Randomized Rounding:
Set cours:
Ingut: - Univarse $U,|U|=n$

$$
\begin{aligned}
& - \text { lets } S=\left\{S_{1}, S_{c_{1}, \ldots}, S_{m}\right\} \quad \text { s.t. } S_{i} \leq U \quad \forall i \\
& -(., t) \quad c: S \rightarrow \mathbb{R}^{+}
\end{aligned}
$$

Fect:ble: $\tau \leqslant \&$ s.t. $\bigcup_{s \in T} S=U$
Ohjective: min $c(T)=\sum_{s \in T}(S)$

LP Relaxation:

$$
\begin{array}{ll}
\min & \sum_{s \in \&}(s) x_{s} \\
\text { s.t. } \sum_{s: e \in s} x_{s} \geq 1 & \forall e \in U \\
0 \leq x_{s} \leq 1 & \forall s \in \&
\end{array}
$$

Thmi OPT(IC? $)=\operatorname{OPT}(S C)$

Rounding Algorithm:
solve $l \rho$ to get fractional solution x^{*}
For each SEE independently:

$$
\begin{aligned}
\text { set } x_{s}^{\prime} & =\frac{1}{\text { O witherise probability }} \min \left(1, \lambda x_{s}^{*}\right) \\
T=\left\{s \in d: x_{s}^{\prime}\right. & =1\}
\end{aligned} \theta(\operatorname{logn})
$$

Lemma: $E[c(T)] \leq \lambda \cdot L P \leq \lambda-O P T$
Pf:

$$
\begin{aligned}
\left.E C_{c}(T)\right] & =E\left[\sum_{s \in \delta}(s) x_{s}^{\prime}\right] \\
& =\sum_{s \in \delta}(s) E\left[x_{s}^{\prime}\right] \\
& =\sum_{s \in \delta}\left((s) \cdot \min \left(1, \lambda x_{s}^{*}\right)\right. \\
& \leq \lambda \cdot \sum_{s \in \delta}\left((s) x_{s}^{*}\right. \\
& =\lambda \cdot C p
\end{aligned}
$$

Lemma: Let $n \in U$. Then

$$
\left.P_{1} C_{e} \text { not cored by } T\right] \leq e^{-\lambda}
$$

PF:
$\operatorname{Pr}[$ not caved by T]

$$
\begin{aligned}
& =\operatorname{Pr}\left[x_{s}^{\prime}=0 \quad \forall S \in \mathcal{J}: u \in S\right] \\
& =\prod_{s: u \in s} \operatorname{Pr}\left[x_{s}^{\prime}=0\right] \quad \quad \text { in dependence) }
\end{aligned}
$$

If $\exists s$ with mes and $x_{s}^{*} \geq \frac{1}{\lambda}$

$$
\Rightarrow x_{s}=1 \rightarrow \quad P\left(x_{x_{s}}=0\right]=0
$$

$\Rightarrow \operatorname{Pr}[$ n not cored by $\tau]=0$
otherwise:

$$
\begin{aligned}
& =\prod_{\sin t s}\left(1-\lambda x_{s}^{*}\right) \\
& \leq \prod_{\sin t s} e^{-\lambda x_{s}^{*}}
\end{aligned}
$$

$$
\begin{aligned}
& =e^{-\lambda \sum_{s: \text { ues }} x_{s}^{*}} \\
& \leq e^{-\lambda}
\end{aligned}
$$

Ret: " "high probability": $1-\frac{1}{n^{c}}$ for some $c \geq 1$

Thm: Set $\lambda=c \cdot \ln n$ for $c \geq 2$. Algorithm is an $O(\log n)-a(f$ oximation:

$$
\left.-E C_{c}(T)\right) \leq O(1 \cdot g n) \cdot U \rho T
$$

- T fersible m.h.e.

Pt: Cost from firat leman
Ferible:

$$
\begin{aligned}
& \leq \sum_{n \in U} \operatorname{PrC} T \text { doant (cuer } n \text {) (union boud) } \\
& \leq \sum_{n \in U} e^{-c \ln n} \\
& =\sum_{n \in u} \frac{1}{n^{c}}=n \frac{1}{n^{c}}=\frac{1}{n^{c-1}}
\end{aligned}
$$

Randomized hounds: who is terrible w.h.p., expectation for cont enough?

Markov; inequality: $\quad \operatorname{Pr}(\cos t)(4 \varepsilon) E[\cos t)] \leq \frac{1}{1+\varepsilon}$
\Rightarrow repent $1-\frac{2 \log n}{\log (4 \varepsilon)}$ tines, take best
$\operatorname{Pr}[$ all have (.,st $>(1+\varepsilon) \in[(a, t)]$

$$
\leq\left(\frac{1}{1+\varepsilon}\right)^{\frac{2 \log n}{\log l+1}}=\frac{1}{n^{2}}
$$

All fecrible where. $b y$ win bold

$$
\Rightarrow w, h \cdot p, \text { coat } \leq(1+\varepsilon) \in[c \cdot a t) \text {, fencible }
$$

NFL:
Metric Uncapacitated Facility Location (UFL):
Inputi - Metric space (v, d)

- Facility opening costs $f: U \rightarrow \mathbb{R}^{+}$

Feasible solution: $s \leq v \quad s \in \varnothing$

$$
\text { Objective: min } \cot f(s)=\sum_{i \in s} f(i)+\sum_{j \in V} d(j, s)
$$

$$
\begin{array}{cc}
\min & \sum_{i \in V} f(i) y_{i}+\sum_{j \in U} \sum_{i \in V} d(i, j) x_{i j}=Z(x, y) \\
f(x, y) & C(x, y) \\
\text { sit. } \sum_{i \in U} x_{i j}=1 & \forall j \in V \\
x_{i j} \leq y_{i} & \forall i, j \in V \\
0 \leq x_{i j} \leq 1 & \forall i, j \in V \\
0 \leq y_{i} \leq 1 & \forall i \in V
\end{array}
$$

Def: $\Delta_{j}=\sum_{i \in U} d(i ; j) x_{i j}$
Def: $B_{j}=\{i \in V: d(i, j) \leq \alpha \Delta ;\}$

Init: $S=\varnothing$, all andes unassigned
while \exists unassigned nodes:
-Let $;$ be unassigned ace with min D;

- Open $a(j)=\underset{i \in B_{j}}{\operatorname{argmin}} f(i)$, assign $;$ to $a(j)$
- Feral assigned j^{\prime} with $B_{j} \wedge B_{j} \neq \varnothing$, assign j^{\prime} to $a(j)$

Let \hat{s} be open facilities, integral solution (\hat{x}, \hat{y})

Set $\alpha=\frac{4}{3} \Rightarrow$ 4-appoxination
Better via randonized rounding?

Pet: $M_{j}=\sum_{i \in B_{j}} X_{i j}$

$$
\Rightarrow M_{j} \leq 1, \quad \text { and } \quad M_{j} \geq \frac{\alpha-1}{\alpha} \quad\left(M_{c} /\right. \text { lou) }
$$

New alg:

Sane as old, hat when considering; pick $a(j)$ randomly from distribution where it $B_{;}$ ha, probability $\frac{x_{i j}}{M_{j}}$

\Rightarrow set of open facilities \hat{S}, integral solution (\hat{x}, \hat{y})
Dat: C is andes conederd by alg.
Note: C deterministic and $B_{j} \cap R_{i} ;=\varnothing \quad \forall j ; j^{\prime} \in C$ $j \not \boldsymbol{j}^{\prime}$

Def: $A(i, j)= \begin{cases}1 & \text { it } i=a(j) \quad j \in Q, i \in B_{j} \\ 0 & \text { otherwise }\end{cases}$

Lemma: $E[F(\hat{x}, \hat{y})] \leq \underset{\lambda}{\alpha-1} F(x, y)$ same as previous alfaritum:
pt:

$$
\begin{aligned}
& E[F(\hat{x}, \hat{y})]=E\left[\sum_{i \in v} f(i) \hat{y}_{i}\right] \\
& =E\left[\sum_{j \in e} \sum_{i \in \beta_{j}} f(i) A(i, j)\right] \quad\left(\begin{array}{l}
\text { dot ot alg, } \\
B_{i} \cap B_{i},=0 \\
\forall j, j \in \rho
\end{array}\right. \\
& \forall^{\prime} j ; j^{\prime} \in()
\end{aligned}
$$

Leman: $E(C(\hat{x}, \hat{y})) \leq(2 \alpha+1)((x, y)$

$$
\text { dot.alg an } 3 \alpha
$$

Pf: Let $j \in U . \underline{L S}: E[d(j, \hat{\beta})] \leq(2 \alpha+1) \Delta$;
(a) 1: $j+C$

Know $a(j) \in B ; \Rightarrow d(j, \hat{i}) \leq \alpha \Delta ;: \operatorname{cort} E[d(j, \hat{j})] \leq D_{j}$

$$
\begin{aligned}
& =\sum_{j \in e} \sum_{i \in B_{j}} \nvdash(i) \in[A(i, j)] \\
& =\sum_{j e \rho} \sum_{i \in \beta_{j}} f(i) \frac{x_{i j}}{M_{j}} \\
& (\operatorname{def} \text { of } A(i, j)) \\
& \leq \frac{\alpha}{\alpha-1} \sum_{j \in e} \sum_{i \in B_{j}} f(i) x_{i j} \quad\left(\mu_{j} \geq \frac{\alpha-1}{\alpha}\right) \\
& \leq \frac{\alpha}{\alpha-1} \sum_{j \in C} \sum_{i \in \beta j} f\left(C_{i}\right) y_{i} \quad\left(x_{i j} \leq y_{i}\right) \\
& \leq \frac{\alpha}{\alpha-1} \sum_{i \in U} f(i) Y_{i} \quad\left(B_{j} \cap B_{i,},=\varnothing \quad \forall_{i j}{ }^{\prime} \in U\right) \\
& =\frac{\alpha}{\alpha-1} F(x, y) \\
& \text { (linesity of } \\
& \text { expectutionl }
\end{aligned}
$$

Intuition: know D; was expected (-bisection (st for ; originally, and jut shitted probability mas (fie)

$$
\begin{aligned}
& E[d(j, \hat{\rho})]=E[d(j, a(j))] \\
& \left.=E C \sum_{i \in \mathbb{B} ;} d(i, i) A(i, j)\right) \\
& =\sum_{i \in B_{j}} d(i, j) \frac{x_{i j}}{M_{j}} \\
& =\sum_{i \in R_{j}}\left(d(i, j)+\left(\frac{1}{\mu_{j}}-1\right) d(i, j)\right) x_{i j} \\
& =\sum_{i \in \beta_{j}} d(i, j) x_{i j}+\sum_{i \in \beta_{j}} d(i, j)\left(\frac{1}{n_{j}}-1\right) x_{i j} \\
& \leq \sum_{i \in \beta ;} d(i, j) x_{i j}+\sum_{i \in \beta_{j}} \alpha \Delta j\left(\frac{1}{n_{j}}-1\right) x_{i j} \\
& =\sum_{i \in B_{j}} d(i, j) x_{i j}+\alpha A_{j}\left(\frac{1}{n},-1\right) M_{j} \\
& =\sum_{i \in B ;} d(i, j) x_{i j}+\alpha \Delta j\left(1-M_{j}\right) \\
& =\sum_{i \in B_{j}} d(i, j) x_{i j}+\alpha \Delta ; \sum_{i \notin R_{j}} x_{i j}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{i \in B_{j}} d(i ; j) x_{i j}+\sum_{i \notin R_{j}} d(: ; j) x_{i j} \\
& =\sum_{i \in U} d(i, j) x_{i j} \\
& =\Delta_{j}
\end{aligned}
$$

(are 2: $j \notin C$
Jut like deterministic!

$$
\Delta_{j^{\prime}} \leq D_{j}
$$

$$
\begin{aligned}
& E[d(j, \hat{\zeta})] \leq E\left[d\left(j, i^{\prime}\right)+d\left(i^{\prime} ; j^{\prime}\right)+d\left(j^{\prime}, a(j)\right)\right] \\
& \quad \leq d\left(j, i^{\prime}\right)+d\left(i^{\prime}, j^{\prime}\right)+E\left[d\left(j^{\prime}, a\left(j^{\prime}\right)\right)\right] \\
& \leq \alpha \Delta j+\alpha \Delta_{j^{\prime}}+\Delta_{j^{\prime}} \\
& \leq(2 \alpha+1) \Delta_{;}
\end{aligned}
$$

So iastead of $\left.\operatorname{anx}\left(\frac{\alpha}{\alpha-1},\right\}_{\alpha}\right)$-apprax, get

$$
\begin{aligned}
& \operatorname{mux}\left(\frac{\alpha}{\alpha-1}, 2 \alpha+1\right)-a p p r a x \\
& \frac{\alpha}{\alpha-1}=2 \alpha+1 \Rightarrow \alpha=(2 \alpha+1)(\alpha-1) \\
& \Rightarrow 2 \alpha^{2}-2 \alpha-1=0 \\
& \Rightarrow \alpha=\frac{2 \pm \sqrt{4+8}}{4}=\frac{2+2 \sqrt{3}}{4}=\frac{1}{2}(1+\sqrt{3}) \\
& \Rightarrow \text { apprax of } 2 \alpha+1=2+\sqrt{3} \approx 3.73
\end{aligned}
$$

