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Abstract

We propose a simple yet effective semi-supervised method for improving Chi-
nese Word Segmentation. Our method is based on learning generalizable vector
and cluster representations of variable-length character sequences from large un-
labeled data, which is then incorporated into a sequence labeling model with the
passive-aggressive algorithm as features. We achieve state-of-the-art results on the
SIGHAN2005 Bakeoff and show significant improvements on Out-Of-Vocabulary
(OOV) words, a long-standing challenge in word segmentation.

1 Motivation

The problem of OOV words plagues all Natural Language Processing (NLP) systems. Words that
are not observed in the training data often deteriorate accuracy, limiting the usability of NLP in open
domains. Recently, methods for learning word representations from large unlabeled text have been
shown to be effective for this problem. The idea is to learn generalizable features or clusters of
words in order to tie OOV words with the words observed in the training data. Positive results are
shown in Named Entity Recognition, POS tagging [10], and dependency parsing [3].

However, learning word representations is challenging for writing systems that do not have clear
word delimiters (e.g. Chinese, Japanese). A reasonable solution is to resort to learning character
representations, though it is not obvious whether single characters contain sufficient information.

In this work, we perform a comprehensive evaluation of character representations in the context of
Chinese Word Segmentation, and propose a technique that learns representations for variable-length
character n-grams using Neural Language Models [5] and Brown Clustering [1]. This representa-
tion learning approach is in contrast to previous works, which focus on mining point-wise mutual
information or accessor variety features from unlabeled text [8, 7, 12]. Our method achieves state-
of-the-art results on the SIGHAN2005 Bakeoff and improves recall for OOV words, the main factor
impacting segmentation accuracies [2]. We also demonstrate that our method improves accuracy in
the open domain scenario, using the SIGHAN2010 Bakeoff data.
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2 Learning Representations

2.1 Proposed Framework

Our method is summarized by Figure 1. By learning vector and cluster representations of variable-
length character sequences from large unlabeled text, we seek for features that generalize across
both observed and OOV words. First, the raw text (without word delimiters) is split into n-gram
character chunks. For example, given a sentence s = [c0c1c2c3c4] with characters ci, we split
it into 1-gram character chunks [c0, c1, c2, c3, c4], 2-gram character chunks [c0c1, c1c2, c2c3, c3c4],
and 3-gram character chunks [c0c1c2, c1c2c3, c2c3c4].

Next, we run standard ”word”-based representation learning algorithms (e.g. Neural Language Mod-
els and Brown Clustering), treating each of these character n-grams as a ”word”. Finally, features
derived from such representations are merged and plugged into a word segmentation algorithm.
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Figure 1: Proposed multi-scale and ensemble framework for learning representations.

Our method can be considered as a multi-scale and ensemble approach to learning character repre-
sentations. By allowing multi-scale character n-gram sequences, we increase the chance of learning
representations for meaningful sub-units of words. Of course, some of the character n-grams pro-
duced in this way may be nonsense ”sub-units”, but by using an ensemble of multiple learning
representation algorithms, we decrease the risk of settling on an unreliable feature. This approach
naturally addresses the issue of learning representations in the case where raw text lacks word de-
limiters. Two types of character representations employed here are described in next subsection.

2.2 Vector-based Character Representations

The vector-based approach to learning representations focuses on embedding a word or character
n-gram as a low-dimensional real-valued vector. The goal is to place similar character n-grams into
nearby points in the vector space. Let v ∈ Rd be a d-dimensional vector representation of the
character n-gram we would like to learn, and vc be the vector representation of a character n-gram in
the sentence context. Following Neural LM work by [5], we optimize v by maximizing the following
objective: ∑

c

log p(vc|v) =
∑
c

log

[
exp(vTc · v)∑
w exp(vTw · v)

]
(1)

Basically, the equation says that we want to learn a probabilistic model p(vc|v) that gives high
probability to all vc occurring in a window1 around v, and that this probabilistic model is defined
by a dot-product vTc · v put through as softmax activation function. The normalizing denominator
in the softmax (

∑
w exp(vTw · v)) sums over all character n-grams (i.e. vocabulary size), in effect

penalizing words that are not in v’s context. The objective in Eq. 1 is optimized jointly for all v
in the large unlabeled text to generate vector representations for all character n-grams. Following
[10], these vector features are normalized and scaled in order to maintain a balanced contribution
compared with other binary features.

2.3 Cluster-based Character Representations

In a cluster-based representation, we first cluster all character n-grams using some objective and
give the same feature to those that share the same cluster. In contrast to real-valued vectors, these
are sparse and discrete features. While discrete features may be easier to integrate into existing
NLP systems, we loss the real vector’s ability to discern graded similarities. Our first cluster-based
representation is K-Means clustering applied on the vectors learned by Equation 1. This kind of
two-stage approach that clusters vectors learned from Neural LMs has been shown successful [11].

1We use the previous two and next two character n-grams in our experiments. If using only the next character
n-gram, the model becomes a bigram language model.
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Our second cluster-based representation is the widely-used Brown clustering algorithm [1] trained
on large unlabeled raw text. Brown clustering is a hierarchical clustering algorithm which groups
words (character n-grams in our case) to maximize the mutual information between clusters in a
class-based bigram language model.

3 Experimental Results

3.1 Data and Setup
We evaluate our method on two simplified Chinese corpora, the Peking University (PKU) corpus,
which includes 1.1M training words and 104K test words with OOV Rate 0.058, and the Microsoft
Research (MSR) corpus, which includes 2.37M training words and 107K test words with OOV Rate
0.026, provided in the SIGHAN2005 Bakeoff2. Standard train/test splits are used in training and
testing our baseline character-based CRF segmenter, which is implemented in CRFSuite [6] using
passive-aggressive algorithm. The CRF segments by tagging each character with one of four tags
{B, I,E, S}: B, I,E denote the beginning, internal, and end character of a multi-character word,
respectively, and S indicates a single character word. Given a current character ci with a context
...ci−1cici+1..., the baseline feature templates are [9]:

• Char Unigram: cs (i-3< s < i+3)
• Char Bigram: cscs+1 (i-3< s < i+2)

• Identical: cs = cs+1 (i-2< s < i+2)
• Identical skip: cs = cs+1 (i-4<s<i+2)

Our character representations are appended as extra features.For target character cs, we extract Neu-
ral LM, K-Means, and Brown features based on the representations trained on 1-gram, 2-gram, and
3-gram character chunks. The Neural LMs are vectors in Rd, d = 100, trained using word2vec3.
K-Means4 with k = 100 clusters is trained on these Neural LM vectors. For Brown clustering5, we
employ the full bit string and 4-6 prefix as features. To train our character representations, we use
the simplified Chinese data in Chinese Gigaword v26. This data contains a total of 559M characters;
our character n-gram data has 6K unigram types, 1.4M bigram types, and 7.3M trigram types. We
also obtain Pointwise Mutual Information (PMI) features from Gigaword for comparison; this is an
effective semi-supervised technique [8].

3.2 Main Results
Table 1 summarizes our segmentation results. On the PKU test set, baseline F-value of 94.6% is
improved to 95.5% when using the proposed method; on the MSR test set, baseline F-value of
96.6% is increased to 97.0%. Both of these results outperform the best systems at Bakeoff2005 and
are also competitive with the current state-of-the-art.7 Notably, our features are more effective than
PMI, a common approach to exploit unlabeled data.

More interesting are our OOV recall results, which improved significantly from 73.2% to 80.9%
on PKU, and from 73.0% to 75.3% on MSR. In Chinese, compounding is one of the main mech-
anisms whereby new words are generated. We find that many of the OOV words corrected by
our proposed method are such compound words, such as: 专利(patent)法(law) and 沙丁(sardine
”transliteration”)鱼(fish).
To see the effect of our multi-scale and ensemble approach, note that (1) for all representations,
while 1-gram, 2-gram, and 3-gram each helped individually, using all of them tend to give the best
results; (2) there appears to be no winner among Neural LM, Brown Cluster, and Neural LM/K-
Means individually; each of them tend to give the same amount of improvement, yet when used
together, their improvements are additive, implying that they provide diverse information.

2http://www.sighan.org/bakeoff2005/
3https://code.google.com/p/word2vec
4http://users.eecs.northwestern.edu/∼wkliao/K-Means/
5https://github.com/percyliang/brown-cluster
6http://catalog.ldc.upenn.edu/LDC2005T14
7To the best of our knowledge, the current best F-value for PKU is 95.55% by [7], which mines frequent

substrings from both Gigaword and test data. For MSR, the current best (97.4%) appears to be [9]; their
contribution is a joint word detection and segmentation model and it could conceivably be combined with our
features.

3



System PKU MSR
Recall Prec F-val OOV Recall Prec F-val OOV

baseline 94.1 95.1 94.6 73.2 96.4 96.7 96.6 73.0
+PMI 94.4 95.6 95.0 78.4 96.5 96.7 96.6 71.8
+1-gram Neural LMs 94.1 95.4 94.7 78.0 96.4 96.8 96.6 73.3
+2-gram Neural LMs 94.2 95.5 94.8 78.6 96.5 96.8 96.7 73.8
+3-gram Neural LMs 94.3 95.5 94.9 79.0 96.5 96.9 96.8 74.0
+All Neural LMs (ANLM) 94.3 95.6 94.9 79.5 96.5 96.8 96.7 73.6
+1-gram K-Means 94.1 95.3 94.7 78.1 96.4 96.8 96.6 73.7
+2-gram K-Means 94.2 95.5 94.9 79.1 96.6 96.9 96.7 74.8
+3gram K-Means 94.5 95.6 95.0 80.1 96.6 96.9 96.8 74.3
+All K-Means (AKM) 94.5 95.7 95.1 80.4 96.8 96.9 96.8 75.8
+1-gram Brown Cluster 94.0 95.3 94.7 78.2 96.5 96.8 96.6 73.7
+2-gram Brown Cluster 94.6 95.6 95.1 79.5 96.7 96.9 96.8 72.6
+3-gram Brown Cluster 94.6 95.7 95.1 80.5 96.6 96.9 96.8 74.4
+All Brown Cluster (ABC) 94.7 95.7 95.2 80.5 96.8 96.9 96.8 74.4
+ANLM+ ABC +PMI 94.8 95.9 95.4 80.8 96.9 96.9 96.9 74.3
+AKM + ABC + PMI 94.9 96.1 95.5 80.9 97.0 96.9 97.0 75.3
Chen05 95.3 94.6 95.0 63.6 96.9 95.2 96.0 37.9
Tseng05 94.6 95.4 95.0 78.7 96.2 96.6 96.4 71.7

Table 1: Results on PKU and MSR corpora (overall precision, recall, F-value, & OOV recall). All
Neural LMs (ANLM) and All Brown cluster (ABC) indicates all of the 1-gram, 2-gram and 3-gram
features. Tseng05 and Chen05 are the best systems in PKU and MSR at Bakeoff2005, respectively.

Figure 2: Training time on Intel 2.9GHz Xeon. Figure 3: F-value vs. #cluster (MSR corpus).

The training time for learning representations is shown in Figure 2. While it is practically feasible
to train 3-grams on commodity hardware and achieve good results, the complexity does grow with
larger n-grams due to the larger number of ”word” types.

We have found that our method is not very sensitive to hyper-parameters, such as number of clusters.
Figure 3 shows that for cluster sizes k=50 to 300, the F-value is relatively constant. It is only at larger
k (e.g. 500) where we see slight differences in performance.

3.3 Open Domain Results

We are interested in how our system performs in an open domain setting. So here we took the PKU
model trained on SIGHAN2005 and applied it to the multi-domain test set of SIGHAN2010 [14].
Notably, we do not re-train the character representations nor the CRF in order to simulate a true
open domain setting. From Table 2, we see that the our proposed approach drastically improves
both F-value (by 1% or more) and OOV recall (by 3% or more) in all test domains.
4 Conclusions

We have explored how a multi-scale and ensemble approach to learning character representations
can improve Chinese Word Segmentation. By combining Neural LM, Brown, and K-Means features
trained on various n-gram character chunks, we achieved state-of-the-art F-value and OOV recall on
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Domains (F-Value/OOV Recall)
Literature Computer Medicine Finance

Baseline 91.7/64.1 90.5/67.7 90.9/67.4 94.4/80.5
Proposed 93.1/67.9 92.7/74.7 92.7/73.4 95.3/83.5

Table 2: Open Domain test results on Bakeoff2010. Proposed system uses all n-gram features of
Brown clustering and K-Means.

Bakeoff2005, and demonstrated large gains in open domain scenarios. As future work, we plan to
compare and combine with semi-supervised systems that utilize unlabeled data differently, e.g. co-
training and co-regularization [13, 15]. Another technique worth trying is to train variable-length
representations from automatically-segmented corpus, then integrate them as features to a semi-
Markov model. Finally, it is interesting to consider hierarchical approaches to learning sub-word
representations [4].
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