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a b s t r a c t 

Gross tumor volume (GTV) and clinical target volume (CTV) delineation are two critical steps in the can- 

cer radiotherapy planning. GTV defines the primary treatment area of the gross tumor, while CTV out- 

lines the sub-clinical malignant disease. Automatic GTV and CTV segmentation are both challenging for 

distinct reasons: GTV segmentation relies on the radiotherapy computed tomography (RTCT) image ap- 

pearance, which suffers from poor contrast with the surrounding tissues, while CTV delineation relies 

on a mixture of predefined and judgement-based margins. High intra- and inter-user variability makes 

this a particularly difficult task. We develop tailored methods solving each task in the esophageal can- 

cer radiotherapy, together leading to a comprehensive solution for the target contouring task. Specifically, 

we integrate the RTCT and positron emission tomography (PET) modalities together into a two-stream 

chained deep fusion framework taking advantage of both modalities to facilitate more accurate GTV seg- 

mentation. For CTV segmentation, since it is highly context-dependent—it must encompass the GTV and 

involved lymph nodes while also avoiding excessive exposure to the organs at risk—we formulate it as 

a deep contextual appearance-based problem using encoded spatial distances of these anatomical struc- 

tures. This better emulates the margin- and appearance-based CTV delineation performed by oncologists. 

Adding to our contributions, for the GTV segmentation we propose a simple yet effective progressive 

semantically-nested network (PSNN) backbone that outperforms more complicated models. Our work is 

the first to provide a comprehensive solution for the esophageal GTV and CTV segmentation in radiother- 

apy planning. Extensive 4-fold cross-validation on 148 esophageal cancer patients, the largest analysis 

to date, was carried out for both tasks. The results demonstrate that our GT V and CT V segmentation 

approaches significantly improve the performance over previous state-of-the-art works, e.g., by 8.7% in- 

creases in Dice score (DSC) and 32 . 9 mm reduction in Hausdorff distance (HD) for GTV segmentation, and 

by 3.4% increases in DSC and 29 . 4 mm reduction in HD for CTV segmentation. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Esophageal cancer ranks sixth in mortality amongst all can- 

ers worldwide, accounting for 1 in 20 cancer deaths ( Bray et al., 

018 ). As it is usually diagnosed at late stages, radiotherapy (RT) 

s often one of the primary treatment ( Pennathur et al., 2013 ). 

he most critical and challenging tasks in RT planning are the 

ross tumor volume (GTV) and clinical target volume (CTV) delin- 

ations, where high radiation doses are applied to those regions 
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o kill cancer cells ( Burnet et al., 2004 ). As shown in Fig. 1 , GTV

nd CTV are correlated yet different regions. While the GTV rep- 

esents the visible gross tumor region, the CTV outlines the area 

hat covers the microscopic tumorous region, i.e., sub-clinical dis- 

ase. Spatially, CTV boundaries must contain the GTV and also any 

nvolved lymph nodes (LNs). Physician’s delineation principles of 

T V and CT V are quite different. The determinant of GTV mainly 

elies on image appearance clues. Yet, the estimation of CTV re- 

uires to first have the GTV, followed by measuring the sub-clinical 

isease margins through the judgment of both image appearance 

nd spatial distances from the GTV and other involved targets, 

.e., LN and organ at risk (OAR). Current clinical protocols rely on 

anual GT V and CT V delineation, which is time and labor con- 

uming and subject to high inter- and intra-observer variability 

https://doi.org/10.1016/j.media.2020.101909
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2020.101909&domain=pdf
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Fig. 1. An example of esophageal cancer GTV and CTV contours in axial, coronal 

and sagittal views (top: original CT, bottom: contours overlaid on CT). Red, and cyan 

indicate the GTV and CTV contours, respectively. Yellow represents the involved 

LNs. Note that CTV margins must cover the GTV, microscopic tumorous regions, 

and any involved LNs. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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Fig. 2. Esophageal GTV examples in RTCT and PET images, where the green line in- 

dicates the ground truth boundary. (a)-(b): although the GTV boundaries are hardly 

distinguishable in RTCT, it can be reasonably inferred with the help of PET. (c) PET 

can be noisy with false positive high-uptake regions, as well as the limited uptakes 

in the GTV. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

c

a

Cardenas et al. (2018a) for CTV segmentation. 
 Tai et al., 1998; Eminowicz and McCormack, 2015; Nowee et al., 

019 ). This motivates automated approaches for GT V and CT V seg- 

entation, which could potentially increase the target contouring 

ccuracy and consistency, as well as significantly shorten the plan- 

ing time allowing for timely treatment. 

Both GTV and CTV delineation offer their own distinct chal- 

enges. The assessment of esophageal GTV by radiotherapy com- 

uted tomography (RTCT) alone has been shown to be error prone, 

ue to the poor contrast between the GTV and surrounding tis- 

ues ( Muijs et al., 2010 ). Within the clinic, these shortfalls are of-

en addressed by correlating with the patient’s positron emission 

omography/computed tomography (PET/CT) scan, when available. 

hese PET/CTs are taken on an earlier occasion to help stage the 

ancer and decide treatment protocols. Despite misalignments be- 

ween the PET/CT and RTCT, positron emission tomography (PET) 

till provides highly useful information to help manually delineate 

he GTV on the RTCT, thanks to its high contrast in highlighting 

alignant regions ( Leong et al., 2006 ). As shown in Fig. 2 , RTCT

nd PET can each be crucial for accurate GTV delineation, due 

o their complementary strengths and weaknesses. Yet, leveraging 

oth diagnostic PET and RTCT requires contending with the un- 

voidable misalignments between the two scans acquired at dif- 

erent times. 

Turning to CTV delineation, its quality depends highly on physi- 

ian’s experience due to its judgement-based characteristics. For 

sophageal cancer, this is even more challenging because tumors 

ay potentially spread along the entire esophagus and metastasize 

p to the neck or down to the upper abdominal LNs, and present 

djacent to several OARs, such as the lung ( Jin et al., 2018 ) and

irway ( Jin et al., 2017 ). Recent works on automated CTV segmen- 

ation mostly operate based on the RTCT appearance alone ( Men 

t al., 2017; 2018; Wong et al., 2020 ). However, as shown in Fig. 3 ,

TV delineation depends on the radiation oncologist’s visual judg- 

ent of both the appearance and the spatial configuration of the 

TV, LNs, and OARs, suggesting that only considering the RTCT 

akes the problem ill-posed ( Men et al., 2017; 2018; Wong et al., 

020 ). 

By considering their different characteristics and challenges, we 

ropose tailored methods for GT V and CT V delineation to solve 

ach task. Together, these result in a combined workflow that pro- 

ides a comprehensive solution (named as DeepTarget) for target 
2 
ontouring in esophageal cancer radiotherapy. Specifically, there 

re four major contributions in our work. 

1. For the GTV segmentation, we introduce a new two-stream 

chained deep network fusion method to incorporate the 

joint RTCT and PET information for accurate esophageal GTV 

segmentation (see Fig. 6 ). One of the streams is trained us- 

ing the RTCT alone, while the other stream uses both RTCT 

and registered PET. The former exploits the anatomical ap- 

pearance features in computed tomography (CT), while the 

latter takes advantage of PET’s sensitive, but sometimes spu- 

rious and overpoweringly strong contrast. The two streams 

explore tumor characteristics from different perspectives, 

hence, their predictions can be further deeply fused with the 

original RTCT to generate a final robust GTV prediction. The 

misalignment between RTCT and PET/CT is alleviated by a 

deformable registration with a robust anatomy-guided ini- 

tialization. 

2. For the GTV segmentation, we also introduce a simple 

yet surprisingly powerful progressive semantically-nested 

network (PSNN) segmentation model, which incorporates 

the strengths of both UNet ( Ronneberger et al., 2015 ) 

and PHNN ( Harrison et al., 2017 ) by using deep super- 

vision to progressively propagate high-level semantic fea- 

tures to lower-level, but higher resolution features. The 

PSNN achieves superior performance in the tumor seg- 

mentation task as compared to prior arts, e.g., Dense- 

UNet ( Yousefi et al., 2018 ) and PHNN ( Harrison et al., 2017 ). 

3. For the CTV segmentation, we introduce a novel spatial con- 

text encoded deep CTV delineation framework. Instead of 

expecting the CNN to learn distance-based margins from the 

GTV, LNs, and OARs binary masks, we provide the CTV delin- 

eation network with the 3D signed distance transform maps 

(SDMs) of these structures. Specifically, we include the SDMs 

of the GTV, LNs, lung, heart and spinal canal with the orig- 

inal RTCT volume as inputs to the network. From a clinical 

perspective, this allows the CNN to emulate the oncologists 

manual delineation, which uses the distances of GTV, LNs vs. 

the OARs as a key constraint in determine the CTV bound- 

aries. 

4. We demonstrate in the extensive experiments that both our 

GT V and CT V segmentation methods can significantly im- 

prove the performance over prior state-of-the-art (SOTA): 

8.7% increase in absolute Dice score (DSC) (from 70.3% 

to 79.0%) and 8.5 mm reduction in average surface dis- 

tance (ASD) (from 14.2 mm to 5.7 mm) as compared to 

Yousefi et al. (2018) for GTV segmentation, and 3.4% in- 

crease in DSC (from 79.2% to 82.6%) and 3.3 mm reduc- 

tion in ASD (from 7.7 mm to 4.4 mm) as compared to 



D. Jin, D. Guo, T.-Y. Ho et al. Medical Image Analysis 68 (2021) 101909 

Fig. 3. Esophageal CTV delineation illustration, where red, yellow, and cyan indi- 

cate the GTV, involved LNs and CTV, respectively. (a) shows that the CTV is not a 

uniform margin expansion (brown-dotted line) from the GTV, while (b)-(c) shows 

how delineation becomes more complicated when involved LNs are present. (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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The initial results of this work were presented in two confer- 

nce papers each focusing on separately GTV Jin et al. (2019a) and 

TV Jin et al. (2019b) segmentation. The current manuscript ex- 

ends the two previous works in three aspects. 

1. We provide a more comprehensive literature review for the 

GTV and CTV segmentation works, as well as for PET/CT co- 

segmentations, which could not be included in our confer- 

ence papers because of page limits. 

2. We expand our esophageal RT dataset to 148 patients with 

paired PET/CT and RTCT images from the original 110. We 

conduct extensive 4-fold cross-validation for both GTV and 

CTV segmentation using the same splits at the patient level. 

For the GTV experiment, we additionally compared against 

three recent SOTA PET/CT co-segmentation methods ( Zhong 

et al., 2019; Zhao et al., 2019; Kumar et al., 2020 ). 

3. We integrate the GTV and CTV segmentation together, re- 

porting, for the first time, a combined and more com- 

plete esophageal target contouring workflow. In doing so, 

we study the impact of using our GTV predictions as in- 

put into the CTV task, characterizing the performance of this 

integrated workflow and demonstrating its potential clinical 

value. 

. Related work 

.1. GTV segmentation 

A handful of studies have addressed automated esophageal GTV 

egmentation ( Hao et al., 2017; Tan et al., 2017; Yousefi et al., 

018 ). Tan et al. (2017) developed an adaptive region-growing 

lgorithm with a maximum curvature strategy to segment the 

sophageal tumor in PET alone and evaluated using phantom im- 

ges. However, due to the misalignments between PET and RTCT 

nd their different imaging principles, even a dedicated cross- 

odality registration algorithm may not achieves satisfactory re- 

ults ( Mattes et al., 2003 ). Hao et al. (2017) ; Yousefi et al., 2018 de-

eloped esophageal GTV segmentation models for RTCT using 2D 

nd 3D convolutional neural networks (CNNs), respectively. To 

ompensate for 2D CNN limitations, Hao et al. (2017) applied the 

raph cut algorithm ( Boykov et al., 2001 ) to further refine the seg-

entation results. In contrast, Yousefi et al., 2018 designed a 3D 

Net ( Çiçek et al., 2016 ) equipped with densely connected convo- 

utional modules ( Huang et al., 2017 ), i.e., DenseUNet, and achieved 

he SOTA esophageal GTV segmentation performance. GTV seg- 

entation has also been extensively studied in other cancers, such 

s lung cancer ( Lian et al., 2019; Zhong et al., 2019; Zhao et al.,

019; Kumar et al., 2020 ) and head & neck cancer ( Guo et al., 2019;

in et al., 2019; Ma et al., 2019 ), where CT, PET or MRI modalities

re combined or separately adopted depending on specific tasks. 

ur work differs from the prior art by proposing a two-stream 
3 
eep fusion strategy to fully leverage the complementary informa- 

ion from the CT and PET modalities, which we show is superior 

o both using CT in isolation and combining CT and PET in co- 

egmentation approaches (discussed below). 

.2. CT/PET tumor co-segmentation 

CT/PET based tumor co-segmentation has been a popular topic 

n recent years and is closely relevant to our GTV two-stream 

eep fusion method. Huang et al., 2018 ; Guo et al. (2019) ap- 

lied CT/PET early fusion to segment the GTV in head & neck 

ancer, where UNet or Densely connected UNet are adopted as 

he segmentation networks. Xu et al. (2018) designed a cascaded 

ipeline to sequentially use CT and PET images for the whole-body 

one lesion segmentation. Zhong et al. (2019) ; Zhao et al. (2019) ; 

umar et al. (2020) designed different CT/PET fusion meth- 

ds to segment lung tumors and achieved encouraging results. 

hong et al. (2019) proposed a segmentation method using two 

oupled UNets ( Çiçek et al., 2016 ), one that takes CT alone as in-

ut and one that takes PET alone, where each UNet shares connec- 

ions with each other to promote the complementary information. 

hao et al. (2019) trained two parallel VNets ( Milletari et al., 

016 ) to extract the PET- and CT-based probability maps 

here a final fusion module produced the final segmentation. 

umar et al. (2020) introduced a co-learning module to derive a 

patially varying fusion map that quantifies the relative importance 

f each modality, which is then multiplied with PET and CT specific 

eatures to obtain a representation of the complementary CT/PET 

nformation at different image locations. We compared our tumor 

egmentation with these prior arts ( Zhong et al., 2019; Zhao et al., 

019; Kumar et al., 2020 ) to demonstrate the effectiveness of our 

roposed CT/PET fusion strategy. These prior works all assume that 

he PET and CT images are well-aligned, which may not be true in 

ractice. 

.3. CTV segmentation 

No prior work, CNN-based or not, has been reported for 

sophageal cancer CTV segmentation. Studies on CTV segmenta- 

ion of other cancer types mostly focus on the RTCT appearance 

lone. Yang et al. (2014) applied an atlas-based method to seg- 

ent the CTVs of head & neck cancer, where the atlas was built 

ased on a dual-force demons registration algorithm ( Pennec et al., 

999 ). Men et al. (2017, 2018) applied different deep network 

tructures in a fully convolutional network (CNN) framework, such 

s dilated convolution ( Yu and Koltun, 2016 ) or ResNet ( He et al.,

016 ), to directly segment the CTV from RTCT in rectal and breast 

ancer, respectively. Recently, Cardenas et al. (2018b) used the 

ure distance information from the GTV and several OARs to 

onduct voxel-wise classification to identify if a voxel belongs 

o the oropharyngeal CTV, demonstrating considerable improve- 

ent compared to pure CT appearance based methods. Notably, 

ardenas et al. (2018a) later showed that considering the GTV 

nd LN binary masks together with the RTCT can achieve the 

OTA oropharyngeal CTV delineation performance. However, binary 

asks do not explicitly provide distances to the model. In contrast, 

e explicitly provide spatial distance information from the GTV, 

nvolved LNs and OARs to segment the CTV. This provides much 

reater context for the network to exploit. 

. Methods 

The overall workflow of our DeepTarget system is depicted 

n Fig. 4 , which consists of three major components: (1) im- 

ge preprocessing to register PET to RTCT and to perform pre- 

equisite anatomy segmentation in RTCT, i.e., the involved LN 
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Fig. 4. The overall workflow of our DeepTarget system that segment both GTV and CTV in esophageal cancer radiotherapy. 
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nd OAR segmentation; (2) GTV segmentation using a two-stream 

hained 3D deep fusion method and the new proposed progressive 

emantically-nested network (PSNN); (3) CTV segmentation using 

 deep contextual- and appearance-based method, involving the 

TCT and the 3D spatial distance maps from the GTV, involved 

Ns and OARs. Our workflow can accept different backbones. In 

he results section, we demonstrate that PSNN is an effective ar- 

hitecture for the appearance-based GTV segmentation. However, 

or the CTV segmentation different networks have limited impact 

ince CTV delineation relies mainly on the problem formulation 

appearance-based or spatial context-based). 

.1. Image preprocessing 

In our system, preprocessing consists of PET to RTCT registra- 

ion and also the segmentation of prerequisite anatomical struc- 

ures in RTCT. 

.1.1. PET to RTCT registration 

To effectively leverage the complementary information from 

ET and RTCT we generate an aligned PET/RTCT pair by register- 

ng the former to the latter. Direct PET to RTCT registration suf- 

ers from large errors due to their completely different imaging 

rinciples ( Mattes et al., 2003 ). To overcome this difficulty, we 

egister the diagnostic CT (accompanying the PET) to RTCT and 

se the resulting deformation field to align the PET to RTCT. This 

ntra-patient image registration from same imaging modality is a 

uch easier task, where many deformable registration methods 

ave demonstrated very good performance ( Murphy et al., 2011 ). 

To register the diagnostic CT to RTCT we apply a cubic B-spline 

ased free-form deformable registration algorithm ( Rueckert et al., 

999 ) in a coarse to fine multi-scale deformation process imple- 

ented by Klein et al. (2010) . We choose this option due to its

ood capacity for shape modeling and efficiency in capturing lo- 

al non-rigid motions. However, to perform well, the registration 

lgorithm must have a robust rigid initialization to manage pa- 

ient pose, scanning range, and respiratory differences in the two 

T scans ( Fig. 5 (a)). To accomplish this, we use the 3D lung mass

enters from the two CT scans as the initial matching positions. We 

ompute these mass centers from mask predictions produced by 

ur prerequisite region segmentation step (see Section 3.1.2 ). This 

eads to a reliable initial matching for the chest and upper abdom- 

nal regions, helping the success of the registration. The resulting 

eformation field is then applied to the diagnostic PET to align it to 

he RTCT at the planning stage. One registration example is shown 

n Fig. 5 (b). 

.1.2. Prerequisite anatomy segmentation 

Our CTV segmentation module relies on incorporating the spa- 

ial context/distance of the anatomical structures of interest, i.e., 
4 
he GTV, involved LNs and OARs. We assume manual segmen- 

ations for the involved LNs are available, considering that even 

he most recent LN detection performance is prone to large false- 

ositive rates ( Zhu et al., 2020; Yan et al., 2020 ). We leave the

etastasis LN identification itself as a separate research topic. 

or the OARs, we do not make this assumption. Indeed, missing 

AR segmentations (25 % ) is common in our dataset. We consider 

hree major organs: the lung, heart, and spinal canal, since most 

sophageal CTVs are closely integrated with them. Unlike densely- 

istributed and large amounts of OARs in the head and neck re- 

ion ( Guo et al., 2020 ), the three organs we considered are easier

o segment. Hence, we simply trained a 2D PSNN model to seg- 

ent them using available organ labels in our dataset. Robust per- 

ormance is achieved with validation Dice scores for the lung, heart 

nd spinal canal as high as 97% , 95% and 80% , respectively. 

In contrast to the OARs, we chose to use the ground truth GTVs 

n the CTV segmentation training phase. This is because segment- 

ng tumors is a much harder problem than segmenting healthy 

rgans. Although our esophageal GTV segmentation method pro- 

uces significant improvements as compared to previous SOTA, the 

utomated GTV predictions may still present errors that harm the 

TV segmentation training stability. However, during inference, we 

o not make this assumption. As shown in the results Section 5.3 , 

e extensively studied the CTV segmentation performance by us- 

ng the predicted GTVs from different methods and demonstrate 

hat our CTV method performs well regardless of the origin of GTV 

redictions. 

.2. Esophageal GTV segmentation 

Fig. 6 depicts an overview of the proposed two-steam chained 

D deep fusion method for esophageal GTV segmentation. As men- 

ioned, we aim to effectively exploit the complementary informa- 

ion within the PET and CT images. Assuming N data instances, we 

enote the training data as S GTV = 

{(
X CT 

n , X PET 
n , Y GTV 

n 

)}N 

n =1 
, where 

 

CT 
n , X PET 

n , and Y GTV 
n represent the input RTCT, registered PET, and 

inary ground truth GTV images, respectively. For the segmenta- 

ion backbone, we use our new PSNN model, which is described in 

ection 3.2.3 . 

.2.1. CT stream and early fusion stream 

Dropping n for clarity and using j to denote voxel index, we 

rst use two separate streams to generate segmentation maps us- 

ng X CT and [ X CT , X PET ] as network input channels: 

ˆ 
 

CT 
j = p CT 

j 

(
y GTV 

j = 1 | X 

CT ; W 

CT 
)
, (1) 

ˆ 
 

EF 
j = p EF 

j 

(
y GTV 

j = 1 | X 

CT , X 

PET ; W 

EF 
)
, (2) 
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Fig. 5. (a) Illustration of our rigid initialization using the anatomy-based criteria. Note the considerable patient pose differences between diagnostic CT and RTCT, which 

necessitates a robust rigid deformation initialization. (b) shows an example of the deformable registration results for a patient in axial and coronal views. From left to right 

are the RTCT image; the diagnostic CT image before and after the registration, respectively; a checkerboard visualization of the RTCT and registered diagnostic CT images; 

and finally the overlapped PET image, transformed using the diagnostic CT deformation field, on top of the RTCT. 

Fig. 6. (a) depicts our two-stream chained esophageal GTV segmentation method consisting of early fusion (EF) and late fusion (LF) networks. The © symbol denotes 

concatentation along the image channel. Although 3D inputs are used, we depict 2D images for clarity. (b) illustrates our proposed 3D PSNN model, which employs deep 

supervision at different scales within a parameter-less high-to-low level image segmentation decoder. In the implementation, we use four 3D convolutional blocks. The first 

two and last two blocks are composed of two and three 3 × 3 × 3 convolutional + BN + ReLU layers, respectively. 
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here p (·) 
j 

(·) and ˆ y (·) 
j 

denote the CNN functions and output seg- 

entation maps, respectively, W 

(·) represents the corresponding 

NN parameters, and y j indicates the ground truth GTV binary val- 

es. Eq. (2) can be seen as an (EF) of CT and PET, taking advantage

f the high spatial resolution in CT and high tumor-intake contrast 

roperties in PET, respectively. On the other hand, the CT stream in 

q. (1) provides predictions based on CT appearance alone, which 

an be particularly helpful in circumventing the biased influence 

rom noisy non-malignant high uptake regions, which are not un- 

ommon in PET. 

.2.2. Two-stream chained late fusion 

As Fig. 6 (a) illustrates, we harmonize the outputs from 

qs. (1) and (2) by concatenating them together with the original 

TCT as the inputs to a third network: 

ˆ 
 

LF 
j = p LF 

j 

(
y GTV 

j = 1 | X 

CT , ̂  Y CT , ̂  Y EF ; W 

CT , W 

EF , W 

LF 
)
. (3) 

n this way, the formulation in (3) can be seen as a (LF) of the

forementioned two streams of the CT and EF models. We use 

he Dice score (DSC) loss to first train the CT, EF, and LF mod- 
5 
ls separately. Then, we combine them all and conduct the fine- 

uning end-to-end until convergence (see implementation details 

n Section 4.2 ). 

.2.3. PSNN segmentation model 

For conventional segmentation tasks in medical image, e.g., the 

umor or organs, various networks often exhibit different perfor- 

ance. The difficulty mainly lies in the poor appearance contrast 

f targets. Networks equipped with high abstraction ability and 

ell-handling of the resolutions often achieve better performance. 

his is actually aligned with physicians’ reasoning process, whose 

elineation heavily rely upon high-level semantic context to lo- 

ate the target and disambiguate the boundaries. In certain re- 

pects, the UNet ( Ronneberger et al., 2015 ) architecture follows this 

ntuition, where it gradually decodes high-level features down to 

ower-level space. Nonetheless, the decoding path in UNet con- 

umes a great deal of parameters, adding to its complexity. On 

he other hand, models like progressive holistically-nested network 

PHNN) ( Harrison et al., 2017; George et al., 2017 ) use deep su- 

ervision ( Lee, Xie, Gallagher, Zhang, Tu, 2015 ) to connect lower 
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Fig. 7. Overall workflow of our spatial context encoded CTV delineation method. The top and bottom rows depict various masks and SDMs, respectively, overlayed on the 

RTCT. From left to right are the GTV, LNs, heart, lung, and spinal canal. The GTV and LNs share a combined SDM. 
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nd higher-level features together using parameter-less pathways. 

owever, unlike UNet, PHNN propagates lower-level features up to 

igh-level layers, which is counter-intuitive. Instead, a natural and 

imple means to combine the strengths of both PHNN and UNet 

s to use essentially the same parameter-less blocks as PHNN, but 

everse the direction of the deeply-supervised pathways, to allow 

igh-level information to propagate down to lower-level space. We 

enote such a backbone progressive semantically-nested networks 

PSNNs), indicating the progressive aggregation of higher-level se- 

antic features down to lower space in a deeply-supervised setup. 

As shown in Fig. 6 (b), a set of 1 × 1 × 1 3D convolutional layers

re used to collapse the feature map after each convolutional block 

nto a logit image, i.e., ˜ f (� ) 
j 

. This is then combined with the previ- 

us higher level segmentation logit image to create an aggregated 

egmentation map, i.e., f (� ) 
j 

, for the � th feature block by element- 

ise summation: 

f (m ) 
j 

= 

˜ f (m ) 
j 

, (4) 

f (� ) 
j 

= 

˜ f (� ) 
j 

+ g 
(

f (� +1) 
j 

)
, ∀ � ∈ { m − 1 , . . . 1 } , (5) 

here m denotes the total number of predicted feature maps and 

(·) . denotes an upsampling, i.e., trilinear upsampling. Like PHNN, 

he logits of all m convolutional blocks are trained using deeply- 

upervised auxiliary losses ( Lee et al., 2015 ). As our experiments 

ill demonstrate, PSNN can provide significant performance gains 

or GTV segmentation over both a densely connected version of 

Net and PHNN. 

.3. Esophageal CTV segmentation 

CTV delineation in RT planning is essentially a margin ex- 

ansion process, starting from visible tumorous regions (the GTV 

nd involved LNs) and extending into the neighboring regions by 

onsidering the possible tumor spread range and the distances 

o nearby healthy OARs. Fig. 7 depicts an overview of our CTV 

egmentation method, which consists of four major modularized 

omponents: (1) segmentation of prerequisite regions (described 

n image preprocessing Section 3.1.2 ); (2) SDM computation; (3) 

omain-specific data augmentation; and (4) a 3D deep network to 

xecute the CTV delineation. 
6 
.3.1. SDM computation 

To encode the spatial context with respect to the GTV, involved 

Ns, and OARs, we compute 3D (SDMs) for each. Here, we combine 

TV and LN masks together. In an SDM the value of each voxel 

easures the distance to the closest object boundary. Voxels inside 

nd outside the object boundary have positive and negative values, 

espectively. More formally, let O i denote a binary mask, where i ∈ 

 GTV+LNs, lung, heart, spinal canal } and let �(·) be a function that 

omputes boundary voxels of a binary image. The SDM value at a 

oxel v with respect to O i is computed as 

DM �(O i ) (v ) = 

{ 

min 

u ∈ �(O i ) 
d(v , u ) if v / ∈ O i 

− min 

u ∈ �(O i ) 
d(v , u ) if v ∈ O i 

, (6) 

here d(v , u ) is a distance measure from v to u . We choose to use

uclidean distance in our work and use Maurer et al. (2003) ’s effi- 

ient algorithm to compute the SDMs. The bottom row in Fig. 7 de- 

icts example SDMs for the combined GTV and LNs and the three 

ARs. Note that we compute SDMs separately for each of the three 

ARs, meaning we can capture each organ’s influence on the CTV. 

.3.2. Domain-specific data augmentation 

We adopt specialized data augmentations to increase the ro- 

ustness of the training and harden our network to noise in the 

rerequisite segmentations. Specifically, two types of data augmen- 

ations are carried out. (1) We spatially jitter the LN and GTV 

DMs, by random shifts within 4 × 4 × 4 mm 

3 , mimicking that in 

ractice 4 mm average distance error represents the SOTA per- 

ormance in automated esophageal GTV segmentation ( Jin et al., 

019a ). (2) We calculate SDMs of the OARs using both the manual 

nnotations and the automatic segmentations from Section 3.1.2 . 

e randomly choose to use or forego each augmentation strategy, 

eading to four possible combinations. This increases model robust- 

ess. 

.3.3. Execution of CTV segmentation 

The CTV segmentation network takes the RTCT and SDMs of the 

TV and LNs, and three OARs as inputs, which allows it to more 

asily infer the mixture of appearance and distance-based margins. 

e denote the training data as S CTV = 

{(
X CT 

n , SDM �(O) n , Y 
CTV 
n 

)}N 

n =1 
, 

here X CT 
n , SDM �(O) n , and Y CTV 

n represent the input RTCT, SDMs, 
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Table 1 

Demographic, clinical and tumor characteristics of 148 

esophageal cancer patients. Note that some patients have tu- 

mors located across different esophagus region, hence, the total 

number summed at various tumor locations is greater than 

148. ∗ indicates values are presented as median [interquartile 

range, 25th–75th percentile]. 

Characteristics Entire cohort ( n = 148 ) 

Sex 

Male 135 (91%) 

Female 13 (9%) 

Age at diagnosis ∗ 55 [50–61] 

T stage 

T1 0 (0%) 

T2 24 (16%) 

T3 71 (48%) 

T4 53 (36%) 

Tumor location 

Cervical 11 (7%) 

Upper third 26 (18%) 

Middle third 84 (57%) 

Lower third 69 (47%) 
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nd binary ground truth CTV mask, respectively. The CTV network 

unction can be represented as 

ˆ 
 

CTV 
j = p CTV 

j 

(
y CTV 

j = 1 | X 

CT , SDM �(O) , W 

CTV 
)
, (7) 

here W 

CTV represents the corresponding CTV network parame- 

ers. We use the DSC loss to train the CTV segmentation network. 

s shown in the results Section 5.2 , directly providing the spatial 

istances from the GTV, LNs, and OARs is essential to improve the 

TV segmentation performance. Instead, different networks exhibit 

imilar performance. This indeed confirms our observation that dif- 

culty of CTV segmentation lies in the high-level problem formu- 

ation (appearance-based or spatial context-based) rather than the 

hoice of networks. This is in contrast to the conventional appear- 

nce based tumor or organ segmentation, where network architec- 

ure often have a non-trivial impact on the performance. 

. Experimental 

.1. Dataset and evaluation 

Dataset: To evaluate performance, we collected a dataset con- 

aining 148 esophageal cancer patients from Chang Gung Memo- 

ial Hospital, whose demographic, clinical and tumor characteris- 

ics are shown in Table 1 . Each patient has a diagnostic PET/CT 

air and a treatment RTCT scan and underwent the concurrent 

hemoradiatioan therapy (CCRT). To the best of our knowledge, this 

s the largest dataset for esophageal GT V and CT V segmentation to 

ate. All 3D GTV, CTV, and the involved LN ground truth masks 

ere delineated and confirmed by two experienced radiation on- 

ologists during routine clinical workflow. In addition, OAR masks, 

enerated during RT planning, were frequently available as well. 

e used these latter OAR masks to train the prerequisite segmen- 

ation networks of Section 3.1.2 . 

Evaluation: Extensive 4-fold cross validation, split at the patient 

evel, was conducted for both GTV and CTV segmentation. We re- 

ort the segmentation performance using three quantitative met- 

ics: Dice score (DSC) in percentage, Hausdorff distance (HD) and 

verage surface distance (ASD) in millimeters. Together, these met- 

ics provide a comprehensive evaluation. 

.2. Implementation details 

Training data sampling: Both GTV and CTV segmentation are 

onducted using 3D networks. We first resample all input imag- 

ng volumes of registered PET and RTCT and label images to a 
7 
xed resolution of 1 . 0 × 1 . 0 × 2 . 5 mm. Then, we apply a window-

ng of [20 0, 30 0] HU to every RTCT volume to cover the intensity

ange of soft tissues. We use a 3D volume of interest (VOI) patch- 

ased fashion to train both GTV and CTV networks. To generate 

he 3D training samples, we extract 96 × 96 × 64 sub-volumes in 

wo manners: (1) To ensure enough VOIs with postive GTV and 

TV content, we randomly extract VOIs centered within the ground 

ruth GT V and CT V masks, respectively. (2) To obtain sufficient 

egative examples, we randomly sample 20 VOIs from the whole 

olume. This results, on average, in 80 training VOIs per patient for 

oth GTV and CTV segmentation. We further apply random rota- 

ions in the x-y plane within ±10 degrees to augment the training 

ata. During inference, 3D sliding windows with sub-volumes of 

6 × 96 × 64 and strides of 64 × 64 × 32 voxels are used. The prob- 

bility maps of sub-volumes are aggregated to obtain the whole 

olume prediction. Using a single Titan-V GPU, it takes on average 

0s and 6s to segment one input volume for GTV and CTV, respec- 

ively. 

Network optimization: For both GTV and CTV segmentation 

asks, the Adam solver ( Kingma and Ba, 2014 ) is used to opti-

ize all the segmentation models with a momentum of 0.99 and 

 weight decay of 0.005. Batch size is set to 24 for all models. For

ur GTV segmentation model, we train the CT and EF stream sub- 

etworks for 50 epochs to convergence, and the LF sub-network 

or 30 epochs. Then, we combine all three sub-networks and fine- 

une them end-to-end for 10 epochs to generate our final GTV seg- 

entations. For other CT/PET co-segmentation methods, we follow 

he implementation details as described in their papers. For all CTV 

egmentation models, we train them for 40 epochs to convergence. 

.3. Experimental design 

Esophageal GTV segmentation: First , we conduct a detailed abla- 

ion study to evaluate the effectiveness of our two-stream chained 

eep fusion method, as well as the proposed PSNN model. To do 

hat, we compare our PSNN model versus PHNN ( Harrison et al., 

017 ) and DenseUNet ( Yousefi et al., 2018 ) under all three imag- 

ng settings, i.e., the CT, (EF), and (LF) of Eqs. (1) –(3) , respec-

ively. Note that the DenseUNet arguably represents the current 

OTA esophageal GTV segmentation approach using CT. Second , 

quipped with the PSNN model, we further compare our CT/PET 

usion method with three other SOTA CT/PET co-segmentation 

ethods ( Zhong et al., 2019; Zhao et al., 2019; Kumar et al., 2020 ).

Esophageal CTV segmentation: First , we compare our CTV seg- 

entation method against 3 other setups to validate the effective- 

ess of the proposed appearance + spatial context formulation: (1) 

sing only the CT appearance ( Men et al., 2017; 2018 ); (2) using

he CT and binary GTV/LN masks ( Cardenas et al., 2018a ); (3) us-

ng the CT + GTV/LN SDMs, which does not consider the effects 

f OARs. We compare these CTV setups using the proposed PSNN 

ackbone. We also test the performance of DenseUNet and PHNN 

sing the CTV setup of CT appearance alone and our proposed 

ethod. Second , we extensively examine the impact of using dif- 

erent automatic GTV predictions as inputs for the CTV segmen- 

ation. This provides an evaluation of the complete RT target con- 

ouring pipeline and also measures the robustness of our CTV seg- 

entation to inaccuracies in GTV predictions. 

. Results and discussion 

.1. Esophageal GTV segmentation 

Effectiveness of PSNN: The quantitative results and compar- 

sons are tabulated in Table 2 and Fig. 9 . When all network mod- 

ls are trained and evaluated using only RTCT stream, our pro- 

osed PSNN evidently outperforms the previous best esophageal 
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Table 2 

Mean DSC, HD, and ASD, and their standard deviations, of GTV segmentation per- 

formance using: (1) only RTCT images; (2) early fusion (EF) of RTCT and PET im- 

ages; (3) the proposed two-stream chained fusion model, i.e., LF. The 3D Dense- 

UNet model using RTCT is equivalent to the previous SOTA work ( Yousefi et al., 

2018 ), which is shown in the first row in blue color. The best performance scores 

are shown in bold . 

3D Model CT EF LF DSC HD (mm) ASD (mm) 

DenseUNet � 0.703 ± 0.178 72.2 ± 77.5 14.2 ± 28.0 

� 0.731 ± 0.139 53.4 ± 68.0 10.2 ± 17.6 

� 0.741 ± 0.137 61.4 ± 71.0 11.0 ± 17.7 

PHNN � 0.743 ± 0.144 59.1 ± 69.3 10.1 ± 16.9 

� 0.757 ± 0.132 46.9 ± 61.7 8.9 ± 16.6 

� 0.766 ± 0.137 47.4 ± 59.3 8.6 ± 15.6 

PSNN � 0.751 ± 0.147 43.7 ± 55.9 6.7 ± 9.6 

� 0.778 ± 0.112 35.4 ± 47.6 5.7 ± 11.6 

� 0.790 ± 0.095 39.3 ± 56.5 5.7 ± 11.4 
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Table 3 

Mean DSC, HD, and ASD, and their standard deviations, of our CT/PET based 

GTV segmentation as compared to previous SOTA CT/PET co-segmentation 

approaches. PSNN - EF: PSNN model with early fusion of RTCT and PET 

images. PSNN - LF: PSNN model with our proposed two-stream chained 

fusion method. The best performance scores are shown in bold . 

CT/PET co-segment DSC HD (mm) ASD (mm) 

Zhao et al. (2019) 0.676 ± 0.123 129.2 ± 77.4 37.1 ± 28.3 

Zhong et al. (2019) 0.732 ± 0.128 87.8 ± 82.1 20.8 ± 29.4 

Kumar et al. (2020) 0.742 ± 0.119 37.8 ± 41.7 7.7 ± 12.2 

PSNN - EF (Ours) 0.778 ± 0.112 35.4 ± 47.6 5.7 ± 11.6 

PSNN - LF (Ours) 0.790 ± 0.09 5 39.3 ± 56.5 5.7 ± 11.4 
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TV segmentation method, i.e., DenseUNet ( Yousefi et al., 2018 ). 

s can be seen, PSNN consistently improves upon in all met- 

ics: with an absolute increase of 4 . 8% in DSC (from 0.703 to 

.751) and significantly dropping in distance metrics of HD (from 

2 . 2 mm to 43 . 7 mm ) and ASD (from 14 . 2 mm to 6 . 7 mm ), de-

pite it being a simpler architecture. PSNN also outperforms the 

D version of PHNN ( Harrison et al., 2017 ), e.g., with 3 . 4 mm ASD

eduction, which indicates that the semantically-nested high- to 

ow-level information flow provides key performance increases for 

ocating esophageal tumors. For the setup of EF and full two- 

tream chained pipeline, i.e., LF, PSNN also consistently outper- 

orms DenseUNet and PHNN. 

Although UNet and its variations often achieve SOTA segmenta- 

ion performance, they may not always be ideal and have limita- 

ions. Their symmetric encoder-decoder setup results in doubled 

etwork parameters and tripled memory-consumption as com- 

ared to simpler aggregation methods like PHNN and PSNN. This 

ymmetric setup is computationally heavy and subject to limited 

atch-sizes, which inevitably requires more training time and is 

ore difficult to optimize. In contrast, networks equipped with 

igh abstraction capabilities and light-weighted decoding pathway, 

ike PSNN, are able to achieve similar or better performance with 

ess than 1 / 3 of the training time, which can be favored in many

asks. 

Two-stream chained deep fusion: Table 2 also outlines the per- 

ormance of three network models under different imaging con- 

gurations. Several conclusions can be drawn. First, all three net- 

orks trained using the EF stream (RTCT + PET) consistently pro- 

uce more accurate segmentation results than those trained with 

nly RTCT. This validates the effectiveness of utilizing PET to com- 

lement RTCT for GTV segmentation. For instance, the EF stream 

quipped with DenseUNet outperforms the CT stream by ∼ 3% DSC 

mprovement, and 18 . 8 mm HD and 4 mm ASD reduction. Second, 

he full two-stream chained pipeline, i.e., LF, provides further per- 

ormance improvements to EF in terms of DSC while preserving 

imilar distance errors. Importantly, the performance boosts can 

e observed across all three deep CNNs, validating that the two- 

tream combination of CT and EF can universally improve upon 

ifferent segmentation backbones. Last, the best performing results 

re the PSNN model using LF, demonstrating that each component 

f the system contributes to the final performance. When com- 

ared to the previous SOTA work of esophageal GTV segmenta- 

ion, which uses DenseUNet applied to RTCT images ( Yousefi et al., 

018 ), our best performing model exceeds in all metrics of DSC, 

D, and ASD by 8 . 7% , 32 . 9 mm and 8 . 5 mm remarkable margins

refer to the 1st and last row in Table 2 ). Fig. 8 shows several qual-

tative examples visually underscoring the improvements that our 
8 
TV segmentation approach (two-stream chained fusion + PSNN) 

rovides. 

Comparison with SOTA CT/PET co-segmentation: An alternative 

o our approach are the CT/PET co-segmentation strategies. Com- 

arisons between our proposed two-stream chained CT/PET fusion 

nd other co-segmentation methods are summarized in Table 3 . 

ut of other co-segmentation approaches, Zhao et al. (2019) ex- 

ibits the worst results with 67 . 6% DSC and 37 . 1 mm ASD. A

eparate VNet for PET alone seems overfitting and simply fus- 

ng the two probability maps without considering any anatom- 

cal information is just ineffective. Zhong et al. (2019) designs 

he coupled UNet, each of which takes a single RTCT or PET 

s input. Additional skip connections from the encoder of one 

Net are added to the other’s decoder to encourage cross- 

odality feature sharing. This fusion approach performs much 

etter compared to Zhao et al. (2019) ( 73 . 2% vs. 67 . 6% in DSC).

umar et al. (2020) achieves the best performance, particularly in 

istance metrics, by using a carefully designed co-learning fusion 

pproach to integrate features from CT- and PET-specific encoders 

nto a shared decoding path. The importance of properly fusing 

eatures from CT and PET can be seen through these corresponding 

erformance improvements. 

Yet, equipped with the our PSNN network, our two-stream 

hained approach achieves the best performance among all CT/PET 

usion methods, e.g., outperforming Kumar et al. (2020) by a large 

argin of almost 5% in DSC and 2 mm in ASD. In contrast to these 

OTA methods, we utilize the PET modality together with CT as 

n early fusion rather than training separate network or encoder 

or PET alone. The intuition is while PET is helpful, considered in 

solation this modality is noisy and does not contain any anatom- 

cal structural information (see Fig. 2 (c)). This makes PET ineffec- 

ive to learn from alone. To further support our intuition, note that 

ven the PHNN models with a simple EF stream have achieved at 

east comparable or better performance as compared to these SOTA 

T/PET fusion methods. This validates our CT/PET fusion approach. 

Previously reported inter-observer variation: It worth notes 

hat our esophageal GTV segmentation performance is indeed very 

uch comparable to the inter-observer variations reported in pre- 

ious studies. For instance, Nowee et al. (2019) studied the inter- 

bserver performance of GTV delineation using 6 esophageal can- 

er patients by recruiting 19 radiation oncologists in 14 insti- 

utions. Using PET/CT images, oncologists reported a median of 

.69 Jaccard conformity index (equivalent to Jaccard index when 

 users are applied), and an average of 7 mm standard deviation 

n terms of surface distance error. Similar inter-observer GTV re- 

ults were presented by Vesprini et al. (2008) using 10 esophageal 

ancer patients delineated from 6 radiation oncologists. In com- 

arison, our best model achieves an average of 0.68 and a median 

f 0.70 Jaccard index and a 5 . 7 mm ASD, which are very similar 

o the inter-observer variations reported in Nowee et al. (2019) ; 

esprini et al. (2008) . Nonetheless, a large cohort multi-center 

valuation would be needed to fully validate the clinical applica- 

ility of our model. 
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Fig. 8. Qualitative examples of esophageal GTV segmentation. (a) RTCT; (b) Registered PET overlaid on RTCT; (c) GTV segmentation results using CT stream with Dense- 

UNet ( Yousefi et al., 2018 ); (d) CT/PET co-segmentation method by Zhong et al. (2019) ; (e) CT/PET co-segmentation method by Kumar et al. (2020) ; (f) PSNN model using 

CT stream; (g) PSNN model using early fusion (EF) stream; (h) PSNN model using the full 2-stream chained fusion, i.e., LF (our final results). Red masks indicate automated 

segmentation results and green boundaries represent the ground truth. The first two rows demonstrate the importance of PET as using RTCT alone can cause over-, e.g., (c), 

or under-, e.g., (f), segmentation due to low contrast. Note that patient in first row has two separate tumors, one of which is relative small and missed completely by all 

CT-based methods ((c) and (f)) and even by a CT/PET co-segmentation method of Kumar et al. (2020) , i.e., (e). The last row shows a case where over-segmentation can occur 

when the PET channel is spuriously noisy. In all cases, our final results (PSNN using LF) achieve good accuracy and robustness. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Boxplots of the GTV segmentation performance using different fusion methods and deep networks on cross-validated 148 patients. From left to right depict the DSC 

score and ASD results, respectively. 
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.2. Esophageal CTV segmentation 

Effectiveness of spatial context encoding: Table 4 and Fig. 10 

utline quantitative comparisons of the different CTV method se- 

ups and network choices. As can be seen, methods based on pure 

T appearance ( Men et al., 2017; 2018 ) exhibit the worst perfor- 

ance, regardless of the network choices. This is because infer- 

ing distance-based margins from appearance alone is too hard 

f a task for CNNs. Focusing on the PSNN performance, when 

dding the binary GTV and LN masks as contextual informa- 
9 
ion ( Cardenas et al., 2018a ), the performance increases consider- 

bly from 74 . 7% to 79 . 2% in DSC scores. When using the SDM en-

oded spatial context of GTV/LN, the performance further improves 

y 1 . 3% in DSC and 1 . 8 mm in ASD. Finally, when the OAR SDM are

lso included, i.e., our proposed full workflow, it achieves the best 

erformance reaching 82 . 6% in DSC, 39 . 1 mm in HD and 4 . 4 mm

n ASD, with a remarked improvements of 3 . 4% in DSC, 29 . 4 mm

n HD and 3 . 3 mm in HD as compared to the previous SOTA 

ethod ( Cardenas et al., 2018a ). These results confirm the impor- 

ance of incorporating the distance-based context for esophageal 
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Table 4 

Mean DSC, HD, and ASD, and their standard deviations, of different esophageal CTV segmentation methods and 

network models. Under each backbone, the best performance scores using various CTV segmentation methods are 

shown in bold. 

3D models CTV setups/methods Dice HD (mm) ASD (mm) 

DenseUNet RTCT ( Men et al., 2018 ) 0.734 ± 0.109 81.1 ± 45.7 10.8 ± 8.4 

RTCT + GTV/LN/OAR SDMs (Ours) 0.820 ± 0.045 45.3 ± 18.9 4.8 ± 2.1 

PHNN RTCT ( Men et al., 2018 ) 0.735 ± 0.099 86.0 ± 48.1 10.7 ± 9.2 

RTCT + GTV/LN/OAR SDMs (Ours) 0.828 ± 0.045 42.5 ± 21.8 4.2 ± 1.9 

PSNN RTCT ( Men et al., 2018 ) 0.747 ± 0.108 80.2 ± 45.8 10.0 ± 8.9 

RTCT + GTV/LN masks ( Cardenas et al., 2018a ) 0.792 ± 0.075 68.5 ± 47.5 7.7 ± 7.7 

RTCT + GTV/LN SDMs (Ours) 0.805 ± 0.056 53.1 ± 30.1 5.9 ± 3.8 

RTCT + GTV/LN/OAR SDMs (Ours) 0.826 ± 0.050 39.1 ± 21.9 4.4 ± 2.1 

Fig. 10. Boxplots of the CTV segmentation performance under 4 setups equipped with the PSNN backbone on cross-validated 148 patients. From left to right depict the DSC 

score, HD and ASD results, respectively. CT means the pure appearance based CTV segmentation method ( Men et al., 2018 ), while CT + GTV/LN masks represents the SOTA 

CTV segmentation method ( Cardenas et al., 2018a ). 
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TV delineation, as well as the importance of OARs. In particu- 

ar, as can be seen by looking at quartile results in Fig. 10 , our

roposed approach, “RTCT + GTV/LN/OAR SDMs”, exhibits much 

reater robustness and reliability. Fig. 11 presents some qualitative 

xamples further showing these performance improvements. 

Effect of network choices : We also compare the performance 

f different networks when using the CT appearance setup and 

he proposed full CTV segmentation pipeline. As Table 4 demon- 

trates, when using the full pipeline, PSNN, PHNN and DenseUNet 

chieve very similar DSC scores ( < 1% difference), although PSNN 

nd PHNN exhibit marginally reduced distance errors. When us- 

ng only the CT appearance information, PSNN slightly improves 

he DSC and ASD by ≥ 1 . 2% and ≥ 0 . 7 mm , respectively, as com-

ared against both PHNN and DenseUNet. These results confirm 

ur observation that for esophageal CTV delineation, the appropri- 

te problem formulation is most important: under an appropriate 

etup, networks play a less crucial role to the performance. On the 

ther hand, when the problem is not very well-defined, i.e., using 

TCT appearance alone, a network with strong abstraction capacity 

ight produce slightly better results. 

Previously reported inter-observer variation: 

ong et al. (2020) studied inter-observer variation on the head 

nd neck CTV delineation, and the DSC between 2 oncologists in 

 patients ranged from 0.7 to 0.87 with an average value of 0.80. 

minowicz and McCormack (2015) reported the inter-observer 

erformance on cervical cancer CTV delineation by recruiting 
10 
ore than 20 physicians. The Jaccard conformity index ranged 

rom 0.51 to 0.81 with a mean value of 0.655. In comparison, our 

est esophageal CTV segmentation model achieves an average DSC 

f 0.83 (0.70 in terms of Jaccard index). More specifically, ≥ 75% 

atients have DSC score ≥ 0 . 80 , and ≥ 40% patients have DSC 

core ≥ 0 . 85 . These comparisons demonstrate that our automated 

ethod is at least comparable to those inter-observer variations 

eported in previous CTV delineation studies, which indicates our 

otential clinical applicability. 

.3. CTV performance using automated GTV predictions 

Recall that we train our CTV segmentation model using the 

round truth GTV mask for stability concerns. However, we do 

ot make this assumption for inference. Once the CTV mod- 

ls are well-trained using GTV ground truth, we test the CTV 

erformance using different GTV predictions. These results are 

ummarized in Table 5 . Several observations can be made. (1) 

or CTV delineation, the setup/method plays a more important 

ole than the absolute accuracy of the GTV contouring. As can 

e seen, using our proposed “RTCT + GTV/LN/OAR SDM” CTV 

etup, even the worst results by using the GTV predictions of 

hong et al. (2019) still perform better than those under the 

RTCT + GTV/LN masks ( Cardenas et al., 2018a )” CTV setup, re- 

ardless of the origin of the GTV predictions (even using GTV 

round truth). (2) Given a CTV setup, more accurate GTV pre- 
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Fig. 11. Qualitative illustrations of esophageal CTV delineation using different setups. Red, yellow and cyan represent the GTV, LN and predicted CTV regions, respectively. 

The purple line indicates the ground truth CTV boundary. The 1 st and 2 nd rows show examples from setups using pure RTCT ( Men et al., 2018 ) and when adding GTV/LN 

binary masks ( Cardenas et al., 2018a ), respectively. The 3 rd row shows examples using our proposed GTV/LN/OAR SDMs setup. All results use the proposed PSNN backbone. 

(a), (d) and (e) demonstrate that the pure RTCT setups fail to include the involved LNs, while (c), (d) and (f) depict severe over-segmentations. While these errors are partially 

addressed using the GTV/LN mask setup, it still suffers from inaccurate CTV boundaries (c-e) or under/over-coverage of normal regions (b,f). These issues are much better 

addressed by our proposed method. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 5 

Quantitative results of esophageal CTV segmentation using predicted GTV masks of different GTV segmentation 

methods under various CTV setups/methods. All CTV setups use the PSNN backbone. PSNN - LF is our proposed GTV 

segmentation approach using two-stream chained deep fusion. Under each CTV setup, the best performance scores 

using different automated GTV predictions are shown in bold . Meanwhile, CTV performance using the ground truth 

GTV label is presented in italics under each CTV setup as reference of best achieved results. 

CTV 

setups/methods GTV origins DSC HD (mm) ASD (mm) 

RTCT + GTV/LN 

masks ( Cardenas et al., 

2018a ) 

Yousefi et al., 2018 0.762 ± 0.112 73.7 ± 48.4 9.2 ± 9.0 

Zhong et al. (2019) 0.759 ± 0.116 76.2 ± 49.1 9.8 ± 9.8 

Kumar et al. (2020) 0.772 ± 0.105 71.5 ± 48.8 8.9 ± 9.3 

PSNN - LF (Ours) 0.778 ± 0.090 70.4 ± 45.6 8.2 ± 6.9 

GTV ground truth 0.792 ± 0.075 68.5 ± 47.5 7.7 ± 7.7 

RTCT + GTV/LN 

SDMs (Ours) 

Yousefi et al., 2018 0.778 ± 0.098 60.5 ± 37.8 7.5 ± 6.4 

Zhong et al. (2019) 0.778 ± 0.086 63.4 ± 40.2 7.7 ± 6.5 

Kumar et al. (2020) 0.789 ± 0.078 57.4 ± 35.0 6.8 ± 5.0 

PSNN - LF (Ours) 0.790 ± 0.077 57.7 ± 35.3 6.9 ± 5.4 

GTV ground truth 0.805 ± 0.056 51.1 ± 30.1 5.9 ± 3.8 

RTCT + 

GTV/LN/OAR SDMs 

(Ours) 

Yousefi et al., 2018 0.800 ± 0.082 47.0 ± 30.7 5.6 ± 4.3 

Zhong et al. (2019) 0.800 ± 0.077 51.1 ± 35.1 6.1 ± 5.0 

Kumar et al. (2020) 0.811 ± 0.069 43.1 ± 28.0 5.1 ± 3.8 

PSNN - LF (Ours) 0.813 ± 0.068 42.6 ± 27.6 5.0 ± 3.7 

GTV ground truth 0.826 ± 0.050 39.1 ± 21.9 4.4 ± 2.1 
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ictions generally produce better CTV results. However, differ- 

nt GTV results can exhibit similar CTV performance. For in- 

tance, CTV performance using PSNN-LF GTV predictions is simi- 

ar to that using GTV predictions of Kumar et al. (2020) , although 

umar et al. (2020) has a markedly lower performance in terms 

f DSC and ASD ( 74 . 2% vs. 79 . 0% in DSC and 7 . 7 mm vs. 5 . 7 mm

n ASD as shown in Table 3 ). Similar phenomenon is observed 

hen considering the GTV predictions of Zhong et al. (2019) and 

ousefi et al., 2018 . A close look at the GTV results show that 

umar et al. (2020) and PSNN-LF have similar HD errors (similar 
11 
D errors also exist between Zhong et al. (2019) and Yousefi et al., 

018 ). This finding indicates that our CTV segmentation method 

ould tolerate the regional contour inaccuracy, and is only affected 

y distant false-positive or false-negative errors (characterized by 

he HD metric), which confirms the robustness of our CTV segmen- 

ation method. 

Limitation of the CTV segmentation: One factor that limits the 

utomated workflow of the proposed CTV segmentation is the uti- 

ization of manually identified LNs. Detecting the enlarged LNs is 

n difficult task and has long been studied in the literature ( Barbu 
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t al., 2011; Roth et al., 2016; Liu et al., 2016 ). The identifica-

ion of the small and scatteredly-distributed metastasis LNs, re- 

er to GTV LN in RT, is more challenging, especially in non-contrast 

TCT. Considering that even the most recent GTV LN detection per- 

ormance is prone to large false-positive rates ( Chao et al., 2020; 

hu et al., 2020a; 2020b ), we leave the metastasis LN identifica- 

ion as a separate and further research topic. 

. Conclusions 

This work presented a complete workflow for esophageal GTV 

nd CTV segmentation. First, we proposed a two-stream chained 

D deep network fusion method to segment esophageal GTVs us- 

ng PET and RTCT imaging modalities. This two-stream fusion out- 

erforms prior art, including leading co-segmentation alternatives. 

e also introduced the PSNN model as a new 3D segmenta- 

ion architecture that uses a simple, parameter-less, and deeply- 

upervised CNN decoding path, and demonstrated its superior in 

he tumor segmentation task as compared against other SOTA net- 

orks, such as PHNN and DenseUNet. Second, we introduced a 

patial context encoded deep esophageal CTV segmentation frame- 

ork designed produce superior margin-based CTV boundaries. 

ur method encodes spatial context by computing the SDMs of the 

TV, LNs and OARs and feeds them together with the RTCT im- 

ge into a 3D deep CNN. Analogous to clinical practice, this allows 

he network to consider both appearance and distance-based infor- 

ation for segmentation. Experiments demonstrate that our spa- 

ial context-aware CTV segmentation approach significantly outper- 

orms prior approaches to this task. Put together, our work repre- 

ents a complete workflow for the target delineation in esophageal 

ancer radiotherapy and pushes forward the state of automated 

sophageal GTV and CTV segmentation towards a clinically appli- 

able solution. 
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