ILP:

Variables:
$$Y_i$$
 $\forall i \in V$ (introdices: 1 if i \in S, 0 of)
 $\chi_{ij} \forall i_j \in V$ (introdices: 1 if j assigned to i)
min $\xi \neq (i) \gamma_i + \xi \xi \xi d(i_j) \chi_{ij} = Z(\chi_j \gamma)$
 $i \in V$
 $F(\chi_j \gamma)$ $C(\chi_j \gamma)$

	x;;	∀:,; ∈	V
$O \leq X_{ij} \leq 1$	X;; e {v113	\forall :,;e	V
0 = Y: = 1	y; e {01 }	∀: e V	,
Tha: Th:	y is an e,	cart for	m ln t;cy
pt slatch	· •		
Let	SEV. Sut	Y; = { 1 0	othernize
X;; ~	{ 1 it janij (0 athurije	ired to i	in S
う (,	(y) feasible,	9-2	$Z(x_{ij}) = (.s+(5))$
701	PT(JLP) = 01	PT (GFL)	
Le F sef	(X,y) Feasib s= {iev: ;	$t_i = 1$	Ζζρ
シィ	-34(5)=Z(x,y)		
-) U	$pT(\Gamma FL) \leq 0$) PT (ICP)	

LP relaxation: charse

$$y_i \in \{0|1\}$$
 to $0 \le y_i \le 1$
 $x_{ij} \in \{0|1\}$ to $0 \le x_{ij} \le 1$
 $= 0PT(LP) \le 0PT(ILP) = 0PT(UPL)$
(an solve LP in polytime!
Main theorem: Given feasible functional solution
 $(x_i,y)_i$ in polytime we can find integral (x_i,y)
 $s.t. Z(x_i,y) \le 4Z(x_i,y)$
 $= 4-approximation$

DeF, $B_{j} = \{ i \in V : d(i, j) \leq A_{j} \}$ parameter we set later: Hink 2, or 43 Pt: Markov's inequality. More termally, assume fulse =) $\sum X_{ij} > \frac{1}{\sqrt{2}}$ i EB; $\sum_{i \notin B_i} \mathcal{Z} \neq \mathcal{A}_i \times \mathcal{X}_i = \mathcal{A}_i \mathcal{A}_i \times \mathcal{A}_i \times \mathcal{A}_i$ Lemma, Given Fractional solution (X14), can tid fractional solution (x'1y') 1.t. $I) F(x',y') \leftarrow \stackrel{\checkmark}{=} F(x,y)$ p; 2) It x' >0, then ie B;

$$\frac{PF}{Set} : S_{et} = \begin{cases} 0 & if i \notin B_{j} \\ \frac{X_{ij}}{\sum x_{kj}} & if i \notin B_{j} \\ k \notin B_{j} & if i \notin B_{j} \end{cases}$$

$$y'_{i} = \min\left(1, \frac{x}{x-1}, y_{i}\right)$$

$$\frac{P_{i} P_{i} + Y_{i}}{F(x'_{i} y'_{i})} = \sum_{\substack{i \in V}} F(i) y'_{i} + \sum_{\substack{i \in V}} F(i) \frac{\alpha}{\alpha - 1} y_{i}$$

$$= \sum_{\substack{i \in V}} \sum_{\substack{i \in V}} F(i) y_{i} = \frac{\alpha}{\alpha - 1} F(x_{i} y)$$

$$\begin{array}{c} Fe-s;ble \\ \hline \hline \\ All vars in [0,1] \\ \hline \\ \begin{array}{c} \underline{z} \\ i \in V \end{array} \\ i \in B; \end{array} \xrightarrow{i j = \begin{array}{c} \underline{z} \\ i \in B; \end{array}} \begin{array}{c} x_{ij} \\ i \in B; \end{array} \xrightarrow{i \in B; } \begin{array}{c} \frac{x_{ij}}{\underline{z} \\ k \in B; \end{array}} \xrightarrow{z \\ \underline{x}_{ij} = \begin{array}{c} \underline{x}_{ij} \\ \underline{z} \\ k \in B; \end{array}} \xrightarrow{z \\ \underline{x}_{k} \\ \underline{x}_{k} \\ \underline{z} \\ \underline{x}_{k} \end{array} \xrightarrow{j = \begin{array}{c} \frac{x_{ij}}{\underline{z} \\ \underline{x}_{k} \\ \underline{x}_{k} \end{array}} \xrightarrow{z \\ \underline{x}_{k} \\ \underline{x}_{k} \\ \underline{x}_{k} \\ \underline{z} \end{array} \xrightarrow{j = \begin{array}{c} \frac{x_{ij}}{\underline{z} \\ \underline{x}_{k} \\ \underline{x}_{k} \end{array}} \xrightarrow{z \\ \underline{x}_{k} \\ \underline{x}_{k} \\ \underline{x}_{k} \\ \underline{x}_{k} \end{array} \xrightarrow{j = \begin{array}{c} \frac{x_{ij}}{\underline{z} \\ \underline{x}_{k} \\ \underline{x}_{k} \\ \underline{x}_{k} \end{array}} \xrightarrow{z \\ \underline{x}_{k} \\ \underline{x}_{k} \\ \underline{x}_{k} \\ \underline{x}_{k} \end{array} \xrightarrow{j = \begin{array}{c} \frac{x_{ij}}{\underline{z} \\ \underline{x}_{k} \\ \underline{x}_{k} \end{array}} \xrightarrow{z \\ \underline{x}_{k} \\ \underline{x}_{k} \\ \underline{x}_{k} \\ \underline{x}_{k} \end{array} \xrightarrow{j = \begin{array}{c} \frac{x_{ij}}{\underline{z} \\ \underline{x}_{k} \\ \underline{x}_{k} \end{array}} \xrightarrow{z \\ \underline{x}_{k} \\ \underline{x}_{k} \\ \underline{x}_{k} \end{array} \xrightarrow{j = \begin{array}{c} \frac{x_{ij}}{\underline{z} \\ \underline{x}_{k} \\ \underline{x}_{k} \end{array}} \xrightarrow{z \\ \underline{x}_{k} \\ \underline{x}_{k} \\ \underline{x}_{k} \end{array} \xrightarrow{j = \begin{array}{c} \frac{x_{ij}}{\underline{z} \\ \underline{x}_{k} \\ \underline{x}_{k} \end{array}} \xrightarrow{j = \begin{array}{c} \frac{x_{ij}}{\underline{z} \\ \underline{x}_{k} \\ \underline{x}_{k} \end{array}} \xrightarrow{j = \begin{array}{c} \frac{x_{ij}}{\underline{z} \\ \underline{x}_{k} \\ \underline{x}_{k} \end{array}} \xrightarrow{j = \begin{array}{c} \frac{x_{ij}}{\underline{z} \\ \underline{x}_{k} \end{array}} \xrightarrow{j = \begin{array}{c} \frac{x_{ij}}{\underline{z} \\ \underline{x}_{k} \\ \underline{x}_{k} \end{array}} \xrightarrow{j = \begin{array}{c} \frac{x_{ij}}{\underline{z} \\ \underline{x}_{k} \\ \underline{x}_{k} \end{array}} \xrightarrow{j = \begin{array}{c} \frac{x_{ij}}{\underline{z} \end{array}} \xrightarrow{j = \begin{array}{c$$

(ase 2: j not considered by ALG

$$\Rightarrow$$
 some j' considered by ACG with
1) $\Delta_{j'} \leq \Delta_{j}$
2) $B_{j} \wedge B_{j'} \neq \emptyset$

Let $i' \in B_{j} \land B_{j'}$

$$\begin{aligned} d(i,\hat{s}) &\leq d(i,a(i')) \\ &\leq d(i,i') + d(i',i') + d(i',i') \\ &\leq d(i,i') + d(i',i') + d(i',i') \\ &\leq d(i',i') + d(i',i') + d(i',i') \\ &\leq d(i',i') + d(i',i') + d(i',i') \\ &\leq d(i',i') + d(i',i') + d(i',i') + d(i',i') \\ &\leq d(i',i') + d(i',i') + d(i',i') + d(i',i') \\ &\leq d(i',i') + d(i',i') + d(i',i') + d(i',i') + d(i',i') + d(i',i') \\ &\leq d(i',i') + d(i'$$

-) $((\hat{x}_{jy}) = \sum_{j \in U} d(j, \hat{j}) \leq 3 \times \sum_{j \in U} \Delta_j = 3 \times ((x, y))$

 $\exists Z(\hat{x}, \hat{y}) = F(\hat{x}, \hat{y}) + C(\hat{x}, \hat{y})$ $\leq \frac{\alpha}{\alpha - 1} F(x, y) + 3\alpha ((x, y))$ $\leq \max \left(\frac{\alpha}{\alpha - 1}, 3\alpha\right) \left(F(x, y) + C(x, y)\right)$ $= \max \left(\frac{\alpha}{\alpha - 1}, 3\alpha\right) Z(x, y)$