
601.435/635 Approximation Algorithms Lecturer: Michael Dinitz
Topic: Deterministic Rounding: Metric Uncapacitated Facility Location Date: 2/22/24
Scribe: Michael Dinitz

10.1 Introduction

Today we’re going to be talking about a new, interesting problem, as well as a more involved
algorithmic technique. Last class we analyzed essentially the simplest rounding scheme there is on
a particularly simple problem. Today we have a more complicated problem, and a more complicated
rounding scheme. Like last class, though, our rounding scheme will be deterministic. This is in
contrast to the next couple of weeks, where we’ll mostly be concerned with randomized techniques.

10.2 Uncapacitated Metric Facility Location (UFL): Definition

I actually mentioned this problem earlier, when we talked about k-center, but this is the first time
we’re going to define it formally. There are a ton of variations, but this is the most basic version,
so sometimes it is just called Facility Location. If we want to distinguish it from some of the more
popular variants, we can also call it Uncapacitated Metric Facility Location, or UFL.

Input: Metric Space (V, d), Facility opening costs {fi}i∈V

Feasible: Set S ⊆ V of facilities, S ̸= ∅

Objective: min
S⊆V

Cost(S) =
∑
i∈S

fi +
∑
j∈V

d(j, S), where d(j, S) = min
x∈S

d(j, x)

In other words, we want to open a set of facilities that minimize the cost of opening the facilities
plus the distances from every node to their closest open facility.

10.3 Integer Linear Programing formulation and LP relaxation

Variables:

• yi for every i ∈ V . Intuition: set yi = 1 if i ∈ S, 0 otherwise.

• xij for every i, j ∈ V . Intuition: xij = 1 if j is assigned to open facility i.

1



ILP:

minimize:
∑
i∈V

fiyi +
∑
j∈V

∑
i∈V

d(i, j)xij (UFL-ILP)

subject to:
∑
i∈V

xij = 1 ∀j ∈ V (10.3.1)

xij ≤ yi ∀i, j ∈ V (10.3.2)

xij ∈ {0, 1} ∀i, j ∈ V (10.3.3)

yi ∈ {0, 1} ∀i ∈ V (10.3.4)

The first set of constraints requires every vertex to be assigned to one opened facility, and the
second set of constraints say that j can be assigned to i only if i is an opened facility.

Theorem 10.3.1 (UFL-ILP) is an exact formulation of UFL.

Proof Sketch: Let S ⊆ V . Set

yi =

{
1 if i ∈ S

0 otherwise
,

and set

xij =

{
1 if d(j, S) = d(j, i) and i ∈ S

0 otherwise
,

where if multiple nodes in S have the same distance from j we break ties arbitrarily and set xij = 1
just for that single i. It is easy to see that all of the constraints are satisfied and that the ILP
objective values is equal to Cost(S). Hence OPT (ILP ) ≤ OPT (UFL).

For the other direction, let (y, x) be an ILP solution. Then set S = {i ∈ V : yi = 1}. This is clearly
a feasible UFL solution, and it is not hard to see that Cost(S) is equal to the ILP objective value∑

i∈V fiyi +
∑

j∈V
∑

i∈V d(i, j)xij . Hence OPT (UFL) ≤ OPT (ILP ).

Now we can relax constraints (10.3.3) and (10.3.4) to get the following Linear Program:

minimize:
∑
i∈V

fiyi +
∑
j∈V

∑
i∈V

d(i, j)xij (UFL-LP)

subject to:
∑
i∈V

xij = 1 ∀j ∈ V

xij ≤ yi ∀i, j ∈ V

0 ≤ xij ≤ 1 ∀i, j ∈ V

0 ≤ yi ≤ 1 ∀i ∈ V

Let F (x, y) =
∑

i∈V fiyi be the total facility opening cost and C(x, y) =
∑

j∈V
∑

i∈V d(i, j)xij be
the total connection costs. We will also let Z(x, y) = F (x, y) + C(x, y) be the total cost of the
(fractional) solution (x, y). Note that (UFL-LP) is a polynomial size LP, so it can be solved in
polynomial time (via interior point methods or the Ellipsoid algorithm). And since it is a relaxation
of an exact formulation, we know that OPT (LP ) ≤ OPT (ILP ) = OPT .

2



10.4 LP rounding

Theorem 10.4.1 [STA97] Given a feasible fractional solution (x, y), we can (in polynomial time)
find an integer feasible solution (x̂, ŷ) with Z(x̂, ŷ) ≤ 4 · Z(x, y).

Note that this immediately implies a 4-approximation algorithm, since if we apply the above theo-
rem to the optimal LP solution (x∗, y∗) (which we can construct in polynomial time) then we have
that Z(x̂, ŷ) ≤ 4 · Z(x, y) = 4 ·OPT (LP ) ≤ 4 ·OPT (ILP ) = 4 ·OPT .

This algorithm is split into two stages: filtering and rounding (although the filtering stage is in
some sense more of a thought-experiment than an actual algorithmic step)

10.4.1 Stage 1: Filtering

The ideas behind filtering are due to Lin and Vitter [LV92]. Based on the fractional solution (x, y)
provided by LP, let’s define “fractional connection cost” for node j as follows:

∆j =
∑
i∈V

d(i, j)xij .

Since for any j ∈ V , the values {xij}i∈V are non-negative and sum to 1 (constraint 10.3.1), we can
think of them as a probability distribution over i ∈ V , so ∆j is essentially the expected connection
cost when the facility j connects to is drawn from this distribution. Such a view will help us later
when we use Markov’s inequality.

Let α > 1 be a parameter that we’ll set later (we’ll end up setting it to 4/3, but you might also
want to think of it as 2 since that gives more intuitive statements). We’re leaving it as a parameter
so you can see what affect it has on the analysis. Then we define the ball Bj around node j to be

Bj = {i ∈ V : d(i, j) ≤ α∆j}.

Lemma 10.4.2 Given fractional solution (x, y), we can find another fractional solution (x′, y′)
such that:

1. F (x′, y′) ≤ α
α−1F (x, y), and

2. If x′ij > 0, then i ∈ Bj (and hence d(i, j) ≤ α∆j).

Proof: Let j be an arbitrary node. We first claim that much of the x-value for j lies inside Bj .
This is straightforward from the probabilistic interpretation and Markov’s inequality, but we prove
it here for completeness.

Claim 10.4.3
∑

i/∈Bj
xij ≤ 1

α

Proof: Suppose for contradiction that
∑

i/∈Bj
xij >

1
α . Then

∆j =
∑
i∈V

d(i, j)xij ≥
∑
i/∈Bj

d(i, j)xij ≥
∑
i/∈Bj

α∆jxij = α∆j

∑
i/∈Bj

xij > ∆j

3



This is clearly a contradiction, and hence
∑

i/∈Bj
xij ≤ 1

α as claimed.

Note that this claim clearly implies that
∑

i∈Bj
xij ≥ 1 − 1

α = α−1
α ; this is often the form we will

use.

Now we can define new fractional variables x′ij and y′i as follows:

x′ij =

{
0 if i /∈ Bj

xij∑
k∈Bj

xkj
if i ∈ Bj

y′i = min

(
1,

α

α− 1
yi

)
Claim 10.4.4 (x′, y′) is a feasible solution to (UFL-LP)

Proof: Clearly both the x′ij ’s and the y′i’s are in the interval [0, 1]. It is also true by construction
that for any j ∈ V ,

∑
i∈V x′ij = 1. So we simply need to prove that x′ij ≤ y′i for all i, j ∈ V . This

is clearly true if y′i = 1, so without loss of generality assume that y′i =
α

α−1yi. Then

x′ij =
xij∑

k∈Bj
xkj

≤ yi
(α− 1)/α

=
α

α− 1
yi = y′i,

where we used Claim 10.4.3.

To finish the proof of Lemma 10.4.2, note that the second condition of the lemma is satisfied by
construction. So we just need to prove that F (x′, y′) ≤ α

α−1F (x, y). But this is obvious by the
definition of y′:

F (x′, y′) =
∑
i∈V

fiy
′
i ≤

∑
i∈V

α

α− 1
fiyi =

α

α− 1
F (x, y)

10.4.2 Stage 2: Rounding

We can now do the rounding: this is given in Algorithm 1. Note that this rounding starts with the
LP solution (x, y), not the filtered solution (x′, y′). The filtered solution appears in the analysis.

Algorithm 1 Rounding Algorithm for UFL

Initially all nodes are unassigned

while there exists unassigned nodes do
let j be unassigned node with minimum ∆j

open facility a(j) ∈ Bj with smallest opening cost
assign j to a(j)
for any j′ unassigned with Bj ∩Bj′ ̸= ∅ do

assign j′ to a(j)
end for

end while
call this (x̂, ŷ) and facilities opened Ŝ

We first give a bound on the facility opening costs.

4



Lemma 10.4.5 F (x̂, ŷ) ≤ F (x′, y′) ≤ α
α−1F (x, y)

Proof: We have already proved that F (x′, y′) ≤ α
α−1F (x, y). So we only need to show F (x̂, ŷ) ≤

F (x′, y′). We have:

F (x̂, ŷ) =
∑

j considered
by Alg

fa(j) ≤
∑

j considered
by Alg

∑
i∈Bj

fiy
′
i ≤

∑
i∈V

fiy
′
i = F (x′, y′)

The second inequality is true because clearly for any two nodes j, j′ considered by the algorithm,
Bj , Bj′ are disjoint. The first inequality is true because∑

i∈Bj

fiy
′
i ≥

∑
i∈Bj

fa(j)y
′
i ≥ fa(j),

where we used the fact that a(j) has the smallest opening cost of any node in Bj and that
∑

i∈Bj
y′i ≥

1 (due to the filtering step).

We can now begin to bound the connection costs.

Lemma 10.4.6 d(j, Ŝ) ≤ 3α∆j for all j ∈ V .

Proof: We divide into cases depending on whether j was considered by the algorithm (i.e., a
facility was opened up because of j) or whether it was assigned in the for loop of the algorithm.

Case 1: j considered by Algorithm 1. Then a facility was opened up within Bj , and hence

d(j, Ŝ) ≤ α∆j .

Case 2: j not considered by Algorithm 1. Then there exists j′ considered by algorithm 1 such
that ∆j′ ≤ ∆j and j assigned to a(j′) and Bj ∩Bj′ ̸= ∅. Let i′ ∈ Bj ∩Bj′ . Then

d(j, Ŝ) ≤ d(j, a(j′))

≤ d(j, i′) + d(i′, j′) + d(j′, a(j′))

≤ α∆j + α∆j′ + α∆j′

≤ 3α∆j

as claimed

Using this lemma, we can easily bound the total connection costs.

Lemma 10.4.7 C(x̂, ŷ) ≤ 3α · C(x, y).

Proof:
C(x̂, ŷ) =

∑
j

d(j, Ŝ) ≤
∑
j

3α∆j = 3α
∑
j

∆j = 3α · C(x.y)

5



Putting this all together, we get a max
(

α
α−1 , 3α

)
-approximation:

Z(x̂, ŷ) = F (x̂, ŷ) + C(x̂, ŷ)

≤ α

α− 1
F (x, y) + 3αC(x, y)

≤ max

(
α

α− 1
, 3α

)
(F (x, y) + C(x, y)

= max

(
α

α− 1
, 3α

)
Z(x, y)

Now we can finally figure out the best way to set α, if we set it to 2, we get a 6-approximation
(the loss in connection costs dominates the loss in facility opening costs). But if we set α

α−1 = 3α
and solve, we get α = 4/3, which yields a 4-approximation (we lose the same factor in both the
connection costs and the facility opening costs).

References

[LV92] Jyh-Han Lin and Jeffrey Scott Vitter. epsilon-approximations with minimum packing con-
straint violation (extended abstract). In Proceedings of the 24th Annual ACM Symposium
on Theory of Computing (STOC), pages 771–782. ACM, 1992.

[STA97] David B. Shmoys, Éva Tardos, and Karen Aardal. Approximation algorithms for facility
location problems (extended abstract). In Proceedings of the Twenty-Ninth Annual ACM
Symposium on the Theory of Computing (STOC), pages 265–274. ACM, 1997.

6


	Introduction
	Uncapacitated Metric Facility Location (UFL): Definition
	Integer Linear Programing formulation and LP relaxation
	LP rounding
	Stage 1: Filtering
	Stage 2: Rounding


