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Abstract
We present a number of systems for the Voice Privacy Chal-
lenge, including voice conversion based systems such as the
kNN-VC method and the WavLM voice Conversion method,
and text-to-speech (TTS) based systems including Whisper-
VITS. We found that while voice conversion systems better
preserve emotional content, they struggle to conceal speaker
identity in semi-white-box attack scenarios; conversely, TTS
methods perform better at anonymization and worse at emotion
preservation. Finally, we propose a random admixture system
which seeks to balance out the strengths and weaknesses of the
two category of systems, achieving a strong EER of over 40%
while maintaining UAR at a respectable 47%.
Index Terms: Voice Conversion, Text-to-Speech, Voice
Anonymization

1. Introduction
Technology has enabled unprecedented means for extracting
personally identifiable information from speech. New legisla-
tion that recognizes this reality including the Illinois biomet-
ric privacy act [1], California’s consumer privacy act of 2018,
South Africa’s Protection of personal information act (POPIA),
and most notably, the EU’s General Data Protection Regularion
(GDPR), greatly limit the extent to which personally identifi-
able information, including speech can be stored or processed.
Compliance with these laws, and protection of users’ private in-
formation requires means of anonymizing a user’s voice without
corrupting the data to such an extent that it no longer has any lin-
guistic or paralinguistic content. The Voice Privacy Challenge
is one initiative driving these efforts.

In the Voice Privacy Challenge voice anonymization is
modeled as a user-attacker game. A user anonymizes their
speech with the goal of preserving linguistic and emotional con-
tent, while an attacker attempts to identify speech from any re-
maining signal in the anonymized utterances including the re-
maining linguistic and emotional content. The challenge spec-
ifies that the Voice Anonymization system is a function f that
operates on the utterance level.

To measure these two competing objectives, challenge sub-
missions are evaluated using utility and privacy metrics. Utility
refers to the extent to which the spoken and emotional is pre-
served following anonymization. These metrics are measured
using a pre-trained systems: we note that this approach makes
it possible to optimize directly on these metrics. Content preser-
vation is measured by Word Error Rate (WER) in a traditional
Automatic Speech Recognition (ASR) task setup. Emotion is
measured by Unweighted (across the different emotion labels)
Average Recall (UAR). Privacy is measured using an ECAPA-
TDNN-based [2] Automatic Speaker Verification (ASV) sys-

tem. At training time, a classifier is attached to the ECAPA-
TDNN model and trained jointly on speaker labels; at inference
time, ECAPA-TDNN representations are extracted for a set of
“enrollment utterances" — utterances known to have been pro-
duced by a certain speaker, and for “test utterances" - utterances
whose speaker the attacker endeavors to determine. A distance
metric (cosine distance) is computed for each test utterance rel-
ative to the pool of enrollment utterances. A distance threshold,
where accuracy equals recall if all utterances whose distance to
the enrollment pool is less than the threshold are taken to belong
to enrollment speaker, is identified. The resulting error rate is
known as Equal Error Rate (EER). The theoretical upper limit
of EER is 50%.

Anonymization systems tend to excel at either utility
preservation or anonymization, but not both. To address this
short-coming, we propose two different anonymization meth-
ods that excel on each individual task and a simple, but effec-
tive method to combine these approaches that enables a reason-
able tradeoff between the competing objectives. First we de-
scribe a simple voice-conversion approach that focuses on pre-
serving linguistic and emotional content, but not anonymization
under the strong attack model in the Voice Privacy Challenge.
Inspired by the anonymization approach by Meyer et al. [3],
we also adopt a cascaded ASR-TTS approach for anonymiza-
tion. However, the original approach replicates the prosodic
features of the original speech, which can lead to speaker iden-
tity leakage in this year’s challenge, where attackers have access
to anonymized speech for training speaker verification models.
To mitigate this, we use a multi-speaker TTS system to elim-
inate the speaker footprint. This cascaded approach excels in
anonymization but degrades the utility of the speech signal. Fi-
nally, we describe our method for combining both approaches.

2. Method
2.1. Our Baseline: kNN-VC

Our baseline system extends earlier work by Baas et al. [4].
The method, as with our subsequent adaptations, operate at
WavLM-feature level [5]. The original kNN-VC system con-
sists of a simple yet elegant idea: first, both the source utterance
and a number of utterances from the target speaker (totalling at
least 5 minutes in length) are converted into the WavLM fea-
ture space; next, k-nearest neighbour regression is performed
on each frame in the WavLM-feature representation of an ut-
terance with respect to the set of all WavLM feature frames in
the target speaker’s utterance pool. The average of the k-nearest
neighbour output is used to synthesize the target utterance us-
ing a HiFi-GAN vocoder [6] trained to synthesize speech using
WavLM feature vectors. The vocoder we used in our system
was trained on the LibriSpeech train-clean-100 subset, match-



WavLM
Feature
Extractor

Frame-
level

WavLM
Feature

Matching
Set

(Speaker 1)

Frame-
level

WavLM
Feature

Matching
Set

(Speaker 2)

Source Utterance
(Speaker 0)

...

kNN-
regression

kNN-
regression

...

...

...

Frame-level
output mixing

Vocode

WavLM
Feature
Extractor

WavLM
Feature
Extractor

Figure 1: Schematic of our adapted kNN-VC system.

ing the one used by the original authors of kNN-VC. We picked
k = 4 during our k-nearest neighbour regression, matching the
setup in the original paper.

The following modifications to the original kNN-VC sys-
tem (ID = 1 in Table 1) were shown to perform marginally su-
perior at anonymization: choosing random target speakers; ap-
plying length variation (ID = 2); applying an additive noise to
the WavLM features pre-conversion (ID = 3). These improve-
ments come at the cost of emotion or content preservation.

The original kNN-VC system targets the voice character-
istics of a single speaker, which may run contrary to the over-
arching goals of privacy protection. In order to address this
problem, we revised the kNN-VC system so that an arbitrary
number of matching sets, each originating from a different
speaker/pseudo-speaker, is prepared. At inference time, the
kNN outputs from each matching set is pooled together using a
weighted average. The schematic of our revised kNN-VC sys-
tem is shown in figure 1.

2.2. WavLM Conversion

The kNN-VC system produces converted utterances that, qual-
itatively, have remarkably similar vocal characteristics to those
produced by the target speaker. It is strong at preserving both
the content and the emotion of the original utterance, outper-
forming all of the previous submissions. We do, however, note
the relative weakness of the kNN-VC system on the privacy ob-
jective compared to cascaded TTS-based systems (such as [7]).
The simplicity of this method also hinders any efforts to ad-
dress this weakness. As such, we propose a transformer-based
WavLM feature conversion model, in the hopes that a neural
method would offer more flexibility to allow us to tackle this
weakness.

One obstacle to training voice conversion models is the lack
of parallel data from different speakers. Fortunately, our base-
line kNN-VC system provides us with a virtually unlimited syn-
thetic pool of such training data. As such, we propose the fol-
lowing definitions:

1. w: WavLM feature extractor
2. k: kNN-VC feature converter. k(w(u), a) converts the

WavLM features of utterance u into that of target speaker

a using the kNN-VC system.
Given these definitions, we proceed to train our WavLM

feature conversion system to predict k(w(u), a) from w(u).
The base model architecture was adapted from FastSpeech2

[8], a non auto-regressive, encoder-decoder TTS system. We
adapted an implementation of FastSpeech2 from Chien et al.
[9], modifying the model task from TTS to Voice Conversion
and changing the representation that the model operates on from
Mel Spectrogram to WavLM features. Our model uses 4 en-
coder layers and 6 decoder layers, each with a hidden dimension
of 512.

In its most basic form, the model learns to faithfully
replicate the output and therefore inheriting the weakness at
anonymization of the kNN-VC system. Changes to the train-
ing procedure are necessary so as to improve in that regard.

Some of the additions we made to the base WavLM conver-
sion model include:

1. Joint training with target reconstruction objective (such that
some u belong to the target speaker (ua))

2. Joint Adversarial training with speaker ID task. A speaker-ID
system is jointly trained with the WavLM conversion model.
The WavLM conversion model is optimized to hinder the
speaker-ID system from producing the correct prediction.

3. Discretized and aligned objective
We will proceed to describe each of these additions in de-

tails:

2.2.1. Joint training with target reconstruction objective

In every batch, a percentage of (w(u), k(w(u))) pairs are re-
placed by (w(ua), w(ua)), where ua denotes an actual utter-
ance by the target speaker. We hope that, by inducing the
model to learn to reconstruct large chunks of the target speaker’s
speech, it would pick up on sequence-level characteristics of the
target speaker’s speech patterns and reproduce them at inference
time during voice conversion.

2.2.2. Joint adversarial training

An ECAPA-TDNN-based Speaker-ID model, similar to the one
that is pre-trained prior to being used for ASV evaluation in



...Target WavLM features: 

k-means clustering 1 1 2 2 2 2 3 3 2 4 4

Remove repeats

1 2 3 2 4 ...

...

Model outputs: ...

convert to logits ...

CTC Loss

WavLM Feature Extraction ...

kNN-VC Neural WavLM Conversion Model

Figure 2: Schematic of our WavLM conversion system with k-means discrete loss. The training targets (on the left hand side) are
discretized using k-means clustering. The resulting token sequence is used as the golden target labels during CTC loss calculation.

the challenge, can be trained to work with WavLM features
as well, achieving up to 99.6% accuracy on the train-clean-
360 split of LibriSpeech [10]. We leverage this fact to per-
form Joint Adversarial Training between voice conversion and
speaker ID. Specifically, the speaker ID system and the voice
conversion system are trained jointly. For each batch of sam-
ples, the speaker ID system gets its weights updated so that it
learns to better classify the source speakers using the output
of the voice conversion system; the voice conversion system,
in addition to learning to voice convert, also learns to prevent
the speaker ID system from being able to correctly classify the
source speaker.

2.2.3. Discretized and aligned objective

The original FastSpeech2 implementation used a combination
of L1 and L2 losses against the training target - utterances con-
verted using the kNN-VC system. As the loss operates on the
frame-level, it encourages the model to preserve the sequence-
level information of the source utterance such as speed or ac-
cent: information that leads to strong emotion preservation at
the expense of weaker anonymization. In order to allow the
model to warp an utterance in the time domain, we design the
following training objective: first, we discretize the set of tar-
get speaker WavLM feature vectors using k-means clustering.
Using the resulting k-means model, we discretize each kNN-
VC converted source utterance into sequences of discrete to-
kens. We then collapse any repeated tokens in each discrete
label sequence. At training time, cosine distance between each
frame that the WavLM conversion model generates and each k-
means centroid is used as a logit value, which is in turn used
to compute a likelihood vector for each centroid at each frame.
A CTC-loss [11] is then computed using the frame-level likeli-
hood vectors against the collapsed target-side discrete unit se-
quence. Figure 2 illustrates our WavLM convserion system with
the discretized objective in action.

2.3. Cascaded Anonymization

Although voice conversion systems can effectively alter the
acoustic characteristics related to the speech production organs
of source speakers, the prosodic characteristics, which reflect
their acquired speaking habits and styles, remain unchanged.
We hypothesize that such prosodic characteristics are benefi-

cial for preserving emotions, while also serving as patterns to
identify the corresponding speaker. To address this, we cascade
automatic speech recognition (ASR) and text-to-speech (TTS)
models to enhance anonymization performance by altering the
speaking style of the source speech.

The anonymization process of our cascaded system is illus-
trated in Figure 3. We first obtain the transcript of the source
utterance using an open-sourced ASR system. Then, we ap-
ply a TTS system to generate the corresponding anonymized
utterance with a randomized voice. Specifically, we used the
‘medium-en’ model from Whisper1 [12] as our ASR system to
obtain the transcript. The synthesis system is an open-source
multi-speaker TTS model2, VITS [13], trained on the LibriTTS
dataset. For anonymization purposes, we randomly selected a
speaker’s voice from a pool of 904 speakers to synthesize each
utterance.

Speech Recognition

Text-to-Speech

Transcript: The other voice
snapped with ...

Pick random Speaker

Source Speech

Anonymized Speech

Speaker 1
Speaker 2

...
Speaker N

Figure 3: Cascaded ASR-TTS Anonymization Process

1https://github.com/openai/whisper
2https://huggingface.co/datasets/rhasspy/

piper-checkpoints/blob/main/en/en_US/libritts_
r/medium



2.4. Random Admixture

As discussed earlier, our different systems exhibited different
strengths and weaknesses: some excel at anonymization while
others appear to do better at emotion preservation. Draw-
ing inspiration from data poisoning attacks against neural net-
works [14], which found that inserting poor quality or incor-
rect data into the training set can have a disproportional impact
on model performance, we experiment with randomly selecting
from one of our many anonymization systems during training
at test time. We highlight the random admixture system where
the two source pools we drew from are the Whisper-VITS TTS
system and the original kNN-VC system. We note that while
the emotion preservation performance is a linear extrapolation
of that of the two source systems, the trained ASV system per-
formed worse than the linear extrapolation of the EER of these
two systems, as studies on data poisoning attacks would predict.

3. Experiments and Results
3.1. Datasets

Subsets from the LibriSpeech [10] and IEMOCAP [15] cor-
pora are used as development and evaluation data in the chal-
lenge. Detailed information can be found in the data descrip-
tion section of the challenge’s evaluation plan [16]. Specifi-
cally, there are 10 subsets for the evaluation process. The sub-
sets libri-dev-asr and libri-test-asr are used for ASR evaluation.
The subsets libri-dev-enrolls, libri-dev-trials-f, libri-dev-trials-
m, libri-test-enrolls, libri-test-trials-f, and libri-test-trials-m are
used for evaluating anonymization (speaker verification) perfor-
mance. The subset libri-train-clean-360 is used for training the
speaker verification system after anonymization. For emotion
preservation performance, IEMOCAP-dev and IEMOCAP-test
are used. For our voice conversion systems, including our sub-
mitted kNN-VC system, we drew our target speaker(s) from the
VoxCeleb [17] dataset.

3.2. Evaluation Metrics

3.2.1. Privacy

The main metric used for privacy evaluation is the equal error
rate (EER). EER is calculated based on similarity scores from
each pair of utterances in the evaluation set. Such a pair is also
known as a trial. The threshold θ is denoted as the decision
boundary between same-speaker and different-speaker, while
Pfa(θ) and Pmiss(θ) represent the false alarm and miss rates at
threshold θ, respectively. The EER corresponds to the threshold
θEER where Pfa(θEER) = Pmiss(θEER). A lower EER sig-
nifies a higher speaker re-identification risk. Therefore, in the
context of voice privacy, a higher EER indicates better privacy.

3.2.2. Utility

Two metrics are used to assess the preservation of specific
acoustic attributes from the original speech. Word error rate
(WER) is adopted to evaluate the ability of an anonymization
system to preserve linguistic content. For emotion state preser-
vation, unweighted average recall (UAR) is used for evaluation.
Utility performances are evaluated using a pre-trained ASR sys-
tem and a speech emotion recognition (SER) system, respec-
tively. A lower WER denotes better preservation of linguistic
content, while a higher UAR indicates better preservation of
emotion states.

3.3. Results

The anonymization results of our systems are shown in Table 1.
As indicated in the table, the kNN-VC system achieves an aver-
age EER of 7.95%, which suggests a significant exposure of the
original speaker’s traits. Nevertheless, the kNN-VC system per-
forms well in preserving emotional state and linguistic content,
with an average UAR of 56.7% and an average WER of 3.16%,
respectively. The model with speed perturbation achieves simi-
lar scores to the vanilla kNN-VC system: we found that apply-
ing a random factor between 0.8 and 1.2 to the original audio
gives us marginal EER improvements without hurting UAR.
Applying additive random noise drawn from a uniform distri-
bution of vectors with infinity norm less than 32 on each of the
input WavLM feature frames prior to applying kNN-VC system
led to greatly improved EER at the expense of reduced UAR
and WER.

The improvements we made on top of the kNN-VC sys-
tem, including the neural WavLM feature conversion system,
the speaker adversarial training technique, and the discrete loss,
were all shown to moderately improve the anonymization per-
formance of the system, with our WavLM Conversion system
combining all features achieving a average EER of 13.88%.
However, these improvement come at the cost of greatly reduc-
ing the systems’ performance on utility metrics.

On the other hand, the cascaded anonymization approach,
whisper-VITS, achieves an average EER of 48.25%, which is
close to 50%, demonstrating its ability to conceal the original
speaker’s identity. Additionally, the WER utility score is 3.75%,
which is slightly lower than that of the VC approaches. Note
that the WER of the transcribed text by the whisper model is
3.38% on the libri-dev-asr set and 3.29% on the libri-test-asr
set. However, the emotion preservation performance of this ap-
proach is poor, with the system achieving an average UAR of
30.35% on the IEMOCAP evaluation sets.

By randomly mixing the kNN-VC system with the cas-
caded anonymization system during voice anonymization, we
were able to produce systems whose performance sit in between
those of the two systems (as shown in Figure 4), satisfying dif-
ferent needs for anonymization versus emotion preservation. At
50% admixture, the EER of the system approaches 50% while
the UAR still stands at a respectable 44.77%, stronger than any
existing TTS-based anonymization system.

4. Limitations and Future Work

While our Random Admixture system achieved strong results
in the context of the Voice Privacy Challenge setup, where the
adversary uses a single model trained on anonymized data, we
note that an informed adversary can effectively mitigate the im-
pact of data-poisoning attacks at the cost of some performance
degradation [18]. We call for future studies to identify any pos-
sible equilibrium between the anonymizer and the adversary in
light of admixture systems, as well as more generally, the po-
tential role of adversarial attacks within the context of voice
privacy.

We note that our TTS system does not support any type of
controlled generation, which severely limits its capacity for pre-
serving para-linguistic features such as emotion. We would like
to explore investigate the effectiveness of that line of methods
in our future work.



Table 1: Privacy and Utility Performance of Various Anonymization Approaches
(Darker Color Indicates Better Performance)

ID System Privacy - EER (%) ↑ Utility - UAR mean (%) ↑ Utility - WER (%) ↓

libri-dev-f libri-dev-m libri-test-f libri-test-m avg. IEMOCAP-dev IEMOCAP-test avg. libri-dev libri-test avg.

0 origin 10.511 0.931 8.761 0.418 5.16 69.0796 71.0618 70.07 1.807 1.844 1.83
1⋆ kNN-VC 11.789 5.141 9.307 5.570 7.95 56.7330 56.6740 56.70 3.275 3.048 3.16
2 kNN-VC + len variation 11.192 5.125 10.218 5.793 8.08 56.9488 55.638 56.29 3.28 3.387 3.33
3 kNN-VC+ len var + noise-in 24.681 18.624 19.891 19.115 20.58 44.1260 42.3846 43.26 11.993 10.008 11.00
4⋆ whisper-VITS 47.584 49.233 47.445 48.750 48.25 30.1074 30.5932 30.35 3.743 3.755 3.75
1 + 4⋆ Admixture (p = 0.2) 26.003 16.155 20.776 24.722 21.91 51.2840 52.1324 51.71 3.300 3.290 3.31
1 + 4⋆ Admixture (p = 0.325) 34.518 32.918 34.532 33.676 33.91 49.3398 48.7304 49.04 3.514 3.336 3.43
1 + 4⋆ Admixture (p = 0.4) 41.192 40.660 42.182 39.225 40.81 47.0784 47.1046 47.09 3.454 3.199 3.33
5 WavLM Conv (base) 13.622 6.987 9.307 4.231 8.54 55.5458 53.9522 54.75 3.044 2.982 3.01
6 WavLM Conv + Adv Spk Loss 17.472 9.005 12.773 7.164 11.60 50.7706 50.4628 50.62 4.442 4.015 4.23
7 WavLM Conv + Discrete Loss 18.041 12.268 13.716 10.913 13.73 44.5292 42.5980 43.56 10.313 10.014 10.16
8 WavLM Conv + Adv + Discrete Loss 19.308 11.645 13.870 10.690 13.88 44.0936 42.9102 43.50 10.811 10.850 10.83
⋆ marks submitted systems
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Figure 4: Scatter plot of various results from the Random Admixture system. Results from the two source systems, cascaded TTS and
kNN-VC, are included. Each point is labeled and color-coded with the percentage of the admixture which was drawn from the cascaded
TTS system.

5. Conclusion
We experimented with two main approaches to voice
anonymization: voice conversion and cascaded ASR-TTS. Our
voice conversion systems generally performed strongly in emo-
tion preservation, while our cascaded anonymization systems
excel at anonymization. We were able to freely adjust the trade-
off between emotion preservation and anonymization by per-
forming a random admixture of these two systems. We call for
future work to investigate if it would be possible to better the

UAR-EER tradeoff curve achieved by random admixture.
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