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Abstract

We propose a method for simultaneously
translating from a single source language to
multiple target languages T1, T2, etc. The mo-
tivation behind this method is that if we only
have a weak language model for T1 and trans-
lations in T1 and T2 are associated, we can use
the information from a strong language model
over T2 to disambiguate the translations in T1,
providing better translation results. As a spe-
cific framework to realize multi-target transla-
tion, we expand the formalism of synchronous
context-free grammars to handle multiple tar-
gets, and describe methods for rule extraction,
scoring, pruning, and search with these mod-
els. Experiments find that multi-target transla-
tion with a strong language model in a similar
second target language can provide gains of up
to 0.8-1.5 BLEU points.1

1 Introduction

In statistical machine translation (SMT), the great
majority of work focuses on translation of a sin-
gle language pair, from the source F to the tar-
get E. However, in many actual translation situa-
tions, identical documents are translated not from
one language to another, but between a large num-
ber of different languages. Examples of this abound
in commercial translation, and prominent open data
sets used widely by the MT community include UN
documents in 6 languages (Eisele and Chen, 2010),
European Parliament Proceedings in 21 languages

1Code and data to replicate the experiments can be found at
http://phontron.com/project/naacl2015
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Figure 1: An example of multi-target translation, where a
second target language is used to assess the quality of the
first target language.

(Koehn, 2005), and video subtitles on TED in as
many as 50 languages (Cettolo et al., 2012).

However, despite this abundance of multilingual
data, there have been few attempts to take advantage
of it. One exception is the multi-source SMT method
of Och and Ney (2001), which assumes a situation
where we have multiple source sentences, and would
like to combine the translations from these sentences
to create a better, single target translation.

In this paper, we propose a framework of multi-
target SMT. In multi-target translation, we translate
F to not a single target E, but to a set of sentences
E = 〈E1, E2, . . . , E|E|〉 in multiple target languages
(which we will abbreviate T1, T2, etc.). This, in a
way, can be viewed as the automated version of the
multi-lingual dissemination of content performed by
human translators when creating data for the UN,
EuroParl, or TED corpora mentioned above.

But what, one might ask, do we expect to gain
by generating multiple target sentences at the same
time? An illustrative example in Figure 1 shows
three potential Chinese T1 translations for an Arabic
input sentence. If an English speaker was asked to
simply choose one of the Chinese translations, they



likely could not decide which is correct. However, if
they were additionally given English T2 translations
corresponding to each of the Chinese translations,
they could easily choose the third as the most natu-
ral, even without knowing a word of Chinese.

Translating this into MT terminology, this is
equivalent to generating two corresponding target
sentences E1 and E2, and using the naturalness of
E2 to help decide which E1 to generate. Language
models (LMs) are the traditional tool for assessing
the naturalness of sentences, and it is widely known
that larger and stronger LMs greatly help translation
(Brants et al., 2007). It is easy to think of a situation
where we can only create a weak LM for T1, but
much more easily create a strong LM for T2. For
example, T1 could be an under-resourced language,
or a new entrant to the EU or UN.

As a concrete method to realize multi-target trans-
lation, we build upon Chiang (2007)’s framework of
synchronous context free grammars (SCFGs), which
we first overview in Section 2.2 SCFGs are an exten-
sion of context-free grammars that define rules that
synchronously generate source and target strings F
and E. We expand this to a new formalism of
multi-synchronous CFGs (MSCFGs, Section 3) that
simultaneously generate not just two, but an arbi-
trary number of strings 〈F,E1, E2, . . . , EN 〉. We
describe how to acquire these from data (Section
4), and how to perform search, including calculation
of LM probabilities over multiple target language
strings (Section 5).

To evaluate the effectiveness of multi-target trans-
lation in the context of having a strong T2 LM to
help with T1 translation, we perform experiments
on translation of United Nations documents (Section
6). These experiments, and our subsequent analysis,
show that the framework of multi-target translation
can, indeed, provide significant gains in accuracy (of
up to 1.5 BLEU points), particularly when the two
target languages in question are similar.

2 Synchronous Context-Free Grammars

We first briefly cover SCFGs, which are widely used
in MT, most notably in the framework of hierarchi-

2One could also consider a multi-target formulation of
phrase-based translation (Koehn et al., 2003), but generating
multiple targets while considering reordering in phrase-based
search is not trivial. We leave this to future work.
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Figure 2: Synchronous grammars and derivations using
(a) standard SCFGs and (b) the proposed MSCFGs.

cal phrase-based translation (Hiero; Chiang (2007)).
SCFGs are based on synchronous rules defined as
tuples of X , γ, and α

X → 〈γ, α〉, (1)

where X is the head of the rule, and γ and α are
strings of terminals and indexed non-terminals on
the source and target side of the grammar. Each
non-terminal on the right side is indexed, with non-
terminals with identical indices corresponding to
each-other. For example, a synchronous rule could
take the form of3

X → 〈X0 of the X1, X0 des X1〉. (2)

By simply generating from this grammar, it is
possible to generate a string in two languages syn-
chronously, as shown in Figure 2 (a). When we are
already given a source side sentence and would like
to using an SCFG to generate the translation, we
find all rules that match the source side and perform
search using the CKY+ algorithm (Chappelier et al.,
1998). When we would additionally like to consider

3It is possible to use symbols other than X (e.g.: NP , V P )
to restrict rule application to follow grammatical structure, but
we focus on the case with a single non-terminal.



an LM, as is standard in SMT, we perform a mod-
ified version of CKY+ that approximately explores
the search space using a method such as cube prun-
ing (Chiang, 2007).

3 Multi-Synchronous CFGs

In this section, we present the basic formalism that
will drive our attempts at multi-target translation.
Specifically, we propose a generalization of SCFGs,
which we will call multi-synchronous context free
grammars (MSCFGs). In an MSCFG, the elemen-
tary structures are rewrite rules containing not a
source and target, but an arbitrary number M of
strings

X → 〈η1, ..., ηM 〉, (3)

where X is the head of the rule and ηm is a string of
terminal and non-terminal symbols.4 In this paper,
for notational convenience, we will use a specialized
version of Equation 3 in which we define a single γ
as the source side string, and α1, ...αN as an arbi-
trary number N of target side strings:

X → 〈γ, α1, ..., αN 〉. (4)

Therefore, at each derivation step, one non-terminal
in γ is chosen and all the nonterminals with same
indices in α1, ..., αN will be rewritten using a single
rule. Figure 2 (b) gives an example of generating
sentences in three languages using MSCFGs. Trans-
lation can also be performed by using the CKY+ al-
gorithm to parse the source side, and then generate
targets in not one, but multiple languages.

It can be noted that this formalism is a relatively
simple expansion of standard SCFGs. However, the
additional targets require non-trivial modifications
to the standard training and search processes, which
we discuss in the following sections.

4 Training Multi-Synchronous Grammars

This section describes how, given a set of parallel
sentences in N languages, we can create translation
models (TMs) using MSCFGs.

4We will also make the restriction that indices are linear and
non-deleting, indicating that each non-terminal index present in
any of the strings will appear exactly once in all of the strings.
Thus, MSCFGs can also be thought of as a subset of the “gen-
eralized multi-text grammars” of Melamed et al. (2004).

4.1 SCFG Rule Extraction

First, we briefly outline rule extraction for SCFGs
in the standard two-language case, as proposed by
Chiang (2007). We first start by preparing two cor-
pora in the source and target language, F and E , and
obtaining word alignments for each sentence auto-
matically, using a technique such as the IBM models
implemented by GIZA++ (Och and Ney, 2003).

We then extract initial phrases for each sentence.
Given a source fJ1 , target eI1, and alignment A =
{〈i1, i′1〉, . . . , 〈i|A|, i′|A|〉} where i and i′ represent
indices of aligned words in F and E respectively.
First, based on this alignment, we extract all pairs of

phrases BP = {〈f j1i1 , e
j′1
i′1
〉, . . . , 〈f j|BP |

i|BP |
, e

j′|BP |
i′|BP |

〉},
where f j1i1 is a substring of fJ1 spanning from i1 to

j1, and e
j′1
i′1

is analogous for the target side. The

criterion for whether a phrase 〈f ji , e
j′

i′ 〉 can be ex-
tracted or not is whether there exists at least one
alignment in A that falls within the bounds of both
f ji and ej

′

i′ , and no alignments that fall within the
bounds of one, but not the other. It is also com-
mon to limit the maximum length of phrases to be
less than a constant S (in our experiments, 10). The
phrase-extract algorithm of Och (2002) can
be used to extract phrases that meet these criteria.

Next, to create synchronous grammar rules, we
cycle through the phrases in BP , and extract all po-
tential rules encompassed by this phrase. This is
done by finding all sets of 0 or more non-overlapping
sub-phrases of initial phrase 〈f ji , e

j′

i′ 〉, and replacing
them by non-terminals to form rules. In addition,
it is common to limit the number of non-terminals
to two and not allow consecutive non-terminals on
the source side to ensure search efficiency, and limit
the number of terminals to limit model size (in our
experiments, we set this limit to five).

4.2 MSCFG Rule Extraction

In this section, we generalize the rule extraction pro-
cess in the previous section to accommodate multi-
ple targets. We do so by first independently creating
alignments between the source corpus F , and each
of N target corpora {E1, . . . , EN}.

Given a particular sentence we now have
source F , N target strings {E1, . . . , EN}, and
N alignments {A1, . . . , AN}. We next in-



dependently extract initial phrases for each of
the N languages using the standard bilingual
phrase-extract algorithm, yielding initial
phrase sets {BP1, . . . , BPN}. Finally, we convert
these bilingual sets of phrases into a single set of
multilingual phrases. This can be done by noting
that all source phrases f ji will be associated with
a set of 0 or more phrases in each target language.
We define the set of multilingual phrases associated
with f ji as the cross product of these sets. In other
words, if f ji is associated with 2 phrases in T1, and
3 phrases in T2, then there will be a total of 2∗3 = 6
phrase triples extracted as associated with f ji .5

Once we have extracted multilingual phrases, the
remaining creation of rules is essentially the same
as the bilingual case, with sub-phrases being turned
into non-terminals for the source and all targets.

4.3 Rule Scoring

After we have extracted rules, we assign them fea-
ture functions. In traditional SCFGs, given a source
and target γ and α1, it is standard to calculate
the log forward and backward translation probabil-
ities P (γ|α1) and P (α1|γ), log forward and back-
ward lexical translation probabilities Plex(γ|α1)
and Plex(α1|γ), a word penalty counting the non-
terminals in α1, and a constant phrase penalty of 1.

In our MSCFG formalism, we also add new fea-
tures regarding the additional targets. Specifically
in the case where we have one additional target
α2, we add the log translation probabilities P (γ|α2)
and P (α2|γ), log lexical probabilities Plex(γ|α2)
and Plex(α2|γ), and word penalty for α2. In addi-
tion, we add log translation probabilities that con-
sider both targets at the same time P (γ|α1, α2) and
P (α1, α2|γ). As a result, compared to the 6-feature
set in standard SCFGs, an MSCFG rule with two tar-
gets will have 13 features.

4.4 Rule Table Pruning

In MT, it is standard practice to limit the number of
rules used for any particular source γ to ensure re-
alistic search times and memory usage. This limit
is generally imposed by ordering rules by the phrase

5Taking the cross-product here has the potential for combi-
natorial explosion as more languages are added, but in our cur-
rent experiments with two target languages this did not cause
significant problems, and we took no preventative measures.

probability P (α1|γ) and only using the top few (in
our case, 10) for each source γ. However, in the
MSCFG case, this is not so simple. As the previ-
ous section mentioned, in the two-target MSCFG,
we have a total of three probabilities conditioned on
γ: P (α1, α2|γ), P (α1|γ), P (α2|γ). As our main
motivation for multi-target translation is to use T2
to help translation of T1, we can assume that the fi-
nal of these three probabilities, which only concerns
T2, is of less use. Thus, we propose two ways for
pruning the rule table based on the former two.

The first method, which we will call T1+T2, is
based on P (α1, α2|γ). The use of this probability
is straightforward, as it is possible to simply list the
top rules based on this probability. However, this
method also has a significant drawback. If we are
mainly interested in accurate generation of the T1
sentence, there is a possibility that the addition of
the T2 phrase α2 will fragment the probabilities for
α1. This is particularly true when the source and T1
are similar, while T2 is a very different language.
For example, in the case of a source of English, T1
of French, and T2 of Chinese, translations of En-
glish to French will have much less variation than
translastions of English to Chinese, due to less free-
dom of translation and higher alignment accuracy
between English and French. In this situation, the
pruned model will have a variety of translations in
T2, but almost no variety in T1, which is not con-
ducive to translating T1 accurately.

As a potential solution to this problem, we also
test a T1 method, which is designed to maintain va-
riety of T1 translations for each rule. In order to do
so, we first list the top α1 candidates based only on
the P (α1|γ) probability. Each α1 will be associated
with one or more α2 rule, and thus we choose the
α2 resulting in the highest joint probability of the
two targets P (α1, α2|γ) as the representative rule
for α1. This pruning method has the potential advan-
tage of increasing the variety in the T1 translations,
but also has the potential disadvantage of artificially
reducing genuine variety in T2. We examine which
method is more effective in the experiments section.

5 Search with Multiple LMs

LMs computes the probability P (E) of observing
a particular target sentence, and are a fundamental
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Figure 3: State splitting with (a) one LM, (b) two LMs
with joint search, and (c) two LMs with sequential search,
where T1 and T2 are the first (red) and second (blue)
columns respectively.

part of both standard SMT systems and the proposed
method. Unlike the other features assigned to rules
in Section 4.3, LM probabilities are non-local fea-
tures, and cannot be decomposed over rules. In case
of n-gram LMs, this probability is defined as:

PLM (E) =

|E|+1∏
i=1

p(ei|ei−n+1, . . . , ei−2, ei−1) (5)

where the probabilities of the next word ei depend
on the previous n− 1 words.

When not considering an LM, it is possible to effi-
ciently find the best translation for an input sentence
fJ1 using the CKY+ algorithm, which performs dy-
namic programming remembering the most proba-
ble translation rule for each state corresponding to
source span f ji . When using an LM, it is further nec-
essary split each state corresponding to f ji to distin-
guish between not only the span, but also the strings
of n − 1 boundary words on the left and right side
of the translation hypothesis, as illustrated in Figure
3 (a). As this expands the search space to an in-
tractable size, this space is further reduced based on
a limit on expanded edges (the pop limit), or total
states per span (the stack limit), through a procedure
such as cube pruning (Chiang, 2007).

In a multi-target translation situation with one LM
for each target, managing the LM state becomes

more involved, as we need to keep track of the n−1
boundary words for both targets. We propose two
methods for handling this problem.

The first method, which we will dub the joint
search method, is based on consecutively expand-
ing the LM states of both T1 and T2. As shown in
the illustration in Figure 3 (b), this means that each
post-split search state will be annotated with bound-
ary words from both targets. This is a natural and
simple expansion of the standard search algorithm,
simply using a more complicated representation of
the LM state. On the other hand, because the new
state space is the cross-product of all sets of bound-
ary words in the two languages, the search space be-
comes significantly larger, with the side-effect of re-
ducing the diversity of T1 translations for the same
beam size. For example, in the figure, it can be seen
that despite the fact that 3 hypotheses have been ex-
panded, we only have 2 unique T1 LM states.

Our second method, which we will dub the se-
quential search method, first expands the state space
of T1, then later expands the search space of T2.
This procedure can be found in Figure 3 (c). It can
be seen that by first expanding the T1 space we en-
sure diversity in the T1 search space, then addition-
ally expand the states necessary for scoring with the
T2 LM. On the other hand, if the T2 LM is important
for creating high-quality translations, it is possible
that the first pass of search will be less accurate and
prune important hypotheses.

6 Experiments

6.1 Experimental Setup

We evaluate the proposed multi-target translation
method through translation experiments on the Mul-
tiUN corpus (Eisele and Chen, 2010). We choose
this corpus as it contains a large number of paral-
lel documents in Arabic (ar), English (en), Span-
ish (es), French (fr), Russian (ru), and Chinese (zh),
languages with varying degrees of similarity. We
use English as our source sentence in all cases, as
it is the most common actual source language for
UN documents. To prepare the data, we first de-
duplicate the sentences in the corpus, then hold out
1,500 sentences each for tuning and test. In our ba-
sic training setup, we use 100k sentences for training
both the TM and the T1 LM. This somewhat small



number is to simulate a T1 language that has rela-
tively few resources. For the T2 language, we as-
sume we have a large language model trained on all
of the UN data, amounting to 3.5M sentences total.

As a decoder, we use the Travatar (Neubig, 2013)
toolkit, and implement all necessary extensions to
the decoder and rule extraction code to allow for
multiple targets. Unless otherwise specified, we use
joint search with a pop limit of 2,000, and T1 rule
pruning with a limit of 10 rules per source rule.
BLEU is used for both tuning and evaluating all
models. In particular, we tune and evaluate all mod-
els based on T1 BLEU, simulating a situation simi-
lar to that in the introduction, where we want to use
a large LM in T2 to help translation in T1. In order
to control for optimizer instability, we follow Clark
et al. (2011)’s recommendation of performing tun-
ing 3 times, and reporting the average of the runs
along with statistical significance obtained by pair-
wise bootstrap resampling (Koehn, 2004).

6.2 Main Experimental Results

In this section we first perform experiments to inves-
tigate the effectiveness of the overall framework of
multi-target translation.

We assess four models, starting with standard
single-target SCFGs and moving gradually towards
our full MSCFG model:

SCFG: A standard SCFG grammar with only the
source and T1.

SCFG+T2Al: SCFG constrained during rule ex-
traction to only extract rules that also match the
T2 alignments. This will help measure the ef-
fect, if any, of being limited by T2 alignments
in rule extraction.

MSCFG-T2LM: The MSCFG, without using the
T2 LM. Compared to SCFG+T2Al, this will
examine the effect caused by adding T2 rules
in scoring (Section 4.3) and pruning (Section
4.4) the rule table.

MSCFG: The full MSCFG model with the T2 LM.

The result of experiments using all five languages as
T1, and the remaining four languages as T2 for all
of these methods is shown in Table 1.

SCFG MSCFG
T1 T2 SCFG +T2Al -T2LM MSCFG

ar

es

24.97

25.11 24.79 †25.19
fr 24.70 24.73 24.89
ru 24.54 24.62 24.48
zh 24.21 24.16 23.95

es

ar

42.15

41.73 41.21 41.22
fr 42.20 41.84 ‡42.91
ru 41.62 41.90 41.98
zh 41.80 41.61 41.65

fr

ar

37.21

37.26 37.03 37.41
es 37.25 37.22 ‡38.67
ru 37.11 37.31 ‡37.79
zh 37.14 37.29 36.99

ru

ar

26.20

25.91 25.67 25.86
es 26.17 26.01 †26.45
fr 26.07 25.77 26.29
zh 25.53 25.57 25.52

zh

ar

21.16

21.06 20.85 20.84
es 21.39 21.31 21.33
fr †21.60 21.28 21.16
ru 20.50 21.15 21.14

Table 1: Results for standard Hiero (SCFG), SCFG with
T2 extraction constraints (SCFG+T2Al), a multi-SCFG
minus the T2 LM (MSCFG-T2LM), and full multi-target
translation (MSCFG). Bold indicates the highest BLEU
score, and daggers indicate statistically significant gains
over SCFG (†: p < 0.05, ‡: p < 0.01)

First, looking at the overall results, we can see
that MSCFGs with one of the choices of T2 tends to
outperform SCFG for all instances of T1. In partic-
ular, the gain for the full MSCFG model is large for
the cases where the two target languages are French
and Spanish, with en-fr/es achieving a gain of 1.46
BLEU points, and en-es/fr achieving a gain of 0.76
BLEU points over the baseline SCFG. This is fol-
lowed by Arabic, Russian and Chinese, which all
saw small gains of less than 0.3 when using Span-
ish as T2, with no significant difference for Chinese.
This result indicates that multi-target MT has the po-
tential to provide gains in T1 accuracy, particularly
in cases where the languages involved are similar to
each other.

It should be noted however, that positive results
are sensitive to the languages chosen for T1 and T2,
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T2 SCFG +T2Al
ar

223M

46.5M
es 134M
ru 70.8M
zh 26.0M

Table 2: Differences in rule table sizes for a T1 of French.

and in the cases involving Russian or Chinese, there
is often even a drop in accuracy compared to the
baseline SCFG. The reason for this can be seen by
examining the results for SCFG+T2Al and MSCFG-
T2LM. It can be seen that in the cases where there
is an overall decrease in accuracy, this decrease can
generally be attributed to a decrease when going
from SCFG to SCFG+T2Al (indicating that rule ex-
traction suffers from the additional constraints im-
posed by T2), or a decrease from SCFG+T2Al to
MSCFG-LM2 (indicating that rule extraction suffers
from fragmentation of the T1 translations by adding
the T2 translation). On the other hand, we can see
that in the majority of cases, going from MSCFG-
LM2 to MSCFG results in at least a small gain in
accuracy, indicating that a T2 LM is generally use-
ful, after discounting any negative effects caused by
a change in the rule table.

In Table 2 we show additional statistics illustrat-
ing the effect of adding a second language on the
number of rules that can be extracted. From these
results, we can see that all languages reduce the
number of rules extracted, with the reduction being
greater for languages with a larger difference from
English and French, providing a convincing expla-
nation for the drop in accuracy observed between
these two settings.

6.3 Effect of T1 Language Model Strength

The motivation for multi-target translation stated in
the introduction was that information about T2 may
give us hints about the appropriate translation in T1.
It is also a reasonable assumption that the less in-
formation we have about T1, the more valuable the
information about T2 may be. To test this hypoth-
esis, we next show results of experiments in which
we vary the size of the training data for the T1 LM
in intervals from 0 to 3.5M sentences. For T2, we ei-
ther use no LM (MSCFG-T2LM) or an LM trained
on 3.5M sentences (MSCFG). The results for when
French is used as T1 are shown in Figure 4.

From these results, we can see that this hypothesis
is correct. When no T1 LM is used, we generally see
some gain in translation accuracy by introducing a
strong T2 LM, with the exception of Chinese, which
never provides a benefit. When using Spanish as T2,
this benefit continues even with a relatively strong
T1 LM, with the gap closing after we have 400k
sentences of data. For Arabic and Russian, on the
other hand, the gap closes rather quickly, with con-
sistent gains only being found up to about 20-40k
sentences. In general this indicates that the more in-
formative the T2 LM is in general, the more T1 data
will be required before the T2 LM is no longer able
to provide additional gains.

6.4 Effect of Rule Pruning

Next we examine the effect of the rule pruning meth-
ods explained in Section 4.4. We set T1 to either
French or Chinese, and use either the naive pruning
criterion using T1+T2, or the criterion that picks the
top translations in T1 along with their most proba-
ble T2 translation. Like previous experiments, we
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Figure 5: The impact of search on accuracy. Lines indicate a single LM (1 LM), two LMs with joint search (Joint) or
two LMs with sequential search (Seq.) for various pop limits and pruning criteria.

T1=fr T1=zh
T2 T1+T2 T1 T1+T2 T1
ar 36.21 37.41 20.35 20.84
es 38.68 38.67 20.73 21.33
fr - 20.49 21.16
ru 37.14 37.79 19.87 21.14
zh 36.41 36.99 -

Table 3: BLEU scores by pruning criterion. Columns
indicate T1 (fr or zh) and the pruning criterion (T1+T2
joint probability, or T1 probability plus max T2). Rows
indicate T2.

use the top 10 rules for any particular F .
Results are shown in Table 3. From these results

we can see that in almost all cases, pruning using
T1 achieves better results. This indicates the verac-
ity of the observation in Section 4.4 that considering
multiple T2 for a particular T1 causes fragmentation
of TM probabilities, and that this has a significant
effect on translation results. Interestingly, the one
exception to this trend is T1 of French and T2 of
Spanish, indicating that with sufficiently similar lan-
guages, the fragmentation due to the introduction of
T2 translations may not be as much of a problem.

It should be noted that in this section, we are us-
ing the joint search algorithm, and the interaction
between search and pruning will be examined more
completely in the following section.

6.5 Effect of Search

Next we examine the effect of the search algo-
rithms suggested in Section 5. To do so, we per-
form experiments where we vary the search algo-
rithm (joint or sequential), the TM pruning criterion

(T1 or T1+T2), and the pop limit. For sequential
search, we set the pop limit of T2 to be 10, as this
value did not have a large effect on results. For ref-
erence, we also show results when using no T2 LM.

From the BLEU results shown in Figure 5, we
can see that the best search algorithm depends on
the pruning criterion and language pair.6 In gen-
eral, when trimming using T1, we achieve better re-
sults using joint search, indicating that maintaining
T1 variety in the TM is enough to maintain search
accuracy. On the other hand, when using the T1+T2
pruned model when T2 is Chinese, sequential search
is better. This shows that in cases where there are
large amounts of ambiguity introduced by T2, se-
quential search effectively maintains necessary T1
variety before expanding the T2 search space. As
there is no general conclusion, an interesting direc-
tion for future work is search algorithms that can
combine the advantages of these two approaches.

7 Related Work

While there is very little previous work on multi-
target translation, there is one line of work by
González and Casacuberta (2006) and Pérez et al.
(2007), which adapts a WFST-based model to output
multiple targets. However, this purely monotonic
method is unable to perform non-local reordering,
and thus is not applicable most language pairs. It is
also motivated by efficiency concerns, as opposed to
this work’s objective of learning from a T2 language.

Factored machine translation (Koehn and Hoang,
2007) is also an example where an LM over a second

6Results for model score, a more direct measure of search
errors, were largely similar.



stream of factors (for example POS tags, classes,
or lemmas) has been shown to increase accuracy.
These factors are limited, however, by the strong
constraint of being associated with a single word and
not allowing reordering, and thus are not applicable
to our setting of using multiple languages.

There has also been work on using multiple lan-
guages to improve the quality of extracted transla-
tion lexicons or topic models (Mausam et al., 2009;
Baldwin et al., 2010; Mimno et al., 2009). These are
not concerned with multi-target translation, but may
provide us with useful hints about how to generate
more effective multi-target translation models.

8 Conclusion

In this paper, we have proposed a method for multi-
target translation using a generalization of SCFGs,
and proposed methods to learn and perform search
over the models. In experiments, we found that these
models are effective in the case when a strong LM
exists in a second target that is highly related to the
first target of interest.

As the overall framework of multi-target transla-
tion is broad-reaching, there are a still many chal-
lenges left for future work, a few of which we out-
line here. First, the current framework relies on data
that is entirely parallel in all languages of interest.
Can we relax this constraint and use comparable
data, or apply MSCFGs to pivot translation? Sec-
ond, we are currently performing alignment inde-
pendently for each target. Can we improve results by
considering all languages available (Lardilleux and
Lepage, 2009)? Finally, in this paper we considered
the case where we are only interested in T1 accuracy,
but optimizing translation accuracy for two or more
targets, possibly through the use of multi-metric op-
timization techniques (Duh et al., 2012) is also an
interesting future direction.
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