
Improving Sign Language Gloss Translation
with Low-Resource Machine Translation
Techniques

Xuan Zhang and Kevin Duh

Abstract A cascaded Sign Language Translation system first maps sign videos to
gloss annotations and then translates glosses into spoken language text. This chapter
focuses on the second-stage, gloss translation, which is challenging due to the scarcity
of publicly available parallel data. We approach gloss translation as a low-resource
machine translation task and investigate several popular methods for improving
translation quality, including hyperparameter search, pretrained multilingual mod-
els, rule-based data augmentation, back-translation, and curriculum learning. We
discuss the potentials and pitfalls of these methods based on experiments conducted
on a German sign language dataset, RWTH-PHOENIX-Weather 2014T, and a Chi-
nese sign language dataset, CSL daily. We also show how a sign-to-text translation
system would benefit from the initialization of gloss-to-text checkpoints obtained
with different methods. We further conduct word-level error analyses to study how
the two components of the sign translation system contribute to the translation errors
respectively.

1 Introduction

Sign language machine translation (SLMT) systems can be either an end-to-end
system that maps sign language videos directly to spoken languages, or a cascaded
system as shown in Fig. 1, that first relies on a continuous sign language recog-
nition model to produce sign glosses and then passes the produced glosses into a
neural machine translation (NMT) system to generate text translations. Glosses are
used by sign language linguistics and annotators as a written form or word-to-word
translations of sign languages. Although they share parts of the vocabulary of the
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Fig. 1 A cascaded sign language translation system. A sign language video is first converted
to a sequence of glosses with a continuous sign language recognition model. A neural machine
translation model then maps glosses to spoken language text translations.

spoken language, it reflects the linguistic characteristics of sign languages which
are syntactically different from their spoken language counterparts [1]. Therefore,
glosses should be treated as another language, and mapping glosses to the text of
spoken languages is a valid NMT task. In this chapter, we focus on studying methods
that could potentially improve the performance of gloss-to-text translation, which is
the NMT component of cascaded systems.

Sign language gloss translation is a challenging problem due to the scarcity of
annotated parallel data. NMT systems are often extremely data-hungry and usually
require millions of training examples to achieve the state-of-the-art translation per-
formance, while the most widely used dataset for SLMT, RWTH-PHOENIX-Weather
2014 [2], contains only 7,096 video-gloss-text triplets in the training set. Our goal is
to examine the commonly-used techniques in low-resource machine translation for
this task (Sect. 2), and analyze how the performance of gloss translation contributes
to the performance of sign language translation overall (Sect. 3).

2 Gloss Translation as a Low-Resource Translation Task

In this section, we treat gloss-to-text translation as a low-resource machine translation
task and explore the effectiveness of various commonly-used techniques on two real
sign language datasets.

2.1 Low-Resource Machine Translation

Recent state-of-the-art NMT models such as the Transformer [3] follow an encoder-
decoder architecture. The conditional probability of generating the target sentence 𝑦

given the source sentence 𝑥 is decomposed as:
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𝑝(𝑦 | 𝑥) =
𝐽∏
𝑗=1

𝑝(𝑦 𝑗 | 𝑦< 𝑗 , 𝑥, 𝜃), (1)

where 𝜃 represents model parameters, 𝐽 is the length of the target sentence, 𝑦 𝑗 is the
𝑗-th target word, and 𝑦< 𝑗 is the prefix of words before 𝑦 𝑗 . The encoder of an NMT
model transforms 𝑥 into a sequence of hidden states, the decoder then generates 𝑦 𝑗

iteratively based on the hidden states and the history decoding states to form the
target sentence 𝑦. In the context of sign language gloss translation, 𝑥 is the gloss
and 𝑦 is the text translation. For example in Fig 1, 𝑥 is the American Sign Language
(ASL) gloss sequence “PAST YOURSELF LITTLE GIRL YOU WANT GROW-UP
FUTURE DO-WHAT YOU” and 𝑦 is the English text sequence “When you were a
little girl, what did you want to do when you grow up?”

The training objective of NMT model is minimizing the cross-entropy loss, which
is a measure of the difference between the reference token and predicted target token,
which is often represented as a probability distribution.

Low-resource machine translation is the task of machine translation in the set-
tings when there is a limited amount of training data, which is in the order of 10,000
or less. This topic has received a lot of attentions in the machine translation re-
search community. There are several methods that have been adopted to improve the
performance of machine translation in low-resource scenarios [4].

1. Data collection. One way to deal with the challenges of data scarcity is collecting
more data, either by web-crawling for parallel data or annotating monolingual
data. The web-crawling result is often noisy, whose quality is not guaranteed, and
thus needs careful cleaning and preprocessing. In the case of gloss translation,
web-crawling is likely infeasible due to the lack of gloss transcriptions on the
web. Similarly challenging, annotating in many cases requires the involvement of
human experts, which makes it expensive and time-consuming.

2. Monolingual data exploitation. Compared to collecting reliable parallel data, a
much cheaper way to increase the amount of data is to generate synthetic data.
Monolingual data is often abundant; for gloss translation, this is especially true on
the target side. Back-translation is one effective way to leverage monolingual data.
Another approach is integrating external language models into NMT models.
Besides, monolingual data can also be utilized using transfer learning, where
pretrained embeddings or pretrained language models are used to initialize part
of the NMT systems.

3. Multilingual data exploitation. A multilingual model is trained to be a universal
model that is capable of translating between any two languages. Model parameters
are shared across multiple language pairs, and low-resource ones may benefit from
knowledge learned from others. There are off-the-shelf pretrained multilingual
machine translation models which can be used as the initialization for further
training on low-resource language pairs. Alternatively, a multilingual model can
also be trained from scratch with the low-resource language pairs included in the
training set.

4. Model choice. Improved architectures and training methods are effective in tack-
ling low-resource scenarios. These include hyperparameter search, meta-learning
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for multilingual learning, incorporating a latent variable to capture linguistically-
motivated inductive bias, or using alternative training objectives instead of cross-
entropy loss to alleviate the exposure bias, etc.

2.2 Datasets and Experiment Setup

As the sizes of sign language datasets that have human-annotated gloss transcriptions
are all in the order of 10,000, the gloss and text translation of sign language can be
considered as a low-resource language pair. Thus, we examine the most commonly-
used methods in Sect. 2.1 and apply them to gloss translation.

In the following, we explore the effectiveness of various low-resource machine
translation approaches on gloss to text translation and discuss the potentials and
pitfalls of each of the method. We first introduce the datasets used in the experiments
involved in the rest of this section (Sect. 2.2). We start our exploration of different
methods with hyperparameter search (Sect. 2.3). We then move to fine-tune the
pretrained multilingual models (Sect. 2.4), which leads to a significant boost in
performance. Based on the pretrained models, we study how data augmentation
would further improve the results. Specifically, we look at generating synthetic data
by human-crafted rules (Sect. 2.5) and back-translation (Sect. 2.6). While additional
synthetic data would introduce noisiness into the training data, curriculum learning
(Sect. 2.7) arranges the presenting order of the samples such that the model learns
more effectively and reaches higher levels of performance. These methods can be
categorized using the taxonomy proposed in [4] as in Fig. 2.

The experiments are conducted on two sign language datasets, RWTH-PHOENIX-
Weather 2014T and CSL Daily.

1. RWTH-PHOENIX-Weather 2014T. The PHOENIX14T dataset is collected
from the weather forecast airings of the German public TV station PHOENIX.
It is by far the most widely used benchmark dataset for SLMT. It contains RGB
German sign language (DSL) videos performed by nine signers, gloss annotations
and German translations. The data split for train/dev/test set is 7,096/519/642
samples. The vocabulary size of the training set for glosses and German are 1,066

Fig. 2 Methods for low-
resource machine translation
explored in Sect. 2 catego-
rized under the taxonomy
introduced in [4].
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and 2,887 respectively. On average, there are 6.6 words in glosses and 13.2 words
in German translations.

2. CSL Daily. CSL Daily [5] is a Chinese sign language (CSL) dataset. It covers
a wide range of topics encountered regularly the Deaf community in their daily
life, including family life, medical care, school life, bank service, shopping, social
contact and so on. There are 10 signers involved in the recording. CSL Daily also
provides both the gloss and Chinese translation annotations. The size of train, dev
and test set is 18,401, 1,077 and 1,176 respectively. The vocabulary size of the
training set is 2,000 for glosses and 2,343 for Chinese translations. The average
number of Chinese characters in glosses is 11.1 and 15.8 in Chinese translations.

2.3 Hyperparameter Search

Hyperparameter selection is crucial to build a good NMT system. It is especially
the case for low-resource scenarios when the default hyperparameter settings are
very likely to be ineffective. As reported in [6] and [7], the NMT systems developed
for low-resource translation tasks disagree a lot with those trained on high-resource
corpora on the optimal hyperparameter choices. Furthermore, datasets in different
domains and language pairs all differ in their hyperparameter preference. It is also
reported that adjusting hyperparameters can improve the BLEU score by 20 in some
datasets.

2.3.1 Important Hyperparameters

Here we focus on 4 hyperparameters of Transformer models: the number of BPE
merge operations, the number of layers, embedding dimensions and initial learning
rate. These hyperparameters are recognized as important hyperparameters by [7],
where the importance is computed as the variation in BLEU when changing a specific
hyperparameter with values of all the other hyperparameters fixed [8].

BPE is a word segmentation approach that combines frequent sequence of char-
acters so that out-of-vocabulary words are handled. It is expected to improve the
translation of rare words and has been a standard preprocessing practice in NMT.
According to [9], although 32k and 90k are popular choices in most machine trans-
lation literature, they found that the BPE of the best Transformer-based architectures
in low-resource setting is somewhere between 0-2k. We thus try 1k and 2k in our
experiments.

Architecture design hyperparameters like the number of layers in encoder and
decoder and embedding size are important. A big and complex model is more
susceptible to overfitting. On the other hand, if the model is too small and simple, it
might struggle to capture the meaningful patterns of data and result in underfitting.
Our hyperparameter search space includes 1, 2, 4 layers and embedding size of 256
and 512.
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The learning rate is another important hyperparameter that scales the gradient
in gradient descent training. A small initial learning rate may prolong the training
process, whereas a large one may get the model stuck in a sub-optimal solution. It is
recommended to start training with a low number [10]. We adjust it among 0.00005,
0.0005 and 0.0002.

2.3.2 Results

We tune hyperparameters for Transformers trained on PHOENIX14T which are
summed up to 36 systems in total. The BLEU scores obtained on the search space are
illustrated in Fig. 3. It shows a nice bell curve, where the majority of the Transformer
models lie in the range of BLEU scores between 22.40 and 23.60, with fewer models
on either side further away from the center. Table 1 shows the best, worst and a random
system obtained through hyperparameter search. Compared to other models, the best
model has the smallest BPE operations (1k between 1k and 2k), the largest number
of layers (4 among 1, 2 and 4), the largest embedding size (512 between 256 and 512)
and the smallest initial learning rate (0.00005 among 0.00005, 0.0005 and 0,0002),
which leads to a 2.65 BLEU score improvement over the worst model. The random
model in Table 1 simulates the situation when randomly picking a hyperparameter
configuration without adjusting it. According to the distribution of the models as
illustrated in Fig. 3, when randomly sampling a model from the search space of the
hyperparameter configurations, the performance of the model will be most probable
within the range of 22.40 and 23.60 BLEU score. This is around 1 BLEU score lower
than that of the best configuration. In other words, in most of the cases, it is assured
to get a superior model with hyperparameter search.

Fig. 3 The performance dis-
tribution of Transformers
trained on PHOENIX14T
gloss-text data with 36 dif-
ferent hyperparameter config-
urations. It is roughly a bell
curve with more than half of
the models centered around
22.40 to 23.60 BLEU score,
and fewer models scattered
further from the center.

2.3.3 Discussions

Hyperparameter search can significantly improve the performance of the NMT
model. The optimal hyperparameter configurations may be different from dataset
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Table 1 Performance of selected Transformers on PHOENIX14T gloss-text data. Best and worst
are the best and worst systems obtained from hyperparameter search. Random randomly picks a
hyperparameter configuration from the search space whose size is 36. The best and worst model
differ in 3 out of the 4 hyperparameters that have been tuned and result in a 2.65 BLEU difference.

bpe #layer #embed init lr BLEU

best 1k 4 512 5e-5 24.38
worst 2k 1 512 5e-4 21.73
random 1k 2 256 2e-4 23.49

to dataset or from task to task. There is no straightforward way to determine the
best settings without actually running the experiments. Tuning hyperparameters is
often computationally expensive and time-consuming, but it is not the case for low-
resource NMT scenarios, where the training can be finished within hours on a single
GPU.

We have only covered 4 hyperparameters so far, but in practice, it is nontrivial to
try a larger search space in terms of both the types and values of hyperparameters.

There are a number of other hyperparameters that can be tuned when training
a Transformer model. The number of hidden nodes in feed-forward layers and the
number of attention heads can be classified as the model architecture as the number
of layers and the embedding size or model size, as they determine the number of
model parameters or the complexity of the model. The width of the feed-forward
layer affects the Transformer’s ability to learn features from the input data and
should not be excessively large or small to avoid overfitting or underfitting. The
number of attention heads allow the model attend to different aspects of the features
simultaneously. Sometimes, a smaller number of attention heads are sufficient to
achieve good performance, and using a larger number of attention heads might
not provide any additional benefit. Training configurations, for example, batch size,
label smoothing, dropout, optimizer can also matter. Batch size is the number of
samples to be processed simultaneously by the model. A larger batch size can
lead to faster training and more stable gradient updates but may also make the
model prone to overfitting. Label smoothing and dropout are both regularization
techniques preventing overfitting. In label smoothing, the model is predicting soft
labels. Dropout works by setting a hidden node to zero with a dropout probability.
An optimizer is an algorithm that is designed to adjust the model parameters during
training based on the gradients of the loss function. Common optimizers include
stochastic gradient descent(SGD), Adam, Adagrad, Adadelta and RMSprop, which
differ in the sensitivity to the learning rate and robustness to the noise in the gradients.
Last but not the least, there are two other hyperparameters that are important but
frequently overlooked by the practitioners: the checkpoint interval and random seed.
The checkpoint interval is the interval to save the checkpoint and evaluate the model
on validation set. When training with a smaller dataset, it is always helpful to have
a smaller checkpoint interval but it might also prolong the training. The choice of
random seed influences weight initialization and training data order, and [11] finds
that some weight initializations and data orders perform better than others.
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With regard to the hyperparameter values to try, there is a trade-off in deciding
both the range and granularity of the values. First, we might expand on a wider range
of values (e.g., change #hidden = {1024, 2048} to {512, 1024, 2048, 4096}). Second,
we might expand on a more fine-grained range of values (e.g., change #hidden =
{1024, 2048} to {1024, 1536, 2048}). Although wider range and finer granularity
are desirable, each additional value causes an exponential increase in the number of
models because of the cross-product of all values. The decisions need to be made
based on the available computational resources.

2.4 Pretrained Multilingual Models

Pretraining and fine-tuning has become a widely used approach in natural language
processing (NLP). In this section, we adopt this approach for the gloss-to-text transla-
tion task. We will use the pretrained Transformer-based multilingual model mBART
and fine-tune it on our sign language datasets.

2.4.1 mBART

The large-scale self-supervised pretraining on Transformer-based models has led
a great progress in NLP. In particular, BERT [12] advances the state-of-the-art
results in a variety of NLP benchmarks, such as GLUE [13] and SuperGLUE [14].
There are also other large pretrained language models developed after BERT, for
example, GPT [15], XLNet [16], RoBERTa [17] and T5 [18], which further push
forward the baselines. Though not simply the variants, they all share similarity
with BERT. Typically, these models are first pretrained on large corpora, then fine-
tuned on smaller task-specific downstream datasets by using the model parameters
as initialization, and adding extra task-specific layers on top of the architecture.
Pretraining can be beneficial because it captures a wide range of statistical patterns
and regularities in the language and learns useful representation of the language. It
makes the fine-tuning more efficient compared to training from scratch with random
initialization of model parameters.

BERT, GPT, XLNet, RoBERTa and T5 are all trained on copora in a single
language, such as English, and focus on pretraining parts of the Transformer model,
either on the encoder (BERT, XLNet, RoBERTa) or the decoder (GPT, T5). MBART
[19] instead trains the entire Transformer model on large-scale monolingual corpora
across many languages. Compared to BERT, which is more suitable for language
understanding tasks, mBART is designed for machine translation tasks. It sets new
state-of-the-arts on multiple machine translation benchmarks.

MBART follows the same pretraining scheme as in BART [20], while BART
focuses only on English. The BART is trained as a denoising autoencoder: text is
first corrupted with an arbitrary noising transformation, such as masking or deleting
random tokens, permuting sentences in documents, rotating the documents, and the
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goal of the pretraining is to recover the original text. MBART applies BART to many
languages by adding a language id symbol to each of the instances.

2.4.2 Results

We use the pretrained mBART and fine-tune it on the PHOENIX14T dataset. Since
mBART has not been trained on gloss, we treat gloss as German in the input. Table 2
summarizes the results. It shows that by initializing the model parameters with
pretrained mBART, the performance improves significantly upon the best model
we obtained through hyperparameter search on the models trained from scratch.1
This improvement comes from the fact that the encoder and decoder are pretrained
simultaneously in mBART and it is pretrained on large corpora in many languages,
which results in more fluent translations.

Table 2 The performance of translation models on PHOENIX14T with and without the initial-
ization of mBART. BLEU scores on the test set are reported. G2T w/o mBART is a gloss-to-text
translation model trained from scratch, while G2T w/ mBART is initialized with pretrained mBART
and is fine-tuned on PHOENIX14T. The results on S2G2T and S2T models are from [21], with
the former as a two-stage sign language translation system and the latter as an end-to-end system.
The text translation component of these two models are either initialized with parameters from
a Transformer trained on PHOENIX14T (w/o mBART) or a pretrained mBART (w/ mBART).
Using mBART significantly improves the performance.

G2T S2G2T S2T

w/o mBART 24.38 20.17 23.28
w/ mBART 26.70 24.60 28.39

2.5 Rule-Based Synthetic Data Generation

Although parallel gloss-text data are scarce and large gloss corpora created from
transcribing the sign languages are also not available, there are an abundant amount of
monolingual data in spoken languages. Using human-crafted rules, we can generate
pseudo-glosses and pseudo-parallel gloss-text samples from spoken languages as
additional training data for gloss-to-text translation. In this section, we test the
effectiveness of this approach on both PHOENIX14T and CSL Daily.

1 The previous hyperparameter search does not include the hyperparameter configuration for
mBART, which contains 12 layers of encoder and 12 layers of decoder, and would easily over-
fit if trained on a small dataset exclusively.
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2.5.1 Rules

Glosses share parts of the vocabulary of their spoken language counterparts, and are
mainly different from spoken languages on the following aspects:

1. A lack of word inflection. In glosses, words do not exhibit inflectional morpho-
logical processes to reflect the tense, aspect, person, gender and case.

2. An omission of selected words. In glosses, the articles (e.g. “a”, “an”, “the”) are
always omitted. Prepositions might be omitted when they indicate the time (e.g.
“The book will be published in next year”), the direction or movement (e.g. “She
went to the museum”), association (e.g. “They left because of the noises”, “She
is the CEO of the company”). Sometimes, the subject and/or object might be
omitted, if they can be inferred from the context. All forms of verb “be”, such
as “is”, “are” and auxiliary verbs are also omitted (e.g. “She has finished her
homework”, “Do they want to eat”).

3. Word order. Glosses employ the strategy of topicalization, where a word or a
phrase is placed at the beginning of a sentence to emphasize that it is the focus of
the sentence. 2 Glosses also have the feature of subject pronoun copy, in which a
pronoun is repeated at the end of the sentence to indicate the subject. 3 Besides,
in glosses, the question words (e.g. “who”, “what”, “where”, “why”) are often
used as postpositions to indicate the type of information being sought in questions.
There are other syntactic features that are unique in sign languages glosses, which
can vary significantly from one language to another.

For example, in Fig. 1, the words in the sign gloss are all lemmas. The article “a”,
the preposition “to”, “were” and the auxiliary verb “did” are omitted. The subject
pronoun (“YOU”) is repeated at the end of the gloss. And the question word (“DO-
WHAT”) is also postpositioned.

Accordingly, [1] propose the following three heuristic rules to generate pseudo-
glosses from spoken languages: (1) Lemmatization of spoken words; (2) POS-
dependent and random word deletion; (3) Random word permutation. We follow [1]
for our experiments. More specifically, we generate the pseudo-gloss with slightly
different processes for DSL and CSL respectively as follows.

Generate DSL from German

For each German sentence 𝑆,

1. Lemmatize all the words in S and keep words only if their

Part-of-speech (POS) tags are in the set of {VERB, PRON,

PROPN, ADJ, ADV, NOUN, NUM}.

2. If the length of S is greater than 5, remove words by

2 Topicalization is an important feature for many spoken languages such as Japanese. Here, we
mainly consider the difference between American Sign Language and English.
3 Note that subject pronoun copy is not used in all the sign languages.
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the probability of 0.1.

3. Permute the words with the probability of 0.5 with

permutation distance smaller or equal to 4.

To generate CSL glosses, we adopt a more language-specific strategy. We man-
ually build a dictionary that maps words in spoken Chinese to vocabulary in CSL
glosses. The dictionary has 250 entries, the mappings are learned from the CSL
Daily dataset. Note that the dictionary might not be a thorough list of all the possible
mappings. Fig. 4 shows some entries in the dictionary.

Fig. 4 A dictionary that
maps words in spoken Chi-
nese to vocabulary in CSL
glosses. The vocabulary of
CSL glosses is a subset of
the vocabulary of spoken
Chinese. Some particles and
articles are omitted in glosses.
In addition, it is often the
case that a set of synonyms in
spoken Chinese is represented
by a single gloss.

Generate CSL from Chinese

For each Chinese sentence 𝑆,

1. Replace words in S that appear in the Chinese-CSL dictionary.

2. Remove punctuations.

3. For each of the word that has POS tag ‘‘VERB", move the word

after the object of the verb with the probability of 0.5.

4. For each of the word that has POS tag ‘‘NUM", convert

Chinese numericals to Arabic numericals.

5. Permute S such that the numbers, verbs and negation words

are at the end of the sentence.
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2.5.2 Data Selection

It is not trivial to carefully choose the source of the monolingual data. Web-crawled
data are noisy and have a lot of randomness. For example, web pages often contain
HTML tags and formatting, non-textual data such as images and videos and unre-
lated information such as emails, phone numbers and hyperlinks. Web pages may
also contain low-quality content and a mix of different language variations and slang
terms. On the contrary, publicly available datasets that have been cleaned and pre-
processed by experts are relatively in higher quality. However, those datasets might
also contain sentences that are irrelevant or even harmful, making the training less
efficient.

Typically, we want the monolingual data to be within the same domain as our par-
allel data. The reason is that out-of-domain corpora have different word distributions
and expression styles from the in-domain data, which would cause unstable training
and dataset shift, where there is a mismatch between the distribution of training and
test set.

We can still utilize the out-of-domain data by data selection, which involves
selecting a subset from the out-of-domain data that is most similar to the in-domain
data. There are many existing data selection methods. We adopt the Moore-Lewis
approach proposed in [22]. The main idea is to score the out-of-domain data 𝑁 using
language models trained from the in-domain data 𝐼 and 𝑁 separately, and select top
𝑛 examples from 𝑁 by a cut-off threshold on the resulting scores. To be specific,
each sentence 𝑠 in 𝑁 is assigned a cross-entropy difference score,

𝐻𝐼 (𝑠) − 𝐻𝑁 (𝑠), (2)

where 𝐻𝐼 (𝑠) is the per-word cross-entropy of 𝑠 according to a language model trained
on 𝐼, and 𝐻𝑁 (𝑠) is the per-word cross-entropy of 𝑠 according to a language model
trained on 𝑁 . A lower score indicates 𝑠 is more like a sentence in 𝐼 then in the domain
of 𝑁 .

2.5.3 Results

For DSL-to-German translation, we use the News crawl from the shared translation
task of WMT21 [23] as the German monolingual data. It is a collection of large
corpora of crawled news, collected since 2007. It contains more than a hundred
million of German sentences in total. For CSL-to-Chinese translation, we combine
two datasets: DailyDialog [24] and LCCC-large [25] . The DailyDialog is a multi-
turn daily dialogue dataset which contains 96,784 sentences. The dialogues in the
dataset are written by human and cover various topics about daily life. The LCCC-
large is a large-scale cleaned Chinese conversation dataset, which contains 12 million
dialogues.

We run Moore-Lewis selection and rank the sentences with Eq. 2. We keep the
top 50k sentences and discard the rest. We then generate the pseudo-gloss to make
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Table 3 Gloss-to-text NMT models on PHOENIX14T. BLEU scores on test set are reported.
All models are initialized with pretrained mBART. Baseline performs continued-training on
PHOENIX14T. Rule-based models are trained on the combination of PHOENIX14T and selected
synthetic data generated by human-crafted rules, while Back Translation models use the concatena-
tion of PHOENIX14T and selected parallel data generated by back translation. Fine-tuning models
are fine-tuned on PHOENIX14T. Curriculum Learning models apply curriculum learning when
training on the enlarged dataset. Naively training on the synthetic data as in Rule-based and Back
Translation hurts the performance, while fine-tuning and curriculum learning make the model
utilize the out-of-domain data more effectively and always help enhance the performance.

Model BLEU (imp. over baseline)

Baseline 26.70
Rule-based 26.52 (-0.18)
Rule-based + Fine-tuning 27.17 (+0.47)
Rule-based + Curriculum Learning 27.40 (+0.70)
Rule-based + Curriculum Learning + Fine-tuning 27.66 (+0.96)
Back Translation 25.77 (-0.93)
Back Translation + Fine-tuning 28.34 (+1.64)
Back Translation + Curriculum Learning 28.09 (+1.39)
Back Translation + Curriculum Learning + Fine-tuning 28.60 (+1.90)

additional parallel data. Fig. 5 shows samples with the highest Moore-Lewis scores
in Chinese.

Fig. 5 Examples of gloss-text pairs in CSL Daily and sentences selected from DailyDialog and
LCCC-large. The 8 selected sentences rank highest according to the score defined in Eq. 2. They are
considered to be most similar to CSL Daily. Pseudo-glosses are generated based on human-crafted
rules.

We initialize our NMT models with pretrained mBART and train them on the
concatenation of in-domain (PHOENIX14T or CSL Daily) and selected out-of-
domain data. Fine-tuning is then optionally performed on the in-domain bitext only,
leading to the following 2 systems:

Rule-based Continue training the pretrained mBART on the concatena-
tion of in-domain and selected out-of-domain data.
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Table 4 Gloss-to-text NMT models on CSL Daily. BLEU scores on test set are reported. Model
setups are similar to Tab. 3 except that back translation is conducted on either NMT or SMT.

Model BLEU (imp. over baseline)

Baseline 29.68
Rule-based 28.25 (-1.43)
Rule-based + Fine-tuning 30.00 (+0.32)
Rule-based + Curriculum Learning 29.91 (+0.23)
Rule-based + Curriculum Learning + Fine-tuning 29.83 (+0.15)
Back Translation w/ NMT 28.58 (-1.10)
Back Translation w/ NMT + Fine-tuning 29.04 (-0.64)
Back Translation w/ SMT 27.96 (-2.28)
Back Translation w/ SMT + Fine-tuning 29.50 (-0.18)
Back Translation w/ NMT + Curriculum Learning 29.42 (-0.26)
Back Translation w/ NMT + Curriculum Learning + Fine-tuning 29.89 (+0.21)
Back Translation w/ SMT + Curriculum Learning 30.42 (+0.74)
Back Translation w/ SMT + Curriculum Learning + Fine-tuning 30.18 (+0.58)

Rule-based + Fine-tuning Fine-tune the Rule-based model on in-domain data.

Tab. 3 and Tab. 4 compare the two rule-based systems on PHOENIX14T and
CSL Daily respectively, where the baseline model is the model obtained in Sect. 2.4,
which is a pretrained mBART fine-tuned on the in-domain data. Training on the
expanded dataset without fine-tuning hinders the performance. The might be due to
the low-quality of the selected out-of-domain data or the generated pseudo-gloss,
such that the trained model is not well-suited to the task in the target domain. Fine-
tuning on the other hand adapts the model to the target domain and let the model
take advantage of enriched training data.

2.6 Back-translation

Another way to create synthetic parallel data using monolingual text is back trans-
lation, in which the target language is translated back into the source language such
that the bitext is generated. The workflow of back translation is illustrated in Fig. 6.

2.6.1 Results

We obtain the additional parallel data as follows. (1) Select the out-of-domain mono-
lingual text following the same procedure as Sect. 2.5.2. (2) Train a text-to-gloss
model from scratch on in-domain data (PHOENIX or CSL Daily). (3) Translate
monolingual text to gloss. For step (2), the reliability of the model is important since
it affects the quality of the generated data. NMT models such as Transformer is
effective with sufficient data. On the contrary, statistical machine translation (SMT)
models tend to be more efficient when workin with low-resource settings. This is be-
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Fig. 6 The workflow of back translation. First, a text-to-gloss model is trained on in-domain data.
Second, the text-to-gloss model translates out-of-domain (OOD) text into glosses. Finally, train a
gloss-to-text model on the concatenation of in-domain and translated OOD data.

cause SMT is based on the use of statistical models which can be built using a small
amount of data. Therefore, we try both NMT and SMT for text-to-gloss models.

The experiment setup is simialr to Sect. 2.5.3. We initialize our NMT models with
pretrained mBART and train them on the concatenation of in-domain (PHOENIX14T
or CSL Daily) and synthetic parallel data generated by back translation using NMT
or SMT. Fine-tuning is optionally performed on the in-domain bitext, leading to the
following 4 systems:

Back Translation Same as Back Translation w/ NMT. Continue train-
ing the pretrained mBART on the concatenation of in-
domain and selected synthetic data generated by back
translation with NMT.

Back Translation + Fine-tuning Same as Back Translation w/ NMT+ Fine-
tuningFine-tune the Back Translation model on in-
domain data.

Back Translation w/ SMT Continue training the pretrained mBART on the con-
catenation of in-domain and selected synthetic data
generated by back translation with SMT.

Back Translation w/ SMT + Fine-tuning Fine-tune the Back Translation w/
SMT model on in-domain data.

Results on PHOENIX14T and CSL Daily are shown in Tab. 3 and Tab. 4 re-
spectively. On PHOENIX14T, back translation without fine-tuning degrades the
performance. Adding the step of fine-tuning improves the performance. This is con-
sistent with the observations for rule-based systems, while back translation with
fine-tuning outperforms rule-based system with fine-tuning. On CSL Daily, back
translation systems all hurt the performance even with fine-tuning.

2.6.2 Analyses

Tab. 4 is discouraging to justify the effectiveness of back translation. Is it because
the selected monolingual data is substantially different from the in-domain data
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or the text-to-gloss model can not output good translations? Or is it because back
translation do not work at all?

To answer those questions, we evaluate back translation on a much simpler situa-
tion, where domain mismatch is not a concern. To be specific, we split PHOENIX14T
evenly into two subsets, part 1 and part 2, which are treated as in-domain and out-
of-domain data respectively. We discard the gloss of part 2 and instead generate
pseudo-gloss using a text-to-gloss model trained on part 1. We evaluate the perfor-
mance of a gloss-to-text model trained from scratch on the combination of part 1
and the synthetic part 2. Results are shown in Tab. 5. It can be seen that although
the text-to-gloss model is bad (T2G on part1), back translation can still enhance
the model performance (G2T on part1+synthetic part2 vs. G2T on part1). We can
conclude that back translation is helpful with ghigh-quality monolingual data.

Table 5 Back translation using PHOENIX14T data only.The training set of PHOENIX14 is evenly
split into two subsets, part1 and part2. The gloss of part2 is discarded and then recovered by back
translation. With the synthetic part2, the gloss-to-text model outperforms the one trained only on
part1, which concludes that back translation is effective when the monolingual data is within the
same domain of parallel data.

NMT systems BLEU

G2T on part1 19.13
T2G on part1 9.96
G2T on part1+synthetic part2 21.57

2.7 Curriculum Learning

The order in which the data is presented to the NMT model affects the learning
process. If the composition of data is relatively complex and the data is presented
in an random manner, it may be harder for the model to learn certain patterns or
representations. This happens when we incorporate the synthetic data into training
set in Sect. 2.5 and Sect. 2.6. Alternatively, if data is presented in an organized
manner, it may be easier for the model to learn.

Curriculum learning is a method that gradually increases the complexity of sam-
ples used during the training process. It has been successfully employed in many
tasks in NLP. An implementation of curriculum learning should resolve two ques-
tions. (1) How to rank the training examples, or in other words, how to define the
complexity of a sample. (2) How to modify the sampling procedure based on the
ranking. We adopt the curriculum learning training strategy proposed by [26] and
[27], which is proven effective on a domain adaptation task for NMT with a similar
low-resource setting as ours.
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2.7.1 Training Strategy

In this section, we briefly introduce the curriculum learning training strategy used in
[27]. [27] defines the complexity of a sample based on its similarity to the in-domain
data, which can be quantified by Eq. 2. They employ a probabilistic curriculum, in
contrast to the deterministic curriculum, which trains on a fixed order of samples
based on their scores. The deterministic curriculum may always perform well because
neural models benefit from randomization in the minibatches and multiple epochs.
The probabilistic curriculum works by dividing the training procedure into distinct
phases. Each phase creates a random sample from the entire pool of data, but earlier
phases sample the “easier” or “more similar to in-domain” sentence with higher
probability. Since each phase can be viewed as creating a new training dataset, all
the well-tested tricks of the trade for neural network optimization can be employed.
The training strategy (Fig. 7) is summarized as follows:

• Sentences are first ranked by similarity scores and then distributed evenly into
shards, such that each shard contains samples with similar similarity criteria
values.

• The training process is segmented into consecutive phases, where only a subset
of shards are available for training.

• During the first phase, only the easiest shard is presented. When moving to the
next phase, the training set will be increased by adding the second easiest shard
into it, and so on. Easy shards are those that are more similar to the in-domain
data, as quantified by Moore-Lewis (Eq. 2).

• The presentation order of samples is not deterministic. (1) Shards within one
curriculum phase are shuffled, so they are not necessarily visited by the order of
similarity level during this phase. (2) Samples within one shard are bucketed by
length and batches are drawn randomly from buckets.

2.7.2 Results

We use the same experiments setups as in Sect. 2.5 and Sect. 2.6 except that when
training on the concatenation of in-domain and synthetic parallel data, the curriculum
learning training strategy is applied, resulting in the Curriculum Learning models
in Tab. 3 and Tab. 4:

• Curriculum learning significantly improves the performance. It is used in the
best models for both PHOENIX14T and CSL Daily: Tab. 3 Back Translation
+ Curriculum Learning + Fine-tuning and Tab. 4 Back Translation w/SMT +
Curriculum Learning.

• Curriculum learning is able to make better use of data with complex compositions.
In Tab. 3, the Back Translation model performs worse than the Rule-based model
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Fig. 7 The curriculum train-
ing strategy proposed in [26].
Sentences are ranked by sim-
ilarity scores and distributed
evenly into shards. The train-
ing process is segmented into
consecutive phases, in each
of which the model is trained
on a subset of shards. The
training set is increased grad-
ually by adding shards with
samples of lower similarity
scores into it. Note that the
presentation order of sam-
ples is not deterministic. (1)
Shards within one curriculum
phase are randomly shuffled.
(2) Samples within one shard
are bucketed by length and
batches are drawn randomly
from buckets.

(25.77 vs. 26.52). However, with curriculum learning, this relationship has shifted.
The Back Translation + Curriculum Learning outperforms the Rule-based +
Curriculum Learning model (28.09 vs. 27.40). Another example is the Back
Translation w/ NMT and Back Translation w/ SMT in Tab. 4.

• Fine-tuning after curriculum learning does not always lead to a better model,
for example, in Tab. 4, Rule-based + Fine-tuning has a higher BLEU score than
Rule-besed + Curriculum Learning + Fine-tuning (29.91 vs. 29.83).

3 Gloss Translation as a Part of Sign Language Translation

In general, there are two types of architecture for a sign language translation system
(Fig. 8). (1) A cascaded system (the focus of this work) as shown in Fig. 1 that trains
a sign language recognition model and a gloss-to-text translation model separately.
During inference, signs are first mapped to gloss by the recognition model, and
the gloss outputs are then translated to text in spoken language with the translation
model. (2) An end-to-end system, that is usually constructed with a visual encoder
that learns visual representations from sign videos and an encoder-decoder structure
that decodes the representations into text translation, in which the latter can be
initialized with the parameters from training on reference gloss and text. Gloss
may be added as another supervision signal using CTC loss, which is short for
Connectionist Temporal Classification loss, helping the model learn to map input
sequences of variable length to output sequences of fixed length.
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Fig. 8 Illustration of ar-
chitectures of sign language
translation models. G2T trans-
lates gloss to text. S2G2T is
the cascaded system that first
recognizes sign to gloss and
then translates gloss to text.
S2T is the end-to-end system
that translates sign to gloss
and text simultaneously.

Tab. 2 shows that the improvement on gloss-to-text (G2T) can transfer to both the
cascaded system (S2G2T) and end-to-end system (S2T) and can even be amplified.
With an 2.32 BLEU score improvement on G2T, the BLEU increases by 4.43 on
S2G2T and 5.11 on S2T.

It seems that the performance of gloss translation contributes a lot to the overall
performance of a sign translation system. But how about errors? Does G2T also
contribute a lot to the errors made by S2G2T and S2T? Or Does it simply pass along
the errors from the sign recognition component (S2G)? Is it even able to fix some
errors made by S2G? In next subsection, we will try answering these questions by
error analyses.

We conduct error analyses based on statistics and case studies on the outputs from
S2G, G2T, S2G2T and S2T trained on CSL Daily, in which S2G2T is formed by
S2G and G2T, while S2G2T is initialized by the pretrained checkpoints of S2G and
G2T. The checkpoints used are from [21].

3.1 Statistics

We collect statistics about the translation accuracy in terms of token and POS.

Token Recall

The token recall is calculated as the number of correct predictions of a certain token
divided by the number of total appearance of that token in the reference gloss or text
translation. It can be considered as a more in-depth performance metric than BLEU.
Fig. 1 illustrates the recall distribution indexed by token appearance frequency. S2G
has a higher-than-60% recall for most of the tokens. G2T instead has a more scattered
distribution, which is inherited by S2G2T and S2T. This indicates that building a
successful SLTM model highly depends on G2T.
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Fig. 9 Recall for tokens on
S2G, G2T, S2G2T and S2T
systems. Recall is calculated
as the number of correct
predictions of a certain token
divided by the number of total
number of the appearance of
that token in the reference.
S2G has a higher token-level
recall compared to the others,
and the token distribution on
S2G2T and S2T are more
similar to G2T.

Fig. 10 POS distribution in
the reference translations on
CSL Daily. VERB and NOUN
constitute the largest portion,
followed by ADV, PART,
PRON and NUM. Other POS
tags such as PROPN, ADJ and
ADP only takes a small part
of all the tokens.

POS Recall

We further group tokens by their POS tags and compute the POS recall, which is
calculated by the number of correct predictions of a certain POS divided by the
number of total appearance of that POS in the reference gloss or text translation. We
plot the proportion of different POS in Fig. 10 and report the POS recall in Fig. 11.
Our findings are summarized as follows:

• The overall recall on S2G is higher than other systems.

• The recall distribution on G2T is similar to S2G2T and S2T.

• S2G is most confident on recognizing SCONJ (e.g. “although”, “because”, “un-
til”), while other systems struggle most at translating SCONJ.

• CCONJ (e.g. “and”, “for”, “yet”) and NUM are challenging for all the systems.

• Though having appeared frequently in the training set (Fig. 10), ADV and PART
(“up”, “out”, “off”) are not translated properly most of the time.

• VERB and NOUN actually account for a large percentage of errors given their
high frequency in the training set, and relatively low recall.
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Fig. 11 Recall of POS on CSL Daily. Recall is calculated as the number of correct predictions of
a certain POS tag divided by the number of total appearance of that POS in the reference gloss or
text translation.

• The rank of the POS-level translation performance is roughly G2T > S2T >

S2G2T, which is consistent with the sentence-level rank (Tab. 2).

3.2 Copy-Paste Effect

Glosses and their spoken language counterparts share a large proportion of vocab-
ulary. On CSL Daily, 60.4% tokens in reference text translation also appear in the
gloss input. We group text translation tokens by whether they have appearance in the
gloss input and calculate the token recall in each group. As shown in Tab. 6, there is
a wide gap between the performance on the two groups. G2T, S2G2T and S2T are
all efficient at copy-pasting words from the input to the output, but are incompetent
at filling in the words that are missing in the input. We call this phenomenon as
“copy-paste effect”.

Table 6 Recall for tokens that have or have not appeared in the reference gloss.

G2T S2G2T S2T

tokens in gloss 88.2% 78.1% 75.9%
tokens not in gloss 31.4% 32.1% 28.1%
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3.3 Case Studies

We present cases of model outputs that exhibit some of the typical errors in Fig. 12.

Group 1. Copy-paste error. G2T someimes makes mistakes by (1) simply copying
a word from gloss without adapting it to the context, or (2) failing to copy and fit the
right word into the translation. The example on the left falls into situation (1). G2T
copy-pastes the verb “violate” from gloss, while the true translation should instead
be the noun “violation”. The example on the right demonstrates situation (2). The
word “recommend” is falsely discarded by G2T.

Group 2. Compound translation error. As in English, sign languages can form
compounds by signing multiple signs in sequence, while the gloss is not necessarily
part of the compound in the corresponding text translation. As in the two examples
in Group 2, the CSL gloss “happy” and “garden” represent “amusement part” in
Chinese, and the CSL gloss “eat” and “good” represent “gourmet” in Chinese.
Models in both of the examples struggle at recognizing the compounds.

Group 3. Error propagation from S2G to S2T and S2G2T. Some of the transla-
tion errors can be traced back to the malfunction of S2G. In the first example, “taking
pictures” is wrongly recognized as “magnetic resonance imaging” (MRI) by S2G,
after which the error is passed to S2T and S2G2T, even though “MRI” does not fit
in the context. The situation in the second example is a bit different. Although “to
treat” is mistakenly recognized as “to shoot” by S2G, S2T fixes the error by the help
of G2T, while S2G2T still makes the same mistake.

4 Summary

In this chapter, we identify sign language gloss translation as a low-resource machine
translation problem and explore the commonly used approaches to try to improve the
performance of gloss translation (Sect. 2). Hyperparameter search (Sect. 2.3) and
pretrained multilingual models (Sect. 2.4) both show a great potential, while data
augmentation such as rule-based (Sect. 2.5) and back translation (sect. 2.6) might
be the most effective when employed with the combination of data selection and
curriculum learning (Sect. 2.7). We then view gloss-to-text translation (G2T) as a
part of the big picture of SLMT (Sect. 3). We show that the improvement on G2T
can be passed to or even amplified in both the end-to-end system (S2T) and the
cascaded system (S2G2T). Finally, we conduct error analyses on the model outputs
and find that SLMT struggle at translating certain types of POS and has the issue of
copy-paste effect.
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Fig. 12 Examples of model outputs. Gloss is the reference gloss, and Text is the reference text
translation. G2T is the text output of G2T with reference gloss as input. S2G are S2T are the output
of S2G and S2T, which takes the sign videos as input. S2G2T is the output of S2G2T with the
output of S2G as input.
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