

Background
Continued
Training
Corpora
Models

Subnetworks

Analysis-Distance Sensitivity

Analysis-2 Freeze 1/5

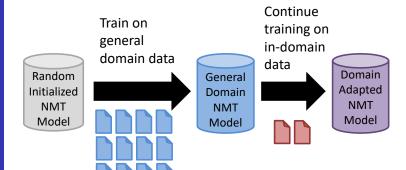
Freeze 4/

Discussio

Freezing Subnetworks to Analyze Domain Adaptation in Neural Machine Translation

Brian Thompson[†] Huda Khayrallah[†] Antonios Anastasopoulos[‡] Arya D. McCarthy[†] Kevin Duh[†] Rebecca Marvin[†] Paul McNamee[†] Jeremy Gwinnup^o Tim Anderson^o and Philipp Koehn[†]

†Johns Hopkins University, ‡University of Notre Dame, °Air Force Research Laboratory


Continued Training

Background Continued Training Corpora

Subnetworks

AnalysisDistance
Sensitivity

Freeze 1/5

Corpora

Background Continued Training Corpora Models

Subnetwork

Analysis-1 Distance Sensitivity

Analysis-2 Freeze 1/5

Discussion

Languages	General Domain	In Domain
	(WMT + OpenSubtitles)	(Patents)
De-En	5.8M + 22M	820k
Ko-En	0+1.4M	81k
Ru-En	25M + 26M	29k
/ · · · · · ·		

(size in lines)

In-domain data: Patent abstracts from the World Intellectual Property Organization (WIPO)

Data Examples

Background
Continued
Training
Corpora
Models

Subnetwork

Analysis-Distance Sensitivity

Freeze 1/5

Discussion

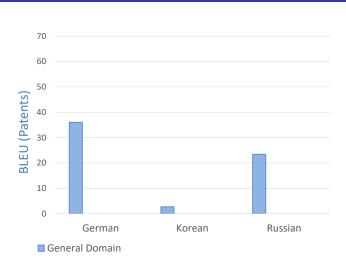
General-Domain:	
OpenSubtitles	Vou'ro

OpenSubtitles	You're gonna need a bigger boat.	
WMT	Intensified communication and sharing of infor-	
	mation between the project partners enables the	
	transfer of expertise in rural tourism.	

In-Domain:

Patents	The films coated therewith, in particular poly-		
	carbonate films coated therewith, have im-		
	proved properties with regard to scratch resis-		
	tance, solvent resistance, and reduced oiling ef-		
	fect, said films thus being especially suitable		
	for use in producing plastic parts in film insert		
	molding methods.		

ckground

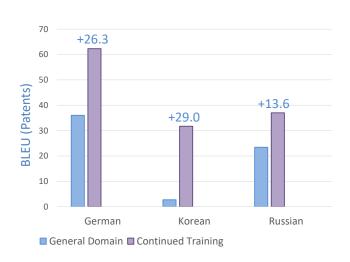

Continued Training Corpora Models

ubnetworl

Analysis-Distance Sensitivity

Analysis-2

Freeze 4/

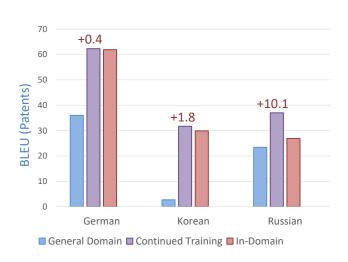


Background Continued Training Corpora Models

ubnetwork

AnalysisDistance
Sensitivity

Analysis-2

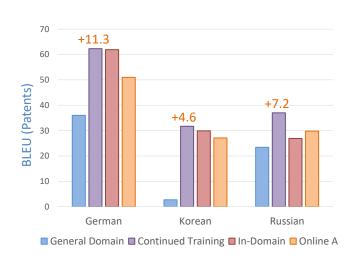


Background Continued Training Corpora Models

Subnetwork

Analysis-Distance Sensitivity

Analysis-



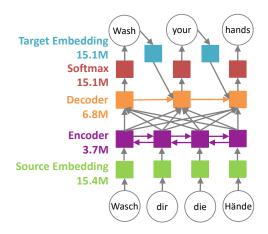
Background Continued Training Corpora Models

ubnetwork

Analysis-Distance Sensitivity

Analysis-

Background


Continued Training Corpora

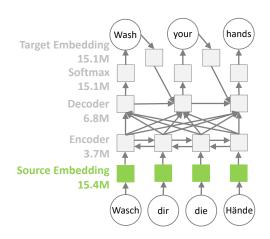
Subnetworks

Analysis-Distance Sensitivity

Analysis-

Freeze 4/5

ackground


Continued Training Corpora Models

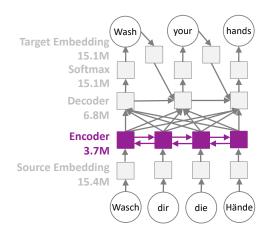
Subnetworks

Analysis-Distance Sensitivity

Analysis-2

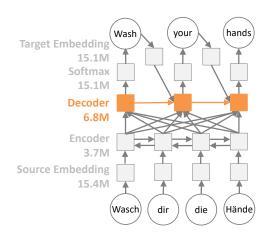
Freeze 1/! Freeze 4/!

Background
Continued
Training


Continued Training Corpora Models

Subnetworks

Analysis-Distance Sensitivity

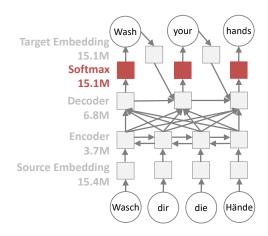

Analysis-2 Freeze 1/5

Freeze 4/

Subnetworks

Continued

Continued Training Corpora Models


Subnetworks

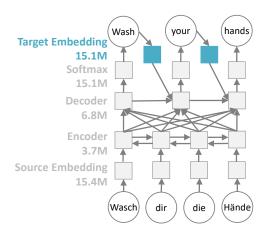
Analysis-Distance Sensitivity

Sensitivity

Analysis

Freeze 1/5

Background


Continued Training Corpora

Subnetworks

Analysis-Distance Sensitivity

Analysis-

Freeze 4/5

Background

Continued Training Corpora

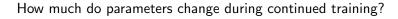
Subnetworks

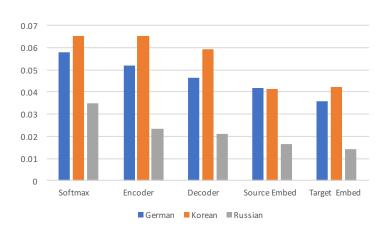
Analysis-Distance Sensitivity

Analysis-2

Freeze 1/! Freeze 4/!

Change During Adaptation


Background
Continued
Training
Corpora


Subnetworks

Analysis-1

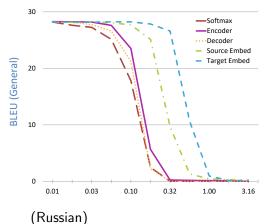
Analysis-2

Discussion

(RMS Change)

Per-Component Sensitivity Analysis

Background Continued Training Corpora Models


Subnetworks

Analysis-1 Distance Sensitivity

Analysis-2 Freeze 1/5 Freeze 4/5

Discussion

Performance (BLEU) as a function of noise (standard deviation) added to a given component.

Component	L ² Norm
Softmax	0.14
Encoder	0.22
Decoder	0.24
Src. Emb	0.20
Tgt. Emb	0.20

Background Continued Training Corpora Models

Subnetworks

Analysis-Distance Sensitivit

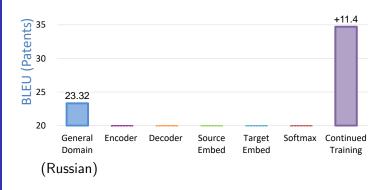
Analysis-2 Freeze 1/5

Freeze 4/5

Discussion

Question: How much does the model / training procedure depend on any **single** component for adaptation?

Background
Continued
Training
Corpora
Models

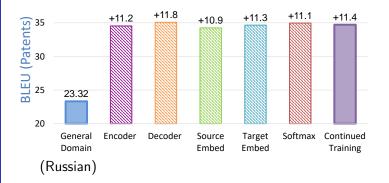

Subnetworks

Analysis-1 Distance Sensitivity

Analysis-2 Freeze 1/5

Discussion

Question: How much does the model / training procedure depend on any **single** component for adaptation?



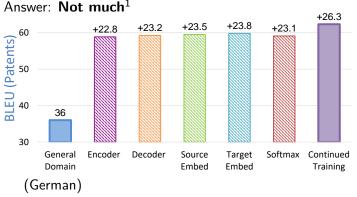
¹When initial general-domain model is reasonably good

Freeze 1/5

Question: How much does the model / training procedure depend on any **single** component for adaptation? Answer: **Not much**¹

¹When initial general-domain model is reasonably good

Background
Continued
Training
Corpora
Models


Subnetworks

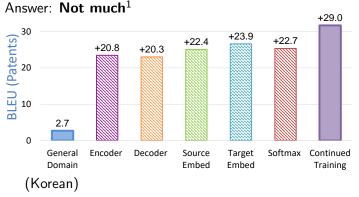
Analysis-1
Distance
Sensitivity
Analysis-2

Freeze 1/5 Freeze 4/5

Discussion

Question: How much does the model / training procedure depend on any **single** component for adaptation?

¹When initial general-domain model is reasonably good


Background
Continued
Training
Corpora
Models

Subnetworks

Distance Sensitivity Analysis-2 Freeze 1/5

Discussion

Question: How much does the model / training procedure depend on any **single** component for adaptation?

¹When initial general-domain model is reasonably good

Background
Continued
Training
Corpora
Models

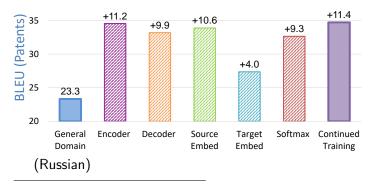
Subnetworks

Analysis Distance Sensitivit

Analysis-2 Freeze 1/!

Freeze 1/5
Freeze 4/5

Question: How much can the model / training procedure adapt using only a **single** component?



Background
Continued
Training
Corpora
Models

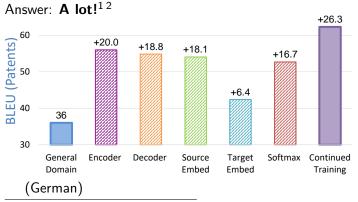
Subnetwork

Distance Sensitivity Analysis-2 Freeze 1/5 Freeze 4/5 Question: How much can the model / training procedure adapt using only a **single** component?

Answer: A lot!¹²

¹When initial general-domain model is reasonably good

²Except for the target embeddings


Background
Continued
Training
Corpora
Models

Subnetwork

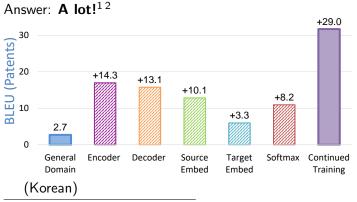
Distance Sensitivity Analysis-2 Freeze 1/5

Freeze 4/5

Question: How much can the model / training procedure adapt using only a **single** component?

¹When initial general-domain model is reasonably good

²Except for the target embeddings



Background
Continued
Training
Corpora
Models

Subnetwork

Distance Sensitivity Analysis-2

Freeze 1/5 Freeze 4/5 Question: How much can the model / training procedure adapt using only a **single** component?

¹When initial general-domain model is reasonably good

²Except for the target embeddings

Discussion

Background Continued Training Corpora

Subnetwork

Analysis-Distance Sensitivity

Analysis-2 Freeze 1/!

Freeze 4/

- Single components capable of adapting entire system
 - Could effect be replicated without parallel data?

Discussion

Background
Continued
Training
Corpora
Models

Subnetwork

Analysis-1 Distance Sensitivity

Freeze 1/5
Freeze 4/5

- Single components capable of adapting entire system
 - Could effect be replicated without parallel data?
- Adaptation successful with small subset of parameters
 - Regularization techniques (Khayrallah et al. 2018)
 - Adapt subsets of parameters (Vilar, 2018)

Discussion

Background
Continued
Training
Corpora
Models

Subnetwork

Analysis-1 Distance Sensitivity

Freeze 1/5 Freeze 4/5

- Single components capable of adapting entire system
 - Could effect be replicated without parallel data?
- Adaptation successful with small subset of parameters
 - Regularization techniques (Khayrallah et al. 2018)
 - Adapt subsets of parameters (Vilar, 2018)
- DNNs are difficult to inspect/understand
 - But we can run experiments!

Acknowledgements

Backgroun
Continued
Training
Corpora
Models

Subnetwork

Analysis-1 Distance Sensitivity

Freeze 4/5

Discussion

Thanks to:

- Lane Schwartz and Graham Neubig for organizing MTMA
- Michael Denkowski and David Vilar for Sockeye help
- NDSEG Fellowship, NSF Award 1464553, and DARPA LORELEI for funding