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Abstract. Deep segmentation networks achieve high performance when
trained on specific datasets. However, in clinical practice, it is often desir-
able that pretrained segmentation models can be dynamically extended
to enable segmenting new organs without access to previous training
datasets or without training from scratch. This would ensure a much
more efficient model development and deployment paradigm accounting
for the patient privacy and data storage issues. This clinically preferred
process can be viewed as a continual semantic segmentation (CSS) prob-
lem. Previous CSS works would either experience catastrophic forgetting
or lead to unaffordable memory costs as models expand. In this work,
we propose a new continual whole-body organ segmentation model with
light-weighted low-rank adaptation (LoRA). We first train and freeze a
pyramid vision transformer (PVT) base segmentation model on the ini-
tial task, then continually add light-weighted trainable LoRA parameters
to the frozen model for each new learning task. Through a holistically ex-
ploration of the architecture modification, we identify three most impor-
tant layers (i.e., patch-embedding, multi-head attention and feed forward
layers) that are critical in adapting to the new segmentation tasks, while
retaining the majority of the pre-trained parameters fixed. Our proposed
model continually segments new organs without catastrophic forgetting
and meanwhile maintaining a low parameter increasing rate. Continually
trained and tested on four datasets covering different body parts of a to-
tal of 121 organs, results show that our model achieves high segmentation
accuracy, closely reaching the PVT and nnUNet upper bounds, and sig-
nificantly outperforms other regularization-based CSS methods. When
comparing to the leading architecture-based CSS method, our model has
a substantial lower parameter increasing rate (16.7% versus 96.7%) while
achieving comparable performance.

1 Introduction

Multi-organ and tumor segmentation, one of the most essential medical im-
age analysis tasks, has been widely studied in the literature [5,19,20]. With the
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Fig. 1. Illustration of the continual multi-organ segmentation (a). At each continual
learning step, only the previously trained model is available (green arrow). Previous
datasets are not accessible. Illustration of the segmentation performance versus param-
eter increasing rate of continual multi-organ segmentation methods.

fast development in deep learning segmentation techniques, deep segmentation
networks trained on specific datasets achieve high performance comparable to
those of medical experts [8,10,11,17,22,26]. However, current deep segmentation
approaches are not capable of updating the trained models effectively when new
segmentation classes are incrementally added, although in clinical practice it is
desirable that pre-trained segmentation models can be dynamically extended to
segment new organs without access to previous training datasets. Illustrated in
Fig. 1, this preferred process can be viewed as a continual semantic segmentation
(CSS) problem, which is a non-trivial task because deep learning models suffer
from catastrophic forgetting when fine-tuned directly on new dataset [12,15,18].

CSS is emerging very recently in the natural image domain [1,4,27], and
the most common CSS approaches adopt the regularization constraint network
training via knowledge distillation to reduce the forgetting of old knowledge while
learning new classes. However, since entire network parameters are updated on
the training of new classes, it is extremely difficult to achieve high performance
on both old and new classes. CSS has been rarely studied in medical imaging
field [9,14,16,28]. Ozdemir et al. uses only 9 patients and 2 organ labels to de-
velop a regularization-based continual segmentation model [16]. Liu et al. adopts
the MiB loss [1] and prototype matching to continually segment a small num-
ber of 5 abdominal organs [14], and Zhang et al. utilizes the pseudo-labels and
clip-embedded controller head to segment 13 abdominal organs [28]. Note that
[14,28] both only focus on a limited organs in the abdomen CT, and when in-
volving a large number of organs of various body parts, such as in whole-body
CT scans, they suffer severe performance degradation (as demonstrated in our
experiments later). Recently, a new architecture-based CSS method [9] is pro-
posed that avoids forgetting by freezing the CNN encoder after the initial task
and sequentially adding separate decoder for each new task. Although it achieves
high performance without forgetting, the method is less scalable because model
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parameters increase dramatically as new tasks are added (see Figure 1(b)). The
completely frozen encoder also lacks of extensibility [9].

In this work, we aim to develop a new CSS method that avoids the catas-
trophic forgetting and meanwhile circumvent the model parameter explosion
issue in [9]. To achieve this goal, we take inspirations from two categories of
recent technique advancements. First, vision transformer (ViT) is widely used
in recent applications [3,13,23], and exhibits superiority in global feature ex-
traction, self-supervised large model pretraining, and multi-modality learning as
compared to the CNN-based models. In medical imaging, ViT-based models also
demonstrate great potential for multi-organ segmentation task [21,25,29], since
many of them exhibit comparable performance with the leading CNN-based
models [8]. Considering the capacity advantage of ViT models and its flexibil-
ity in being extended to diverse tasks, we envision that ViT-based architecture
is suitable for CSS task. Second, many recent parameter efficient fine-tuning
(PEFT) methods are demonstrated to be effective when adapting the large scale
pretrained language model to different downstream applications [2,6,7]. For ex-
ample, low-rank adaptation (LoRA) [7] is one of the most popular and effective
PEFT methods by freezing the pretrained model weights and injects trainable
rank decomposition matrices into the linear or convolution layer of ViT. Hence,
we assume that PEFT is capable of extending model’s capacity to segment new
organs with minor increased model parameters.

Motivated by the above observations, we propose a new architecture-based
CSS method for continual whole-body organ segmentation using pyramid vision
transformer with LoRA. We adopt the UniMISS [25] pretrained 3D pyramid
vision transformer (PVT) as backbone due to its large scale medical image pre-
training and the leading performance on downstream segmentation tasks. To
circumvent the issue of catastrophic forgetting, we introduce a subset of train-
able parameters for each new task. Unlike previous methods that append a bulky
decoder for each task [9], our approach utilizes LoRA on selected PVT layers
to incrementally expand its capacity for segmenting new organs. Following the
original LoRA configuration, a group of LoRA matrices are first injected to
query & value projection layers in multi-head attention to enhance the feature
extraction. Furthermore, through a holistically exploration of the architecture
modification, we inject LoRA matrices to the feed-forward network (FFN) to
provide extra feature aggregation capability necessary for adapting to new un-
seen tasks. Additionally, we further extend LoRA matrices to 3D convolution
in patch embedding layers of encoder and the last layer of decoder, which it
critical to handle the large spacing variation in different medical segmentation
tasks. Continually trained and tested on four datasets covering different body
parts of a total of 121 organs, results show that our model achieves high segmen-
tation accuracy, closely reaching the PVT [25] and nnUNet [8] upper bounds,
and significantly outperforms other regularization or pseudo-label based CSS
methods [1,4,28].
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Fig. 2. Overall framework of the proposed low-rank continual pyramid vision trans-
former (LoCo-PVT) network for continual whole-body organ segmentation, which is
composed of a stack of encoder and decoder blocks, where each block contains a patch
embedding (PE) layer and multiple LoCo-PVT layers. Encoder PE layer (LoCo-PE) has
a convolution layer with stride 2 for downsampling, while decoder PE layer (Deconv-
PE) uses deconvolution layer for upsampling instead. Continual LoRA is added on
linear layers for Q/V projection in multi-head attention and feed-forward network in
LoCo-PVT, and is also added on convolution layers (LoCo-Conv) in LoCo-PE. The
base network is frozen (colored in blue) after training the inital task 0. At each follow-
ing continual learning step, a set of trainable LoRA parameters and a new segmentation
output layer (colored in red) are added for new task adaptation.

2 Method

2.1 Problem Formulation

Figure 2 illustrates the proposed low-rank continual (LoCo) multi-organ segmen-
tation framework. We adopt the UniMISS [25] pretrained 3D PVT as backbone.
Subsequently, the 3D PVT undergoes further training with the TotalSegmentator
dataset [24]. After this additional training, the PVT backbone, as depicted by the
blue dashed-line blocks in Figure 2, is fixed throughout the subsequent training
process. For the remaining tasks, let D = {D1, . . . , DT } represent the datasets
sequence. The model is trained sequentially on each Dt where t ∈ {1, . . . , T}
and will not re-access Dt after training is complete. Consider the tth dataset
Dt = {Xt

k, Y
t
k}

Nt

k=1 that compromises Ot organ classes, and assuming (Xt,Y t)
denote all input images and the corresponding segmentation masks in Dt, the
prediction map for voxel location i and organ class cj is given by

Ŷ t(i) = f
(
Y t(i) = cj |Xt;W0,WLt ,WSt

)
, Ŷ =

T⋃
t=1

Ŷ t, (1)
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where f denotes the transformer neural networks with frozen parameters W0

trained on initial task and task-specific trainable LoRA parameters WLt where
Lt = (At

l , B
t
l )

Mt

l=1 denotes the pairs of low rank matrices for the tth dataset, and
WSt denotes the trainable task-specific Sigmoid output. The final prediction Ŷ
is the union of all previous predictions with possible class overlapping.

2.2 LoCo-PVT: LoRA Continual Vision Transformer Layer

Our LoCo-PVT framework inherits key advantages of both methods and is cus-
tomized for continual multi-organ segmentation. The low-rank adaptations are
enabled within every transformer block as well as the patch embedding modules
of the encoder. For each dataset Dt, we associate a small set of trainable LoRA
parameters Lt = (At

l , B
t
l )

Mt

l=1 where (At
l , B

t
l ) denotes LoRA matrices of the lth

LoCo-PVT block and M t represents the total number of trainable LoCo-PVT
blocks for the tth dataset.

LoCo-MHA & LoCo-FFN For a pretrained weight matrix W0 ∈ Rd×c and
the tth dataset, we constrain its update by representing the latter with a low-
rank decomposition W0+∆W t = W0+BtAt, where Bt ∈ Rd×r, At ∈ Rr×c, and
the rank r ≪ min(d, c). During training, W0 is frozen and does not receive gra-
dient updates, while At, Bt contain trainable parameters. Both W0 and ∆W are
multiplied with the same input, and their respective output vectors are summed
coordinate-wise. The forward pass of h = W0x can summarized as

h = W0x+∆W tx = W0x+BtAtx. (2)

Each At is initialized with random Gaussian and Bt with a zero matrix, resulting
in ∆W t = BtAt being zero at the start of training. Then, ∆W tx is scaled by α

r
where α is a constant in r.

Although LoRA may be applied to any dense layer, Hu et al., [7] shows that
applying it to queries and values of the MHA module yields the most significant
performance gains. Therefore, we adopt a similar design choice in each LoCo-
PVT block and uses a higher r to accommodate for the greater complexity in
learning from visual signals.

2.3 LoCo-PE: LoRA Continual Patch Embedding Layer

The patch embedding modules project input patches into implicit embedding
space of lower dimensions. Each encoder stage of LoCo-PVT is accompanied by a
separate embedding module which extracts feature maps for various resolutions.
Such spatial information are critical for training robust continual segmentation
models across different datasets. Desirably, one should allocate trainable param-
eters to all convolutional projectors for each dataset. Compared to dense layers,
it is observed that the inclusion of LoRA in convolutional layers resulted in a
significant increase in number of parameters. To mitigate this issue, the appli-
cation of convolutional LoRA is confined exclusively to the encoding PE layers,
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i.e., LoCo-PE layer, which incorporates LoRA-enabled 3D convolutions for pro-
jecting input patches to the embedding space in each encoder stage. To enhance
feature aggregation and projection from all scales for the segmentation output,
LoRA is also enabled in the second to the last convolution layer in decoder.

In each 3D convolutional weight matrix δ0 ∈ Rd×c×k3

of dataset Dt, a pair
of matrices (At, Bt) with the same rank r, where Bt ∈ Rdk2×rk, At ∈ Rrk×ck, k
is kernel size. The forward pass of the convolutional operations are

δ0 ∗ x+∆δ ∗ x = δ0 ∗ x+ (BtAt) ∗ x, (3)

where δ0 is the frozen convolution weights from the pretrained W0.

Model Inference: To merge the output probability maps from all learned tasks,
we follows the body-part-aware output merging method from SUN [9], which pre-
computes the average body part distribution map for each dataset, applies body-
part regression over testing scans to eliminate the out-of-distribution body-part
region from each task’s prediction, then uses entropy-based ensemble to combine
the prediction from all tasks. No task ID is required during inference.

3 Experiments and Results

Datasets: We evaluated the proposed model using the public dataset TotalSeg-
mentator [24] (TotalSeg) as task 0 for base model training, which consists of
1204 CT scans of different body parts with 103 labeled anatomical structures
(face label is removed). Similar to SUN [9] dataset setting, we conduct continual
segmentation on three in-house datasets which cover chest body part, head-
neck body part and an esophageal dataset with tumor. Chest organ dataset
(CHO) contains 153 chest CT scans with 16 labeled chest organs, including 7
overlapping organs with TotalSeg and 9 new organs. Head-neck organ dataset
(HNO) includes 244 head & neck CT scans with 9 new organs are annotated.
The last esophageal dataset (EsoTumor) contains 567 CT scans of esopha-
gus with tumor, which is more challenging for esophagus segmentation. We use
80% : 20% split for training and testing. At the final stage, a total of 121 organs
are learned from all datasets. The median voxel resolutions are 1.5×1.5×1.5mm,
1× 1× 2mm, 0.7× 0.7× 5mm, and 1× 1× 5mm for TotalSeg, HNO, CHO and
EsoTumor datasets, respectively.

CSS Protocols, Baselines and Metrics: In CSS experiments, the model is
updated on a sequence of datasets. At each step, only the current dataset is used
for training while all the previous datasets are not accessible. Following SUN [28]
setting, two CSS orders are validated in order to demonstrate the robustness
of the method. Order A: TotalSeg → CHO → HNO → EsoTumor. Order B:
TotalSeg → HNO → CHO → EsoTumor, as shown in Table 1. We compare
our method with 4 leading CSS works: 2 popular regularization-based baselines
(MiB [1], PLOP [4]), a regularization-based method in medical (LISMO [14]) and
an latest architecture-based method (SUN [9]). All methods are implemented in
nnUNet data preprocessing and augmentation framework. Our method uses PVT
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Table 1. Final step results of benchmark CSS methods on two orders of the selected
multi-organ datasets. Dataset names are followed by their class numbers. Mean DSC
(%, ↑) and HD95 (mm, ↓) are evaluated on each dataset as well as all classes (All).
‘PIR (%, ↓)’: parameter increasing rate of the final model (after three continual steps)
compared to the size of base model trained on TotalSeg (initial step).

Methods TotalSeg (103) CHO (16) HNO (9) EsoTumor (1) All (121) PIR
DSC HD95 DSC HD95 DSC HD95 DSC HD95 DSC HD95

Order A: TotalSeg → CHO → HNO → EsoTumor
MiB [1] 9.18 116.38 28.55 20.36 9.21 7.40 87.35 4.43 12.19 96.00 0
PLOP [4] 37.92 53.49 66.98 19.60 34.68 15.55 83.43 5.97 41.65 46.27 0
LISMO [14] 11.71 137.65 43.07 29.07 9.22 12.93 87.47 4.45 16.01 114.45 0
SUN [9] 91.93 3.44 84.33 5.20 84.79 2.67 86.59 5.15 90.45 3.62 96.7
Ours 91.07 4.09 81.51 5.77 82.90 3.08 84.56 5.48 89.26 4.24 16.7

Order B: TotalSeg → HNO → CHO → EsoTumor
MiB [1] 11.24 145.78 78.65 7.23 9.09 24.83 87.27 4.36 20.04 119.06 0
PLOP [4] 31.58 63.78 79.47 7.09 22.78 11.09 83.19 6.04 37.31 52.63 0
LISMO [14] 15.01 90.54 79.49 7.36 8.93 9.13 87.32 4.31 23.14 73.88 0
SUN [9] 91.93 3.44 84.33 5.20 84.79 2.67 86.59 5.15 90.45 3.62 96.7
Ours 91.07 4.09 81.51 5.77 82.90 3.08 84.56 5.48 89.26 4.24 16.7

Single Task Upperbound
PVT [25] 91.07 4.09 83.56 5.25 84.67 2.70 87.02 5.16 89.66 4.15 300
nnUNet [8] 91.93 3.44 84.48 5.14 84.95 2.66 87.62 4.39 90.49 3.60 300

as backbone, while the other 4 methods are based on CNN. In this study, the
upper bound of both PVT and nnUNet on each dataset are listed in Table 1.
We report the final continual segmentation performance using the Dice similarity
coefficient (DSC) and the 95% Hausdorff distance (HD95).

Implementation Details: The 3D PVT base model is the same as UniMISS [25]
model-small, which contains 4 encoder blocks with [2, 3, 4, 3] PVT layers each
and 3 decoder blocks with [3, 4, 3] PVT layers each. The stride is 2 for the con-
volution in encoder PE and deconvolution in decoder PE for down-/up-sampling
purpose. For LoRA setting, we set rank as 64, 16 for query/value layers and FFN
in LoCo-PVT and 16 for convolution layers in LoCo-PE/LoCo-Conv; LoRA al-
pha is consistently set as half of corresponding rank. The encoder is initialized
from Unimiss self-supervised pretrained parameters. Following Unimiss setting,
batch size of 2 and patch size of 224 × 224 × 32 are used for all datasets and
the experiments. The ratio between the training and validation set is 4:1. All
experiments are trained using AdamW and we set 6000 epochs for training base
model on TotalSeg and 500 epochs for continual training steps. The initial learn-
ing rate for PVT is set as 1e−4 and weight decay as 3e−5. Models are trained on
single NVIDIA A100 GPU.

Comparisons to Other State-of-the-art Approaches: The final contin-
ual segmentation results on two orders and single task upper bounds are shown
in Table 1. On the previously learned three datasets and all organs, our method
significantly outperforms 3 regularization-based methods (MiB [1], PLOP [4],
LISMO [14]) in both orders, where the severe catastrophic forgetting of these
methods could be caused by large domain gap between different body parts.
On the other hand, our method and SUN are both architecture-based methods
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Table 2. One-step continual segmentation from TotalSeg to CHO trained with different
LoRA ablation settings. LoRA ranks for Attn-QV, FFN and PE-Conv are set as 64,
16, 16, separately.

LoRA Settings Attn-QV FFN PE-Conv DSC HD95

Base ✓ 76.38 7.96
Base w. FFN ✓ ✓ 79.84 7.07
Base w. PE-Conv ✓ ✓ 80.36 6.30
Ours (Full) ✓ ✓ ✓ 81.51 5.77

LoRA Settings DSC HD95

Encoder only 76.89 7.88
Decoder only 77.21 7.52
Ours (Full) 81.51 5.77

hence have no forgetting over past tasks and are order invariant when base train-
ing dataset is the same (TotalSeg). Although SUN has a slightly higher mean
Dice of 90.45% than our 89.26% on all organs, our parameter increasing rate is
significant lower than SUN (16.7% vs. 96.7% on 3 continual tasks), since SUN
adds an entire decoder for each new task while our method adds light-weighted
low-rank adaptors in selected layers, which only increases 5.56% per task. Note
that, there is also a small gap between nnUNet upper bound 90.49% and PVT
upper bound 89.66% on all organs, which shows a potential capability difference
between nnUNet and PVT and might be the cause of the tiny performance gap
between SUN (nnUNet-based) and LoCo-PVT (1.19%). Our proposed method
closely reaches the PVT upper bound on all organs with a marginal 0.4% drop
in DSC and a 0.9mm increase in HD95, which demonstrates the efficiency and
effectiveness of continual LoRA with a well-trained frozen PVT.

Ablation Study: To demonstrate the importance of each continual LoRA
components in the proposed LoCo-PVT network, we also conduct two ablation
studies using one-step continual segmentation from TotalSeg to CHO, shown in
Table 2. In the left table, various LoRA combinations are evaluated over three
PVT components, including query & value projection layer in multi-head atten-
tion (Attn-QV), feed-forward network in transformer layer (FFN) and 3D convo-
lution in patch embedding layer (PE-Conv). Compared to ‘Base’ setting, adding
extra LoRA to FFN increases the CHO segmentation performance by 3.46%,
from 76.38% to 79.84%; adding extra LoRA to PE-Conv results in 80.36%, which
gains 3.98%; our full LoCo design with LoRA in all three components further
boosts the performance to 81.51% and reduces HD95 from 7.96mm to 5.77mm.
This ablation result shows that it is effective and essential to add LoRA in both
FFN, which provides extra ability to project and ensemble new features from
attention, and PE-Conv, which makes adaptation or localization on different
patch resolution. In the right table, we further study the effect of adding LoRA
in either encoder or decoder. In ‘encoder only’ setting with frozen decoder, the
mean DSC drops to 76.89% and HD95 rises to 7.88mm; Similarly, in ‘decoder
only’ setting with frozen encoder, the mean DSC reduces to 77.21% and HD95
increases to 7.52mm. The results shows that LoRA in both encoder (feature ex-
traction) and decoder (organ localization) helps enhancing the adaptation ability
of the network on new tasks and works equally important for LoCo-PVT net-
work to get comparable performance with the upper bound. This ablation study
validates the necessity of each component in our proposed network.
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4 Conclusion

In this paper, we propose a new LoCo-PVT framework which combines LoRA
with ViT for continual whole-body organ segmentation. We train and freeze a
PVT base model on the initial task, then continually add light-weighted trainable
LoRA parameters to the frozen base model, which avoids catastrophic forgetting
and adapts the model to new tasks while maintaining a low parameter increasing
rate. Our method achieves very high accuracy on four datasets covering differ-
ent body parts, closely reaching the PVT upper bound, and outperforms other
regularization-based methods. When comparing to leading architecture-based
CSS method, our model exhibits a significantly lower parameter increase rate
while achieving comparable performance. This efficiency highlights the effective-
ness of our approach in optimizing resource use without compromising on the
quality of organ segmentation. Future works include extending the LoCo-PVT
to multi-modality datasets and other light-weighted ViT adaptation methods.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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Table S1. Labeled organ list of each dataset. Please refer to TotalSegmentator[23] for
detailed organ list of each group.

Datasets Organs

TotalSeg 26 major organs, 8 vessels, 10 muscles, 59 bone instances

CHO

overlapping: aorta, heart, left/right lung, inferior vena cava, esoph-
agus, pulmonary artery;
new: airway, sternum, left/right thyroid, superior vena cava, pul-
monary vein, scalenus muscle, scalenus anterior muscle, sternocleido-
mastoid muscle

HNO brain stem, spinal cord, left/right eye, left/right optic nerve, chiasm,
left/right parotid

EsoTumor overlapping: esophagus with tumor
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Table S2. Step-wise mean DSC (%, ↑) and forgetting rate (FR) (%, ↓) of CSS methods
on each dataset and all 121 organs (’All’). EsoTumor is not included since no forgetting
rate is calculated for the last continual step.

Methods Step
TotalSeg CHO HNO All
DSC FR DSC FR DSC FR DSC FR

Order A: TotalSeg → CHO → HNO → EsoTumor

MiB[1]
2 43.07 53.15 84.45 — — — 48.63 53.15
3 12.53 86.37 39.79 52.88 84.62 — 21.01 69.63
4 9.18 90.01 28.55 66.19 9.21 89.12 12.19 81.77

PLOP[4]
2 58.98 35.84 82.66 — — — 62.16 35.84
3 40.11 56.37 70.31 14.94 82.88 — 46.89 35.65
4 37.92 58.75 66.98 18.97 34.68 58.16 41.65 45.29

LISMO[14]
2 50.43 45.14 84.46 — — — 55.01 45.14
3 15.02 83.66 44.24 47.62 84.9 — 23.59 65.64
4 11.71 87.26 43.07 49.01 9.22 89.14 16.01 75.14

SUN[9]
2 91.93 0 84.33 — — — 90.91 0
3 91.93 0 84.33 0 84.79 — 90.48 0
4 91.93 0 84.33 0 84.79 0 90.45 0

Ours
2 91.07 0 81.51 — — — 89.78 0
3 91.07 0 81.51 0 82.9 — 89.30 0
4 91.07 0 81.51 0 82.9 0 89.26 0

Order B: TotalSeg → HNO → CHO → EsoTumor

MiB[1]
2 23.36 74.59 — — 84.87 — 31.63 74.59
3 12.08 86.86 84.43 — 9.88 88.36 20.97 86.86
4 11.24 87.77 78.65 6.85 9.09 89.29 20.04 61.30

PLOP[4]
2 47.32 48.53 — — 83.71 — 52.21 48.53
3 32.65 64.48 84.15 — 25.54 69.49 38.59 64.48
4 31.58 65.65 79.47 5.56 22.78 72.79 37.31 48.00

LISMO[14]
2 27.21 70.40 — — 84.94 — 34.97 70.40
3 15.94 82.66 84.49 — 10.13 88.07 24.10 82.66
4 15.01 83.67 79.49 5.92 8.93 89.49 23.14 59.69

SUN[9]
2 91.93 0 — — 84.79 — 90.97 0
3 91.93 0 84.33 — 84.79 0 90.48 0
4 91.93 0 84.33 0 84.79 0 90.45 0

Ours
2 91.07 0 — — 82.9 — 89.97 0
3 91.07 0 81.51 — 82.9 0 89.30 0
4 91.07 0 81.51 0 82.9 0 89.26 0
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