribution.

between source and target, i.e. given the same {q,X}, the labels y will vary

among domains. This is natural when the definition of relevance changes,

such as when different search tasks are run (topic distillation vs. homepage

finding) or when different languages are preferred (English vs. Chinese).

Another popular assumption, “covariate shift”, states that the input distri-

bution changes: e.g., the queries that are popular for the English market

may not necessarily also be popular for the Chinese market. Of course, both

assumptions may be at play in practice, but we are not aware of any method

that can simultaneously tackles both.

2.3. Algorithm

The intuition in Section 2.2 and Fig 1 is implemented by the follow-

ing pseudocode (see Algorithm 1). In the first phase (lines 1-6), rankers

are trained for each sample using a generic supervised learning algorithm,
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RANK-LEARN(). This algorithm could be, e.g. RankSVM, or any other su-

pervised algorithm that generates linear rankers. This phase is scalable/parallelizable

even as the number of source domain sample increases because it is done in-

dependently for each sample; further, training on single queries is extremely

fast.

The second phase (Algorithm 1, line 7) aims to quantify the “relatedness”

between the collected linear weights for target and source domain samples. A

natural way to do this is to use the so-called density ratio estimation methods

[2], which quantifies differences between samples from different distributions:

for each source domain weight ws
i , we estimate the ratio:

rs
i =

pt(ws
i )

ps(ws
i )

(1)

where pt(·) is the probability density function for target domain weights,

and ps(·) is the probability density function for source domain weights. In

the example of Figure 1, we can thus imagine two distributions in R2. For

the regions where PageRank < −2, pt(·) is likely to be smaller than ps(·),

leading to a small ratio rs
i . Samples with small rs

i are less related to the

target domain.

The final phase (line 8 to 22 of Algorithm 1) finds the best subset of

source domain samples to be added to the target domain data. This is done

by using a threshold α and selecting sample i if rs
i ≥ α (lines 10-16). An

overall ranker is re-trained on the combination of source subset and target

data (line 16). The best value of α is searched for on the development set
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(line 17-20).2

In practice, the ratio rs
i is not computed by estimating ps(·) and pt(·)

explicitly since density estimation is a difficult problem. Instead, we follow a

state-of-the-art method called Kullback-Liebler Importance Estimation Pro-

cedure (KLIEP) that directly computes rs
i [2]. First, we define a function

rs(w), where rs
i = rs(wi), and parameterize it by a linear combination of

kernels rs(w) =
∑Nt

j=1 γjk(w,wt
j). Then we minimize the KL-divergence be-

tween the target distribution pt(w) and a weighted source domain distribution

rs(w) · ps(w):

arg min
rs(w)

KL(pt(w)‖rs(w)ps(w)) = arg min
rs(w)

∫
pt(w) log

pt(w)

rs(w) · ps(w)
dw

= arg min
rs(w)

∫
pt(w) log

pt(w)

ps(w)
dw −

∫
pt(w) log rs(w)dw

= arg min
rs(w)

−

∫
pt(w) log rs(w)dw

≈ arg min
rs(w)

−1

N t

Nt∑
i=1

log rs(w)

= arg min
γj

−1

N t

Nt∑
i=1

log

Nt∑
j=1

γjk(w,wt
j)

This formulation in terms of KL-divergence allows us to directly com-

pute rs
i without explicitly calculating pt(·) and ps(·) in Eq. 1. We use

Gaussian kernels k(w,wt
j) = exp(−||w − wt

j ||/2σ) situated on the target

weights wt
j . The above objective can be efficiently optimized by a convex

2In the pseudocode, all values of α = [0, max(r)] are searched. In practice, we found

that searching for a few values in the interval is sufficient and speeds up training.
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program, with additional constraints γj ≥ 0 (so ratios are non-negative) and

1 =
∫

rs(w)ps(w)dw ≈ 1
Ns

∑Ns

i=1 log
∑Nt

j=1 γjk(w,wt
j) (so the distribution

properly sums to one). Finally, the optimal values γj are used to compute

the ratio rs
i for each source domain sample.

In summary, density ratio estimation provides a way to compute the

relatedness of samples, where relatedness is based on whether the sample-

specific ranker occurs in a region where pt(w)
ps(w)

is high. Samples with high

ratios are good candidates to be added to the training set, because they

increase coverage with less risk of changing the functional relationship.

The reader may wonder why we chose samples with high ratios pt(w)
ps(w)

,

rather than simply high density pt(w). The reason is that our sample se-

lection strategy performs a simple linear search α for the threshold, so it is

important to discount regions of high ps(w) in order to avoid over-sampling,

which introduces bias. Another view is to consider the case when source and

target distributions are actually equal; then it makes sense to look at the

ratio, which is close to 1 for all samples.

3. Related Work

Most work in transfer learning for ranking are learner-specific, i.e. based

on modifying a particular supervised ranking method: For example, Geng

et. al. [11] modifies the regularization term of a RankSVM to ensure that

the learned target ranker is close to the source domain ranker. For boosted

tree rankers, Gao [12] and Chen [13] use target domain data to re-tune a tree

originally trained on source domain data; Chapelle et. al. [14] extend boosted

tree adaptation to a multitask learning setting, where multiple source domain
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Algorithm 1 Transfer Learning in Ranking by Sample Selection

Input: Target training data: St = {qt
i ,X

t
i,y

t
i}i=1,...,Nt

Input: Target development data: Sv = {qv
i ,X

v,yv}i=1,...,Nv

Input: source domain training data: Ss = {qs
i ,X

s
i ,y

s
i}i=1,...,Ns

Output: Ranker wt+s

1: for i = 1, ..., N t do

2: wt
i = RANK-LEARN((qt

i ,X
t
i,y

t
i)) # compute query-specific rankers

3: end for

4: for i = 1, ..., N s do

5: ws
i = RANK-LEARN((qs

i ,X
s
i ,y

s
i )) # compute query-specific rankers

6: end for

7: rs = DENSITY-RATIO({wt
i}i=1,..,Nt, {ws

i}i=1,..,Ns) # find weights

8: β = 0

9: for α = 0,..,max(rs) do

10: St+s ← {St}

11: for i = 1, ..., N s do

12: if rs
i ≥ α then

13: St+s ← {St+s, (qs
i ,X

s
i ,y

s
i )} # select source subset

14: end if

15: end for

16: ŵ = RANK-LEARN(St+s) # train overall ranker

17: β̂ = ACCURACY(ŵ, Sv)

18: if β̂ ≥ β then

19: β = β̂; wt+s = ŵ # choose overall ranker based on development set

20: end if

21: end for

22: Return wt+s
11



datasets are jointly learned. These methods are promising, but it forces the

designer to be fixed to a particular algorithmic framework. The way these

methods exploit source domain data is to use it to improve the estimation of

model parameters (e.g. by regularization, or by fixing a tree structure).

We are not aware of much learner-independent work like ours (where

various rankers could be plugged-in to a general transfer learning framework),

besides [10] which adopts a feature duplication approach [9]. The idea is to

duplicate the features so that every feature has a target, source domain,

and shared version. For example, if there are 700 features originally, we

would now get 2100 features: for the target data, the first 1400 feature

are active (and feature id f is the same value as feature id f + 700, for

1 ≥ f ≥ 700). For source domain data, the final 1400 features are active

(and feature id f + 700 equals feature id f + 1400, for 1 ≥ f ≥ 700). By

doing so, a learning algorithm (with suitable regularization) will focus weights

on shared features when possible, and put weights on the other two when

domain differences dominate. In general, it should be possible to embed the

learner-specific methods into the learner-independent approaches. Learner-

independent approaches usually exploit source domain data by focusing on

the features (e.g. [10]) or the samples (this work).

There are some learner-independent work in settings slightly different

from transfer learning here: Wang et. al. [15] framed a “heterogeneous”

ranking problem where different domains contain fundamentally different

types of objects (e.g. documents vs. citation network). The focus is on find-

ing a latent space mapping so that distinct feature representations could be

shared. In semi-supervised ranking (where some documents have no labels),
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[16] also proposed to use density ratio estimation, albeit with very different

assumptions. There the goal is to estimate density ratios between labeled

and unlabeled features X, whereas here we estimate in the function space of

w.

The local learning approach [17, 18] is similar to ours in the sense that

each query/document-list {qi,Xi,yi} is treated as an independent unit. For

example, Geng et. al. [17] selects training samples based on query (qi) simi-

larity and Banerjee et. al. [18] does so based on document (Xi) similarity; the

selected samples are used for constructing rankers tuned to the test query.

On the other hand, our approach selects samples based on the functional

relationship, wi, which is derived from Xi and yi.

Density ratio estimation is a relatively new area within machine learning.

Besides the KL-based method use here, other methods include mean match-

ing [19], discriminative modeling [20], and least squares fitting [21]. These

techniques have been applied to covariate shift adaptation, feature extraction

[23], and outlier detection [22]. However, to the best of our knowledge, the

current paper is the first work to use density ratio estimation to explicitly

model the functional change assumption in transfer learning.

Most closest to our work is perhaps the classification work by Jiang and

Zhai [24]. They also focused on the functional change assumption: the ap-

proach first trains a classifier on target data, then selects source domain

samples that are not misclassified by it. This approach can be extended to

ranking, as we will do the experiments (Section 5), by training a ranker on all

of the target data and selecting source domain queries that have high NDCG

under this ranker. Another closely related work is by Long et. al. [25], who
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reweights the source domain samples by comparing the outputs of source

domain and target domain regressors/classifiers. If the outputs are similar,

then the sample has deemed more useful and given more weight. A very nice

contribution of [25] is a formal risk minimization objective that can be opti-

mized by a general boosting framework. Our method differs from these two

works in that (1) we train multiple local rankers as opposed to one or two

source/target rankers, and (2) we directly compare distributions in function

space, as opposed to the label’s output space. The first aspect allows us to

look at a distributions rather than points, while the second aspect allows us

to compare functions rather than outputs. Thus, we call our method “Sam-

ple selection by Function Distribution” and the methods of [24, 25] “Sample

selection by Label Relation”. Both address the transfer learning problem

of functional change. We will not argue that ours is better; it is just two

different approaches.

4. Experiment Setup

4.1. Datasets

We performed experiments on two datasets. The data from the Yahoo!

Learning to Rank Challenge (Track 2)[4] consists of data for a real-life search

engine in two different markets. This data was available as part of a open

challenge in Spring 2010; we have divided the original target training data

randomly into five folds in order to perform cross-validation in our exper-

iments. Target training data consists of roughly 1000 queries, and source

domain data is twenty-times larger. In order to evaluate transfer learning

under various resource settings, we also perform data ablation experiments
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where target training data is artificially reduced while source domain data is

held fixed.

Our second data comes from the publicly-available Microsoft LETOR

distribution v3.0 [5]. To create a transfer learning scenario, we take the

topic distillation task (2004td) as the target domain; the source domain data

consists of the named paged finding (2004np) and homepage finding tasks

(2004hp). All data come from the TREC2004 Web track, which represents

retrieving webpages on the .GOV collection. The domains are different in the

sense that topic distillation finds webpages that are good information hubs on

a certain topic, whereas the homepage and named page tasks require finding

particular URLs (navigational queries). We mix both homepage and named

page finding data to test our method on heterogeneous source domain data.

source domain data is 3.3 times the size of target data.

Table 1 presents the data statistics. For the Yahoo data, there are five

levels of relevance judgments (ranging from “very relevant” to “irrelevant”)

and 700 features. Some features are defined only for the target domain (596

features) or only for source domain (519 features); the feature value is set

to zero if it is not defined to keep the feature vector fixed at 700. For the

LETOR data, there are two levels of relevance and 64 features, including term

frequency, BM25, LMIR, and PageRank. Note that LETOR has fewer target

queries (45) compared to the Yahoo dataset (1012), but more documents per

query.

4.2. Evaluation Metric

We use Normalized Discounted Cumulative Gain (NDCG) [6], a popular

evaluation metric for information retrieval:
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YAHOO Dataset #Queries #Documents #Features

Target Training data 1012 27,852 700

Target Development data 127 3,638 700

Target Test data 127 3,325 700

Source Training data 19,944 473,134 700

LETOR Dataset #Queries #Documents #Features

Target Training data 45 44,487 64

Target Development data 15 14,829 64

Target Test data 15 14,829 64

Source Training data 150 148,243 64

Table 1: Dataset statistics

NDCG =
DCG

IdealDCG
DCG =

M∑
m=1

2ym − 1

log2(1 + m)
(2)

where ym is the label value for a document ranked at position m. DCG

is normalized by IdealDCG, which is the value for perfect ranking, so that

NDCG ranges between [0, 1]. Intuitively, NDCG will be large if the most

relevant documents (with high ym) are ranked at the beginning. Here we

average up to the first M=5, 10, and 15 positions (NDCG@5, NDCG@10,

NDCG@15).

We use the python/perl scripts associated with each dataset to compute

the evaluation metrics. The Yahoo script additionally reports Expected Re-

ciprocal Rank (ERR) [7] while the LETOR script reports Mean Averaged

Precision (MAP). ERR measures the expected reciprocal document position
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when an user becomes satisfied, assuming a cascaded model (linear scan of

documents). MAP calculates the precision of relevant documents averaged

across various positions. We treat NDCG@10 as the main evaluation crite-

rion.

5. Results

5.1. Main Results

For all experiments, we use RankSVM [8] as the base ranker (RANK-

LEARN()). The parameters are the threshold α and SVM cost tradeoff c,

both of which are tuned on the development set. For the threshold α, we

tuned for values that correspond to the 50, 60, 70, 80, 90 percentiles of rs. For

the SVM cost tradeoff c, we choose among {0.01, 0.1, 1, 10, 100}. All results

show averaged 5-fold results on the test set.

We compare the following domain adaptation methods:

1. SampleSelect (Function): Sample selection by Function Distribu-

tion. This is the proposed approach which selects source samples by

comparing densities in function space..

2. SampleSelect (Label): Sample selection by Label Relation. This

method extends the classification algorithm of Jiang and Zhai [24] to

ranking. A ranker trained on all of target data is used to rank source

data. For each source query, we then compute the NDCG/MAP scores.

Source samples with high scores are selected and folded into the train-

ing data. The amount of samples to select is determined by cross-

validation, similar to the proposed method.
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3. Feature duplication: This is a learner-independent transfer learning

method that has achieved state-of-the-art results [9, 10].

For reference, we also have the following simple baselines:

1. Target-only: Training on only target data (non-transfer)

2. Source-only: Training on only source domain (mismatch condition)

3. Combined Data: Training on combined target and source data

4. Weighted Combined: Training on a weighted combination of target

and source data. In particular, target data is weighted to be 1, 1.5,

2, 2.5 or 3 times the number of source queries, and the best result

is chosen by cross-validation. (E.g. for Yahoo data which has about

1k target vs 20k source queries, we would multiply the target data by

multiples of 20, 30, 40, 50, 60, respectively.)

The results for Yahoo dataset is shown in Table 2. We observe that

the Target-only baseline gives .729 NDCG@10. Naively adding all source

domain data (Combined) causes it to drop to .724 NDCG@10, while a tuned

Weighted Combined improves it to .732 NDCG@10. On the other hand,

the proposed SampleSelect (Function) strategy improves NDCG@10 to

.735, implying that smart selection of data is important. This is a statistically

significant improvement relative to Weighted Combined, according to the

t-test, with p < 0.05.

The proposed method also outperforms the competing domain adapta-

tion methods SampleSelect (Label) and Feature Duplication. It ap-

pears that sample selection by function distribution is better than by label

relation, which is respectively better than feature duplication. The other

NDCG positions and ERR metric shows similar trends.
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System NDCG@5 NDCG@10 NDCG@15 ERR

SampleSelect (Function) 0.694 0.735 0.772 0.439

SampleSelect (Label) 0.690 0.731 0.769 0.438

Feature Duplication 0.690 0.731 0.731 0.437

Target-only 0.690 0.729 0.768 0.437

Source-only 0.655 0.701 0.741 0.406

Combined Data 0.686 0.724 0.759 0.432

Weighted Combined 0.693 0.732 0.772 0.438

Table 2: Cross-validation Results (Yahoo data)

The results for the LETOR dataset are shown in Table 3. Contrary to the

Yahoo result, adding all the source domain data (Combined Data) did not

degrade the Target-only results (both are at .310NDCG@10). SampleSe-

lect (Function) gave some improvements (.314 NDCG@10), but in general

it did not outperform the baselines by statistically significant margins, con-

trary to case of the Yahoo dataset result. Comparison with other domain

adaptation results are inconclusive, with the proposed method winning in

NDCG@10 and NDCG@15 but not in other metrics. We conjecture that the

source domain data in this dataset may be too small for us to observe notice-

able effects. The fact that adding all source domain data without any smart

selection did not degrade results lead us to believe that (1) the domains may

be quite similar, and (2) the target training data is sufficiently small so that

any extra data may be beneficial.

Summary: Our proposed SampleSelect (Function) consistently im-
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System NDCG@5 NDCG@10 NDCG@15 MAP

SampleSelect (Function) 0.344 0.314 0.315 0.226

SampleSelect (Label) 0.346 0.310 0.312 0.226

Feature Duplication 0.346 0.312 0.312 0.226

Target-only 0.330 0.310 0.312 0.226

Source-only 0.327 0.306 0.302 0.213

Combined Data 0.345 0.310 0.309 0.227

Weighted Combined 0.335 0.314 0.313 0.224

Table 3: Cross-validation Results (LETOR data)

proved results or tied performance with the baseline Target-only or

Weighted Combined systems, according to various metrics on the two

datasets. For the larger Yahoo dataset, the proposal additionally outper-

forms other state-of-the-art transfer learning methods SampleSelect (La-

bel) and Feature Duplication. It is therefore a very robust approach to

transfer learning.

5.2. Detailed Analysis

We performed additional experiments to analyze our method in more

detail, focusing on the Yahoo dataset:

5.2.1. How does the method work when amount of target training data varies?

Figure 2 shows the results for data ablation experiments. We artificially

reduced the size of the target training data by 0.2, 0.4, and 0.8 fraction of

samples. The fractions 0.2, 0.4, and 0.8 corresponds to roughly 110-140, 260-

290, and 550-780 queries, respectively (the numbers vary by cross-validation

20



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.422

0.424

0.426

0.428

0.43

0.432

0.434

0.436

0.438

0.44

0.442

fraction of target data

TestERR

 

 

combined

target only

proposed

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.705

0.71

0.715

0.72

0.725

0.73

0.735

0.74

fraction of target data

TestNDCG@10

 

 

combined

target only

proposed

Figure 2: Data ablation results on Yahoo data: Proposed sample selection outperforms

others on 0.4, 0.8, and 1 fraction of data.

fold). We are interested to see whether sample selection works well for

a variety of scenarios regarding data resources, in order to find the best

operating region of this method. The figure shows that sample selection

gave robust improvements over almost all conditions. For 0.4 and 0.8 fraction

of data, it outperformed both combined and target-only, just like it did for

the full data case; the results are tied for the 0.2 condition. We conclude that

sample selection is competitive for a variety of target training data amounts,

and especially good for larger training datasets.
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5.2.2. How important is the density ratio estimation step?

Recall that our method performs density ratio estimation in the space

of model parameters w. How important is density ratio estimation, per

se? One may imagine other ways to sample source domain data, not using

density ratio estimation. Here we answer this question by comparing with a

straightforward approach: First, we obtain an average weight vector for the

target domain by taking the mean of the trained vectors: wt
avg =

∑Nt

i=1 wt
i.

Then, we simply choose source domain samples that have ws
i close to wt

avg

(i.e. small ||wt
avg − ws

i ||). This straightforward scheme represents another

way to select source domain samples in the weight space, but not using the

machinery of density ratio estimation. Our goal is to see if this also gives

good results, or if density ratio estimation is important.

Figure 3 shows the performance comparison, varied over different thresh-

olds α (which corresponds different percentage of source domain samples

selected). We see that for all cases, sample selection by density ratio es-

timation outperforms the straightforward method based on distance to the

average vector. We thus conclude that taking into account the distribution

of in-domain weight vectors is important. Looking at the distribution, rather

than a mean statistic, allows us to better identify outliers in the source do-

main data.

5.2.3. What happens when the number of documents per query is reduced?

Our method trains query-specific rankers in order to characterize func-

tional change, and this step relies on obtaining robust rankers on a single

query. Thus, a concern is whether small numbers of documents per query

will degrade the estimation of query-specific rankers. To test this, we artifi-
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Figure 3: Comparison between density ratio estimation and simple distance to average

approach for sample selection.

cially reduced the number of documents in the Yahoo dataset, in particular

by deleting the bottom half of each query’s document list. We performed

density ratio estimation on rankers trained on these smaller datasets and

compared the results with the original dataset. Naturally, the trained weight

vectors will be different. But what is important is whether the ordering

of density ratio values changes significantly, since this affects the subset of

samples selected by our method.

Figure 4 shows how much of the selected subset of the reduced dataset

overlaps with that of the original. This is calculated by sorting the source

samples according to density-ratio values, and seeing how much intersection

there is at each threshold. We can see that the overlap is quite high (e.g.

when 50% of the source samples are selected, 90% of those selected are also
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Figure 4: Measure of subset overlap between sample selection using density ratios trained

by original vs. half of document/query training data (blue line). The red dashed line

shows the overlap between the original selection and random selection.

present in the original subset). Thus it appears that our method is relatively

robust to changes in number of documents per query. The subset using

the density ratio values from reduced dataset achieved a test MAP of 0.438

and MAP of 0.734, which is relatively close to the original Sample Select

(Function) result in Table 2.
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6. Discussions and Conclusions

6.1. Summary

The contributions of this work are two-fold:

1. A general strategy to transfer learning for ranking based on sample

selection: This is scalable, flexible, and modular, allowing the plug-in

of many existing supervised ranking methods. The method achieves

competitive or better results compared to state-of-the-art baselines.

2. A specific method based on density ratio estimation on sample-specific

rankers wi. This method naturally captures the assumption of “func-

tional change” in transfer learning, which has not been previously ex-

amined in the context of ranking.

We emphasize that our approach is learner-independent: sample selection

can be used in conjunction with many of the existing ranking algorithms in

the literature. Furthermore, the fact that we select samples in the model

space w, as opposed to the feature space, is novel and sets it apart from

many previous approaches to transfer learning (for both classification and

ranking). This allows us to capture the “functional change” assumption and

incorporate labeled information in the transfer learning process.

6.2. Limitations and Extensions

One limitation here is the constraint on linear rankers. While linear

rankers (e.g. [8, 26, 27, 28]) are popular in practice due to their strong perfor-

mance and fast computation, we may sometimes desire non-linear rankers for

their more expressive power. We require linearity because we use a Gaussian
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kernel k(wi,wj) = exp(−||wi −wj||/2σ) to measure the similarity between

rankers.

It is possible to extend this work to nonlinear rankers, such as trees

[12], neural networks [29], and RankBoost [30], if we can define kernels that

accurately capture the similarity between rankers. The criteria for such a

kernel is: PRED(wi, S) ≈ PRED(wj, S) ⇒ k(wi,wj) → 0 ; i.e. rankers

that are close in kernel space are those that give similar predictions on the

same data. Concretely, we can let two rankers predict on the same set of

queries, and use the L2 distance between these prediction vectors to measure

similarity.

Finally, one may also consider different methods for density ratio estima-

tion. We experimented with the KL-based method here, but other methods

such as mean matching [19], discriminative logistic regression modeling [20],

and least squares fitting [21] may also perform well. An interesting avenue of

future research is to better understand what kind of density ratio estimation

algorithm is most suitable with this general ranker adaptation method.
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