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Abstract. Whole brain segmentation, which divides the entire brain
volume into anatomically labeled regions of interest (ROIs), is a crucial
step in brain image analysis. Traditional methods often rely on intricate
pipelines that, while accurate, are time-consuming and require expertise
due to their complexity. Alternatively, end-to-end deep learning methods
offer rapid whole brain segmentation but often sacrifice accuracy due to
neglect of geometric features. In this paper, we propose a novel frame-
work that integrates the key curvature feature, previously utilized by
complex surface-based pipelines but overlooked by volume-based meth-
ods, into deep neural networks, thereby achieving both high accuracy
and efficiency. Specifically, we first train a coarse anatomical segmen-
tation model focusing on high-contrast tissue types, i.e., white matter
(WM), gray matter (GM), and subcortical regions. Next, we reconstruct
the cortical surfaces using the WM/GM interface and compute curva-
ture features for each vertex on the surfaces. These curvature features
are then mapped back to the image space, where they are combined
with intensity features to train a finer cortical parcellation model. We
also simplify the process of cortical surface reconstruction and curvature
computation, thereby enhancing the overall efficiency of the framework.
Additionally, our framework is flexible and can incorporate any neural
network as its backbone. It can serve as a plug-and-play component to en-
hance the whole brain segmentation results of any segmentation network.
Experimental results on the public Mindboggle-101 dataset demonstrate
improved segmentation performance with comparable speed compared
to various deep learning methods.

1 Introduction

The segmentation of neuroanatomy in brain magnetic resonance imaging (MRI)
is a fundamental and critical step in brain MRI analysis [4]. It assigns each
voxel a semantic label corresponding to a specific neuroanatomical structure
so that quantitative measurements like volume, thickness, and area of various
brain regions-of-interest (ROIs) can be obtained, which are key to numerous
clinical and research applications, such as brain morphological analysis, surgical
planning, and treatment assessment [7].
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Existing methods for brain segmentation can generally be categorized into
two groups. The first category is the atlas-based approach, which relies on de-
formable registration techniques to propagate manually segmented atlas labels to
individual images, such as FreeSurfer [7] and BrainSuite [19]. It can be improved
by using multiple atlases and label fusion strategies [21], or by incorporating
additional machine learning classifiers to refine the segmentation results [23].
While these atlas-based methods are effective for segmenting high-contrast tis-
sue types, such as white matter (WM), gray matter (GM), and cerebrospinal
fluid (CSF), as well as subcortical structures (SS) like the ventricle, cerebel-
lum, and putamen, they fall short when it comes to the finer parcellation of
gray matter, also known as the cerebral cortex, into subdivided regions. This is
because the cerebral cortex is a highly convoluted and thin sheet with similar
tissue intensities, where traditional intensity-based registration algorithms often
fail to align them well [3]. Therefore, to obtain accurate whole brain segmen-
tation (typically >100 labels) with finer cortical ROIs, pipelines like FreeSurfer
[6] have developed cortical surface-based registration [23] and parcellation tech-
niques [4] that explicitly use geometric features like cortical curvature to guide
the alignment and parcellation of cortical areas, as shown in Fig. 1(a). However,
the complexity and time-consuming nature of these pipelines, along with the
need for specialized expertise, impede their routine use in clinical applications.

As a result, the second category of whole brain segmentation methods has
emerged, leveraging deep learning techniques to develop end-to-end segmenta-
tion networks. These methods directly take the whole brain volume as input
in a patch-based style [5], slice-based style [1], or sub-volume style [12], and
output voxel-wise label classification results, as illustrated in Fig. 1(b). The im-
plementation of these networks on GPUs successfully addresses the speed issue
of traditional surface-based pipelines, which now only take minutes to process,
thereby satisfying the requirements for real-time clinical applications. Most re-
cently, a nested transformer model based on U-Net was developed [24], enabling
local communication among adjacent patches by aggregating them hierarchi-
cally, resulting in state-of-the-art performance. Nevertheless, these end-to-end
deep learning networks only rely on input images’ intensity features, which tend
to overlook the intricate geometric nuances of brain anatomy. This problem is
particularly evident in cerebral cortex parcellation, which heavily depends on the
cortical shape. Note that traditional surface-based pipelines specifically leverage
cortical geometric features like cortical curvature to define the cortex parcella-
tion protocols [4]. Therefore, existing deep learning methods, while fast, often
sacrifice accuracy due to the neglect of geometric features.

To address these limitations of existing methods, we propose a novel frame-
work that integrates the underexploited cortical geometric features into state-of-
the-art deep learning networks. This integration allows the framework to combine
the accuracy of traditional complex pipelines with the efficiency of advanced deep
neural networks. Specifically, we adopted the cortical curvature feature, a key
intrinsic property reflecting the convoluted topology of the brain, which has been
widely used to define boundaries of cortical ROIs in various protocols [4,15,7]
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Fig. 1. Illustration of different methods for whole brain segmentation. Note that our
framework keeps the key step, i.e., curvature computation of surface-based pipelines,
and integrates it with the neural network. This approach allows our framework to
benefit from both the accuracy of surface-based methods and the efficiency of deep
learning methods. The

⊗
symbol in (c) means element-wise multiplication operation.

and drive surface registration [23,25] and parcellation [17,22,27]. Our framework
begins with training a coarse anatomical segmentation model targeting the WM,
GM, and SS. Then, we reconstruct the cortical surfaces, compute the curvature
feature at each vertex, and map the curvature features back to the volumetric
image space. Subsequently, these curvature features are combined with intensity
features to train a fine cortical parcellation model. Additionally, we optimize
the process of cortical surface reconstruction and curvature computation, while
eliminating non-essential steps, thereby enhancing the overall efficiency of the
framework. Notably, our framework is designed to be flexible, and capable of
incorporating any neural network as the backbone. As such, it can serve as a
plug-and-play component, enhancing the whole brain segmentation results of
any segmentation network.

2 Method

As shown in Fig. 1, motivated by the inherent limitations of previous methods,
our framework is designed in a two-step coarse-to-fine manner, aiming to achieve
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both high accuracy and efficiency. The first step is coarse anatomical segmen-
tation for GM, WM, and SS like the ventricle, cerebellum, thalamus, caudate,
putamen, etc. The second step is fine cortical parcellation to further divide the
GM into various ROIs. This approach is justified by the inherent distinctions
between anatomical segmentation and cortical parcellation tasks in whole brain
segmentation. On one hand, anatomical segmentation aims to differentiate be-
tween different anatomical structures (WM, GM, and SS) primarily based on
MRI intensities. This is feasible with volume-based methods since these struc-
tures often exhibit relatively high intensity contrast in typical structure MRI
like T1-weighted (T1w) images. On the other hand, cortical parcellation seeks
to partition the GM into different ROIs based on spatial location and shape
information. Such information is hard to obtain using only intensity images,
necessitating the use of cortical surface-based approaches. Hence, dividing the
two tasks into separate steps with specialized models would clarify the training
objectives for each model, rendering them more precise and attainable.

2.1 Coarse Anatomical Segmentation

As depicted in Fig. 1(c), we follow the well-established FreeSurfer pipeline [6] to
initially conduct coarse anatomical segmentation, but with more efficient deep
learning methods instead of the atlas-based method in FreeSurfer. In our imple-
mentation, we merge all cortical ROI labels into a single left GM and right GM
label, combining them with WM and SS labels to train the model from scratch
using the full brain volume as input. Since WM, GM, and SS exhibit relatively
high intensity contrast and are distinguishable in T1w images, this model solely
emphasizes learning intensity features. In contrast, previous end-to-end networks
need to focus on both intensity features for anatomical structures and geometric
features for cortical ROIs.

2.2 Curvature Computation

After completing the coarse anatomical segmentation, we obtain the masks of
GM, WM, and each SS. To leverage cortical geometric features for more accu-
rate cortical parcellation, we integrate several steps from surface-based analy-
sis to extract essential cortical curvature features [8]. Traditional surface-based
pipelines are time-consuming and involve complex steps (see Fig. 1(a)), includ-
ing surface reconstruction [16], topology correction [9], spherical mapping [8],
surface registration [23], parcellation [4], etc. We optimize this process for whole
brain segmentation by retaining only the crucial steps necessary for curvature
computation while discarding non-essential steps such as topology correction,
spherical mapping, and surface registration [23]. This simplification is justified
by the observation that most of these steps can now be replaced with their geo-
metric deep learning counterparts, such as [20] for topology correction, [26] for
spherical mapping, and [25] for surface registration. Therefore, we assume that
these steps can be implicitly learned and addressed to some extent by a single
model focusing on anatomical details and geometric features.
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Specifically, we begin by removing the cerebellum and brain stem and filling
other SS regions. Subsequently, we reconstruct the GM/WM and GM/background
surfaces using the fast marching cube method in the scikit library [18], taking
less than 1 second. The surfaces are then iteratively smoothed, and a simplified
curvature computation method is applied to obtain the mean curvature feature
for each vertex. This simplified method converts the complicated maximum and
minimum curvature computation of 3D surface to multiple 2D curves’ curvature
calculation, which computes the curvature of each curve connecting the 2-ring
neighborhood vertex to the center vertex and then averages them. Such methods
have been validated to be effective in our experiments, requiring only ∼1.5 sec-
onds. After curvature computation, we map the features from 3D surface space
to 3D volumetric space for fine cortical parcellation.

2.3 Fine Cortical Parcellation

In the fine cortical parcellation stage, we directly concatenate the computed
curvature features and original input intensity images in the volumetric space to
train the fine cortical parcellation model. To eliminate the influence of WM and
SS regions that have already been segmented in the previous stage and to focus
only on the cerebral cortex, we crop the intensity images using the predicted
GM mask, as illustrated in Fig. 1. Similarly, in our implementation, we keep
the cortical ROI labels and merge the WM and SS labels with the background
label. After training the model and performing inference to obtain cortical ROI
labels on the whole brain volume, we also crop it using the predicted GM mask.
Subsequently, we combine it with the previously predicted WM and SS masks
to obtain the final whole brain segmentation results.

3 Experiments and Results

3.1 Experimental Settings

We evaluated our method using the publicly available Mindboggle-101 dataset
[15]. This dataset contains 101 3D brain MRI T1w volumes, with each image
containing 106 manually labeled ROIs. These labels include 31 cortex labels in
each hemisphere, 1 WM label in each hemisphere, 41 SS labels, and 1 background
label. The manual labeling of cortex ROIs was based on the DKT protocol [15],
an improved version of the Desikan-Killiany protocol [4]. The segmentations of
SS regions were obtained and corrected using FreeSurfer’s atlas-based method.
Detailed information regarding label names and labeling process can be found in
[15]. The original size of the data is 182×218×182 with 1 mm isotropic spacing.
The subjects’ ages range from 19 to 60 years old. We randomly selected 30 scans
from the dataset as a hold-out test set, while the remaining 71 scans were used
for 5-fold cross-validation.

We adopted several popular medical image segmentation methods as our
baselines, implemented our method based on their code, and performed experi-
ments within their respective framework, including naive 3D U-Net [2], nnU-Net



6 F. Zhao et al.

Table 1. Comparison of Dice (%) performance for whole brain segmentation on the
hold-out test set, with standard deviations calculated across 5 models of the 5-fold
cross-validation. SS: Subcortical Structures, WM: White Matter, GM: Gray Matter,
and the “All” column is averaged over all regions. #1 means an end-to-end network
for all ROIs. #2 represents the proposed two-step coarse-to-fine framework, where the
fine stage is without (w/o) or with (w/) curvature (curv) features. “-” indicates that
the results are the same as their counterparts w/o curv.

SS WM GM All

3D U-Net #1 73.64±0.54 85.33±0.93 73.30±1.21 73.51±1.08
3D U-Net #2 w/o curv 75.47±0.77 90.39±0.54 77.56±0.49 77.02±0.64
3D U-Net #2 w/ curv - - 79.31±0.69 78.04±0.53

UNETR #1 61.15±0.77 71.77±1.34 58.66±1.56 61.53±1.19
UNETR #2 w/o curv 64.78±0.75 73.24±0.78 63.22±0.63 64.01±0.86
UNETR #2 w/ curv - - 66.35±1.09 65.87±1.37

SwinUNETR #1 73.14±0.38 86.63±0.49 73.88±0.52 74.95±0.73
SwinUNETR #2 w/o curv 74.08±0.44 90.09±0.76 77.86±0.55 76.64±0.61
SwinUNETR #2 w/ curv - - 79.22±0.36 77.45±0.42

nnU-Net #1 77.33±0.43 93.05±0.23 78.59±0.91 78.36±0.72
nnU-Net #2 w/o curv 77.42±0.62 94.46±0.18 81.04±0.40 79.95±0.24
nnU-Net #2 w/ curv - - 83.13±0.49 81.36±0.45

[13], MONAI for UNETR [11] and SwinUNETR [10]. To effectively demonstrate
the advantages of the proposed curvature features for two-stage whole brain seg-
mentation, we made minimal modifications to the pre-defined parameters of each
method. Specifically, we only adjusted the input and output channels, setting
them to 1 and 46 in the coarse stage, and 2 and 63 in the fine stage, respectively.
To enhance generalization ability with a relatively small dataset, we opted not
to perform any preprocessing on the original dataset. Instead, we conducted
extensive data augmentation such as random patch cropping, rotation, scaling,
adding Gaussian noise, adjusting brightness and contrast, etc. We trained the
models using default parameters of each baseline method, such as a linearly de-
cayed learning rate for nnU-Net and a cosine annealing schedule for UNETR and
SwinUNETR, SGD optimizer for nnU-Net and Adam optimizer for UNETR and
SwinUNETR, Dice and weighted cross entropy loss for nnU-Net, and only Dice
loss for UNETR and SwinUNETR, etc. All the experiments were conducted on
NVIDIA Tesla V100 32GB GPUs.

3.2 Results

Quantitative Analysis Table 1 shows the comprehensive quantitative results
of whole brain segmentation on the hold-out test set using different baselines and
our method. It can be observed the implementation of our coarse-to-fine strategy,
even without the inclusion of curvature features (#2 w/o curv) at the fine cor-
tical parcellation stage, already yields enhanced results. Specifically, there is an
average 3.8% improvement in Dice scores for GM and a 2.3% improvement for all
ROIs compared to the baseline models. This indicates that training anatomical
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Fig. 2. Qualitative results of whole brain segmentation using different methods. #1
means the original baseline model trained for all ROIs. #2 w/ curv represents the
models enhanced by our proposed curvature-guided coarse-to-fine framework. Boxed
areas are enlarged in the lower row. Differences are emphasized with the yellow arrows.

segmentation model and cortical parcellation model separately indeed helps the
network to more effectively focus on relevant features, i.e., intensity features for
anatomical structures and geometric features for cortical regions, thereby facili-
tating the achievement of both objectives. Then incorporating explicit curvature
features (#2 w/ curv) boosts the results further, with an average 2.1% Dice im-
provement for GM compared to the model without curvatures (#2 w/o curv).
These observations suggest that incorporating curvature information directly
into the model is beneficial for delineating cortical ROI boundaries more accu-
rately. Notably, these gains are observed consistently across all baseline models,
which strongly suggests that our method can serve as a robust, plug-and-play
component to enhance the segmentation results of various whole brain segmen-
tation networks.

Qualitative Analysis Fig. 2 shows some qualitative whole brain segmentation
results from the test set. We can see that baseline models generally tend to
generate over-smooth segmentations, where CSF among cortical folds are often
incorrectly labeled as cortical regions, resulting in over-smooth and unrealistic
results. This may be attributed to their limited capability to capture intricate
geometric features of the GM, which are crucial for accurately detecting the
boundaries of GM ROIs. By integrating our proposed curvature features, there
is a noticeable improvement consistently for all baseline models, particularly in
challenging cases where two cortical folds are very close. For example, in the
last row of Fig. 2, baseline nnU-Net mistakenly labels the left precentral gyrus
(in gray color) as its adjacent ROI left pars opercularis (in blue color) due to
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Table 2. Comparison with state-of-the-art whole brain segmentation methods.

SS Dice
(%)

WM
Dice (%)

GM Dice
(%)

All Dice
(%)

Time

FreeSurfer [6] 76.28 91.22 86.45 82.84 ∼5h
UNesT [24] 74.59 88.32 73.49 74.20 ∼10s
Our method (nnU-Net #2 w/ curv) 77.42 94.46 83.13 81.36 ∼10s

the difficulty in distinguishing the two close cortical folds. With our proposed
curvature feature, nnU-Net #2 w/ curv successfully detects the subtle change
of boundary shifts of the two ROIs and correctly labels them.

Comparison with State-of-the-art Methods Table 2 shows the comparison
results with current state-of-the-art whole brain segmentation methods on our
Mindboggle-101 test set. For UNesT [24], we directly run their public code and
pre-trained model on our test set. Since the segmentation protocol with 133
regions they used [14] is an older version of Mindboggle-101’s protocol [15],
we merged some labels accordingly and only calculated the Dice for regions
presented in both protocols. For FreeSurfer, we ran the “recon-all” command in
FreeSurfer software to obtain the whole brain segmentation for each scan. From
the table, we can observe that FreeSurfer obtains the best GM parcellation
results and overall Dice while taking the longest time. Our method obtains the
second-best results on GM since we only used several simplified surface-based
processes to obtain geometric features. UNesT’s results are lower possibly due
to dataset variance and further fine-tuning on our dataset may improve it. In
terms of WM and SS, since they are relatively easy to recognize on T1w images
solely based on intensities, our deep learning model in the first step can perform
better intensity feature detection and recognition for the segmentation task than
the traditional atlas-based method in FreeSurfer. It is also worth noting that
our method is as fast as UNesT, taking only 10s to obtain the whole brain
segmentation, which is 1000+ times faster than FreeSurfer.

4 Conclusion

In this paper, we propose a novel curvature-guided coarse-to-fine framework to
enhance the performance of whole brain segmentation networks. The framework
divides anatomical segmentation and cortical parcellation tasks into two steps
with specialized models, facilitating the feature learning of each model and im-
proving the segmentation of WM and SS. It also leverages explicit cortical curva-
ture feature to facilitate the detection of ROIs’ boundaries and thus enhance the
accuracy of cortical parcellation. Extensive validation with popular segmentation
networks demonstrates that our method consistently improves the segmentation
performance across various baseline models. More importantly, by employing
an optimized surface reconstruction and curvature computation algorithm, our
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method can segment a whole brain volume in 10s, which is 1000+ times than
FreeSurfer, offering significant potential for real-world clinical applications.
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