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11.1 Introduction

Today we’re going to begin thinking about randomized rounding of LPs by using it for two problems
that we’ve seen before: set cover and facility location.

11.2 Set Cover

Definition 11.2.1 Given a universe U , collection S = {S1, . . . , Sk} with Si ⊆ U for each i ∈ [k],
and cost function c : S → R+: Construct a collection T ⊂ S such that for all e ∈ U there exists
some Si ∈ T with e ∈ Si, which minimizes the total cost

∑
Si∈T c(Si) .

In other words, find the set of sets in S that covers all elements in U with minimum cost.

Consider linear programming relaxation (SC-LP) below.

minimize:
∑
S∈S

c(S) · xS (SC-LP)

subject to:
∑
S:e∈S

xS ≥ 1 ∀e ∈ U (11.2.1)

0 ≤ xS ≤ 1 ∀S ∈ S (11.2.2)

It is obvious that this is a valid relaxation: any valid set cover yields an integral solution to the LP
of the same cost, and any feasible integral solution to the LP gives a set cover of the same cost.

Now consider the following approximation algorithm: we first solve the LP to get a solution x∗.
Let λ be a parameter which we will set later (preview: it’s going to be Θ(log n)). We then set x′S to
be 1 with probability min(λx∗S , 1), and 0 otherwise (independently for each S ∈ S). Equivalently,
let T be the collection of sets with x′S = 1. (This is what the algorithm returns).

Lemma 11.2.2 E[c(T )] ≤ λ · LP , where LP denotes the cost of the optimal LP solution.

Proof:

E[c(T )] = E

[∑
S∈S

c(S)x′S

]
=

∑
S∈S

c(S)E
[
x′s
]
=

∑
S∈S

c(S) ·min(λ · x∗S , 1) ≤ λ
∑
S∈S

c(S)x∗S = λ · LP

Lemma 11.2.3 Let u ∈ U . Then Pr[T does not cover u] ≤ e−λ

Proof:

Pr[u uncovered] = Pr
[
x′S = 0 ∀S ∈ S : u ∈ S

]
=

∏
S:u∈S

Pr
[
x′S = 0

]
,
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where we used independence for the last equality.

Now we have two cases.

Case 1: There is some S ∈ S with u ∈ S such that x∗S ≥ 1/λ. Then x′S = 1, so S ∈ T and u is
covered by T . So in this case, Pr[u uncovered] = 0 ≤ e−λ.

Case 2: Otherwise x∗S < 1/λ for all s ∈ S with u ∈ S. Then x′S = λx∗S for all S ∈ S with u ∈ S.
Then ∏

S:u∈S
Pr

[
x′S = 0

]
=

∏
S:e∈S

(1− λx∗S) ≤
∏

S:u∈S
(e−λx∗

S ) = e−λ
∑

S:u∈S x∗
S ≤ e−λ

Hence Pr[u uncovered] ≤ e−λ.

One quick definition, which we’ll use basically throughout the rest of the course: “with high prob-
ability” means with probability at least 1− 1

nc for some c ≥ 1.

Theorem 11.2.4 Randomized rounding with λ = Θ(log n) is an O(log n)-approximation: the ex-
pected cost is at most O(log n) ·OPT , and it returns a feasible solution with high probability.

Proof: Set λ = c·ln(n). Then Lemma 11.2.2 implies that E[c(T )] ≤ O(log(n))·LP . Lemma 11.2.3
implies that for every u ∈ U ,

Pr[u uncovered] ≤ e−c·ln(n) = 1/nc.

So by a simple union bound, Pr[T is not a set cover] ≤ 1/nc−1. Thus randomized rounding returns
a set cover with high probability by setting c = 2 (for example).

11.3 Discussion about Randomized Bounds

The type of guarantee that we gave for set cover (feasible w.h.p., cost in expectation) is extremely
common when designing randomized approximation algorithms. Why is this enough? To some
extent, it depends on the problem, but the basic idea is pretty universal: we can use Markov’s
inequality to bound the probability of being much worse than the expectation, and then repeat
enough so that we get a bound on the cost w.h.p. as well. I’m not going to do this super formally,
but we know by Markov that the probability that our algorithm costs more than 1 + ϵ times the
expected cost is at most 1

1+ϵ . If we repeat the algorithm ℓ = O(log n) times, then the probability
that we’re more than (1 + ϵ) times the expectation on all of them is at most(

1

1 + ϵ

)ℓ

≤ O

(
1

nc

)
for any constant c that we want (by increasing the constant in front of log n in ℓ). Since we’re
feasible in each of these ℓ iterations with high probability, we get that after the ℓ iterations we have
high probability bounds on both the cost and the feasibility.
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11.4 UFL

Let’s go beyond set cover to give a randomized rounding for UFL. Recall that we gave a 4-
approximation last class. Let’s do better by using randomization.

First, recall our last algorithm. We solved the UFL LP to get a fractional solution (x, y), and then
for every j ∈ V we defined ∆j =

∑
i∈V d(i, j)xij and Bj = {i ∈ V : d(i, j) ≤ α∆j} (we set α = 4/3).

Our algorithm picked the unassigned j with smallest ∆j , found the cheapest facility in Bj to open
(we called this a(j)), and then opened it and assigned j to it. We then looked at all other unassigned
j′, and if Bj′ intersected with Bj we assigned j′ to a(j) as well. We then repeated this process until
all nodes were assigned.

How can we use randomization to do better? We’re going to use almost the exact same algorithm,
but instead of picking a(j) to be the cheapest facility in Bj , we’re going to pick a(j) randomly from
Bj , using the LP as a probability distribution. In particular, the filtered solution gives a probability
distribution with support in Bj . More formally, for all j ∈ V , let Mj =

∑
i∈Bj

xij . By the LP

constraints we know that Mj ≤ 1, and by Markov’s inequality we know that Mj ≥ (α − 1)/α.
When we consider j in the algorithm, we pick a(j) from Bj from the distribution where i ∈ Bj

gets probability xij/Mj . Clearly this is a valid distribution, since all probabilities are nonnegative
and sum to 1. Let (x̂, ŷ) be the integral solution defined by this rounding, and let S be the set of
facilities that we’ve opened.

So that’s the algorithm. Clearly it returns a feasible solution (with probability 1), so we just need
to analyze its cost. As in the deterministic case, let C be the set of all nodes considered by the
algorithm in the main loop (i.e., the nodes who cause us to open a new facility). Note that C
has nothing to do with the random choices: we will get the exact same C as we would in the
deterministic case. So as before, if j, j′ ∈ C then Bj ∩Bj′ = ∅. For all j ∈ C and i ∈ Bj , let A(i, j)
be an indicator random variable which is 1 if i = a(j) and is 0 otherwise.

Let’s begin by analyzing the facility opening costs.

Lemma 11.4.1 E[F (x̂, ŷ)] ≤ α
α−1F (x, y).

Proof:

E[F (x̂, ŷ)] = E

[∑
i∈V

f(i)ŷi

]
= E

∑
j∈C

∑
i∈Bj

f(i)A(i, j)

 =
∑
j∈C

∑
i∈Bj

f(i)E[A(i, j)].

We have used linearity of expectations here, which also required us to use the fact that C is
actually deterministic (not randomized) and that Bj ∩ Bj′ = ∅ for all j ̸= j′ ∈ C. Now we can use
the definition of A(i, j) to continue the proof:

E[F (x̂, ŷ)] =
∑
j∈C

∑
i∈Bj

f(i)
xij
Mj

≤ α

α− 1

∑
j∈C

∑
i∈Bj

f(i)xij ≤
α

α− 1

∑
j∈C

∑
i∈Bj

f(i)yi

≤ α

α− 1

∑
i∈V

f(i)yi =
α

α− 1
F (x, y),

where we used that xij ≤ yi by the LP, and again used that Bj ∩Bj′ = ∅ for all j ̸= j′ ∈ C.
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It’s worth noting that this analysis of the facility opening costs actually gives precisely the same
bound as in the deterministic case (loss of α/(α − 1)). Where we’re going to improve is the
connection costs, which in the deterministic setting had a loss of 3α.

Lemma 11.4.2 E[C(x̂, ŷ)] ≤ (2α+ 1)C(x, y)

Proof: Let j ∈ V . We want to show that E[d(j, S)] ≤ (2α + 1)∆j . We break into two cases
depending on whether j ∈ C.

1. Suppose that j ∈ C. Then intuitively, we should expect that E[d(j, S)] ≤ ∆j no matter what
α is: choosing from the original distribution defined by the xij values would have expectation
∆j by definition, and by defining Bj the way we have we have only shifted probability mass
closer to j. More formally:

E[d(j, S)] = E

∑
i∈Bj

d(i, j)A(i, j)

 =
∑
i∈Bj

d(i, j)
xij
Mj

=
∑
i∈Bj

1

Mj
d(i, j)xij

≤
∑
i∈Bj

(
d(i, j) +

(
1

Mj
− 1

)
d(i, j)

)
xij

≤
∑
i∈Bj

d(i, j)xij +
∑
i∈Bj

α∆j

(
1

Mj
− 1

)
xij

=
∑
i∈Bj

d(i, j)xij + α∆j(1−Mj)

=
∑
i∈Bj

d(i, j)xij + α∆j

∑
i ̸∈Bj

xij

≤
∑
i∈Bj

d(i, j)xij +
∑
i ̸∈Bj

d(i, j)xij

= ∆j .

2. Now suppose that j ̸∈ C. Then as in the deterministic case, there is some j′ with ∆j′ ≤ ∆j

so that Bj ∩Bj′ ̸= ∅ and j was assigned to a(j′). Let i ∈ Bj ∩Bj′ . Then we get that

E[d(j, S)] ≤ E
[
d(j, i) + d(i, j′) + d(j′, a(j′))

]
= d(j, i) + d(i, j′) +E

[
d(j′, a(j′))

]
≤ α∆j + α∆j′ +∆j′

= (2α+ 1)∆j ,

where we used the previous case to bound E[d(j′, a(j′))].

Now we can put this together via linearity of expectations: E[C(x̂, ŷ)] = E
[∑

j∈V d(j, S)
]

≤
(2α+ 1)

∑
j∈V ∆j = (2α+ 1)C(x, y).

Theorem 11.4.3 This algorithm gives a 2 +
√
3 ≈ 3.73-approximation.
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Proof: The approximation ratio is the maximum of the loss in the facility opening costs and the
connection costs:

E[Z(x̂, ŷ)] = E[F (x̂, ŷ)] +E[C(x̂, ŷ)]

≤ α

α− 1
F (x, y) + (2α+ 1)C(x, y)

≤ max

(
α

α− 1
, 2α+ 1

)
(F (x, y) + C(x, y))

= max

(
α

α− 1
, 2α+ 1

)
Z(x, y).

To minimize the max, we can set them equal to each other and then solve for α. This gives us

α

α− 1
= 2α+ 1

⇔α = (2α+ 1)(α− 1) = 2α2 − α− 1

⇔2α2 − 2α− 1 = 0.

Applying the quadratic formula (and the fact that α is nonnegative), we get that

α =
2±

√
4 + 8

4
=

2 + 2
√
3

4
=

1

2
(1 +

√
3).

Thus we get an approximation ratio of

2α+ 1 = 2 +
√
3

as claimed.
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