
601.435/635 Approximation Algorithms Lecturer: Michael Dinitz
Topic: Integer Routing Date: 2/29/24
Scribe: Michael Dinitz

12.1 Introduction

Today we’re going to see a randomized rounding algorithms with analyses that use slightly more
sophisticated tools than just Markov’s inequality (which is basically all that we used so far this
semester) and with nonobvious LP relaxations. In particular, we’re going to use techniques that
involve concentration of measure: it will be easy to prove that “nice” things happen in expectation,
but we will need them to happen with high probability, so we will use techniques that allow us to
prove that the probability measure is “concentrated” around its expectation. There’s a really good
book by Dubhashi and Panconesi [DP09] about the use of concentration of measure in algorithms,
which I’d highly recommend looking at if you’re interested (or want to see proofs of some of the
tools that we’re using), and which I think is free online.

12.2 Integer Routing: Minimizing Congestion

12.2.1 Definition and LP

Define the Integer Routing problem as follows. This problem is also known as “Minimizing Con-
gestion”, or in the book as “Integer Multicommodity Flow”.

• Input : Graph G = (V,E), pairs of vertices {si, ti} ⊆ V , i ∈ [k].

• Feasible solutions : Paths P1, . . . , Pk such that Pi ∈ Pi. Here Pi denotes all the possible paths
from si to ti.

• Objective function : Let cong(e) = |{i | e ∈ Pi, i ∈ [k]}|. In other words, given a feasible
solution of paths, cong(e) is the number of paths that use e. Our objective is minimizing
maxe∈E cong(e).

Consider the following LP relaxation

minimize: W (MIN-CONG)

subject to:
∑
P∈Pi

xP = 1 ∀i ∈ [k] (12.2.1)

k∑
i=1

∑
P∈Pi:e∈P

≤ W ∀e ∈ E (12.2.2)

0 ≤ xP ≤ 1 ∀i ∈ [k],∀P ∈ Pi

1

Note that the equivalent IP (if we had integrality constraints) is a precise formulation of the
problem, so the optimal LP value is at most OPT .

There are a few weird things about trying to use this LP as the basis of an approximation algorithm.
First, it is not clear how to solve MIN-CONG, since there are an exponential number of variables.
We’ll discuss this more later, but for now, let’s just assume that we can solve it. Second, this LP
can be a very bad relaxation. This is formalized in the next theorem.

Theorem 12.2.1 The integrality gap of this linear program (MIN-CONG) is at least n− 2.

Proof: Consider the graph G = (V,E) with V = {s1, t1, v1, v2, . . . , vn−2}, E = {{u, v} | u ∈
{s1, t1}, v ∈ V \{s1, t1}} and k = 1. Then for each path p of the form s1 − vi − t1 we can set
x∗p = 1

n−2 and get a feasible fractional solution with W ∗ = 1
n−2 . But the optimal solution for the

original problem is clearly 1, since some path must be chosen. Therefore the integrality gap is at
least n− 2.

So we will not be able to claim that our rounding is always at most α ·LP for any α < n− 2. But
we still want to give a good LP rounding algorithm, so we will have to be a little more careful about
the claims we make (in particular, when we compare to the LP and when we compare directly to
OPT). This is the first example in this class of using an LP with a large integrality gap for an
approximation algorithm with performance better than the integrality gap; while this is relatively
unusual, it happens often enough that it’s worth keeping in mind as a possibility.

12.2.2 Algorithm and start of analysis

Consider the following randomized rounding algorithm:

Algorithm 1 Randomized Rounding Minimizing Congestion Algorithm

Input: Graph G = (V,E), k pairs si, ti : i ∈ [k]
Output: A set of paths P1, . . . , Pk so that Pi ∈ Pi.

Solve MIN-CONG to get fractional solution (x∗,W ∗)
for each i ∈ [k] do
The values {x∗P }P∈Pi form a distribution over paths in Pi (since

∑
P∈Pi

x∗P = 1)

Choose a path P ∈ Pi randomly from this distribution (each path P has probability equal to
x∗P)

end for

We’re going to prove the following theorem:

Theorem 12.2.2 With high probability, the max congestion of the paths output by the rounding
algorithm is at most O(log(n)) ·OPT .

Note that we’re comparing to OPT, not to the LP (since we already know that the integrality gap
is larger than log n). Before proving this, lets first define some random variables.

Definition 12.2.3 Ye = Number of chosen paths using e

2

Definition 12.2.4 Y i
e = 1 if path used for i contains e, otherwise 0

Definition 12.2.5 Zi
P = 1 if P was chosen for i, otherwise 0

Clearly E
[
Zi
P

]
= x∗p by definition.

Let’s analyze the main congestion variables:

Lemma 12.2.6 E[Ye] ≤ W ∗ for all e ∈ E.

Proof: By definition, Ye =
∑k

i=1 Y
i
e , and by definition Y i

e =
∑

P∈Pi:e∈P Zi
P . Putting these

together, we get that

Ye =
k∑

i=1

∑
P∈Pi:e∈P

Zi
P ,

So by linearity of expectations, we get that

E[Ye] =
k∑

i=1

∑
P∈Pi:e∈P

E
[
Zi
P

]
=

k∑
i=1

∑
P∈Pi:e∈P

x∗P ≤ W ∗,

where we used the LP constraint for e in the final inequality.

So for every edge, the expected congestion is at most W ∗ (the optimal LP value). Or, more formally,
we know that maxe∈E E[Ye] ≤ W ∗. But that does not imply that the expected max is good, i.e., it
does not imply that E[maxe∈E Ye] ≤ W ∗. And the max congestion is what we actually care about!

So we need to argue that the max congestion is also pretty good. We’ll do this by arguing that with
high probability, ever edge has congestion which is “close” to the expectation. Markov’s inequality
is a weak way of doing this, but we’re going to need something stronger: Chernoff bounds.

12.2.3 Chernoff Bounds

These are probably the most popular and most-used concentration of measure inequalities in the-
oretical CS. They are stated in Theorem 5.23 of the textbook, but this formulation is somewhat
tricky to use. So we’ll use a weaker version which is a corollary of Theorem 5.23, and is significantly
easier to use (this is under “Useful Forms of the Bound” in [DP09]).

Theorem 12.2.7 (Chernoff Bound) Let X1, . . . , Xn be independent random variables distributed
over [0, 1] (not necessarily identically). Let X =

∑n
i=1Xi. Then

• ∀0 < ε < 1,

Pr[X > (1 + ε)E[X]] ≤ e−
ε2

3
E[X]

Pr[X < (1− ε)E[X]] ≤ e−
ε2

2
E[X]

• ∀t > 2eE[X],
Pr[X > t] ≤ 2−t

3

We’re actually only going to use the second version of this today, but the first is important and will
come up frequently in the rest of the course. One way of thinking of this is as a very precise version
of the “law of large numbers”: if we have a bunch of random draws and their sum has relatively
large expectation, then we’re very likely to see a sum which is pretty close to the expectation.
There’s another version, sometimes called a “Hoeffding bound”, in which the deviation from the
expectation is additive rather than multiplicative (this is also in [DP09]).

We’re not going to prove this, but I would definitely recommend that you go through and understand
the proof. At a high level, it involves applying Markov’s inequality to random variables defined as
exponentials in the base random variables.

12.2.4 Using Chernoff to finish analyzing algorithm

Consider some e ∈ E. Since every i picks a path from its distribution independently, {Y i
e }i∈[k] are

independent and in [0, 1]. So we can apply Chernoff to them and to their sum, which by definition
is Ye. In order to get around the large integrality gap, we’re going to break into two cases depending
on W ∗:

• Case 1: W ∗ ≥ 1. Note that 3 log n ≥ 2e for large enough n, and that E[Ye] ≤ W ∗ by the
earlier lemma. Hence 3 log n ·W ∗ ≥ 2eE[Ye], so we can apply the second form of Chernoff to
get

Pr[Ye > 3 log n ·W ∗] ≤ 2−3 logn·W ∗ ≤ 1

n3

• Case 2: W ∗ < 1. In this case, we have that 3 log n > 2eW ∗ ≥ 2eE[Ye], so we can apply the
second form of Chernoff to get

Pr[Ye > 3 log n] ≤ 2−3 logn ≤ 1

n3
.

Thus for every edge e, we get that Pr[Ye > 3 log n ·max(W ∗, 1)] ≤ 1
n3 . Using a union bound over

all edges (of which there are at most n2), we have Pr[maxe∈E Ye > 3 log nmax(W ∗, 1)] ≤ 1
n .

Therefore, with high probability, maxe∈E(cong(e)) ≤ 3 log n ·max(W ∗, 1) ≤ 3 log n · OPT . Hence
it is an O(log n)-approximation.

12.2.5 Remarks

• If we use a better Chernoff bound (Theorem 5.23 from the textbook in particular), the

approximation ratio can be improved to O
(

logn
log logn

)
.

• We can also get better result when W ∗ is big. Suppose that W ∗ ≥ 18e
ε2

lnn for some 0 < ε < 1.
Fix some e ∈ E, and consider the following two cases depending on E[Ye]:
Case 1: E[Ye] ≥ 9

ε2
lnn

In this case, we have that Pr[Ye > (1 + ε)E[Ye]] ≤ e−
ε2

3
E[Ye] ≤ 1

n3 .

4

Case 2: E[Ye] < 9
ε2

lnn

In this case, we have that W ∗ ≥ 2eE[Ye], thus Pr[Ye > W ∗] ≤ 2−W ∗ ≤ 1
n3 .

Hence with high probability, maxe∈E(cong(e)) ≤ (1 + ε)OPT , so this algorithm is a (1 + ε)-
approximation.

12.2.6 Solving the LP

There’s one crucial step of this algorithm that we haven’t discussed yet: actually solving the LP.
Clearly we cannot write the LP down, since there is a variable for every path and the number of
paths in a graph can be exponential in the size of the graph. And we can’t just use ellipsoid, since
ellipsoid lets us solve LPs with an exponential number of constraints but a polynomial number of
variables (if we can also solve the separation problem).

There are a couple different ways of doing this, but we’re going to do something that is hopefully
very intuitive: write a compact representation, i.e., an LP that only has polynomial size which is
equivalent to the original LP. Intuitively, our original LP says “minimize the congestion needed to
send 1 unit of flow from si to ti simultaneously for all i”, any each xP is the amount of flow we
send along path P . But we don’t usually write flow in terms of paths; we write it in terms of flow
along edges! So this suggests the following LP relaxation, which has two variables (xiuv and xivu)
for each {u, v} ∈ E and i ∈ [k], where we interpret xiuv to be the flow from u to v along this edge
that started at si and ends at ti (i.e., commodity i flow along one direction of this edge).

minimize: W

subject to:
∑

v∈N(u)

xiuv −
∑

v∈N(u)

xivu = 0 ∀i ∈ [k], ∀u ̸∈ {si, ti}∑
v∈N(si)

xisiv −
∑

v∈N(si)

xivsi = 1 ∀i ∈ [k]

k∑
i=1

(
xiuv + xivu

)
≤ W ∀{u, v} ∈ E

0 ≤ xiuv ≤ 1 ∀i ∈ [k], ∀{u, v} ∈ E

This LP clearly has a polynomial number of variables and constraints, so we can definitely solve
it. Now we claim that these two LPs are in fact equivalent, so we can just solve this compact LP
and transfer the solution over to a solution of the original LP. I’m going to be a bit informal in the
next few claims, but you should verify the details.

Claim 12.2.8 Let ({xP },W) be a solution to the original LP. Then there exists a solution to the
compact LP with the same cost.

Proof: Let xiuv =
∑

P∈Pi:(u,v)∈P xP (note that we only include paths which use (u, v), not (v, u)).
We use the same W . Then it is easy to see that all of the constraints of the compact LP are
satisfied, so this is a solution of the compact LP with the same cost.

5

Claim 12.2.9 Let ({xiuv},W) be a solution to the compact LP. Then in polynomial time we can
find a solution to the original LP with the same cost.

Proof: Consider the following algorithm. Initially we set xP = 0 for all paths P (note that since
there are an exponential number of paths we don’t actually write this down; it is implicit). Then
for i = 1 to k, while there exists some P ∈ Pi with xie > 0 for all e ∈ P :

• Set xP = mine∈P xie,

• Set xie = xie − xP for all e ∈ P

Intuitively, for each commodity we find a valid flow path in what remains and set that path to
have nonzero flow. It is easy to see by induction that the {xie}’s still satisfy the flow-in = flow-out
constraints after every iteration, so we can just keep repeating this (we never get stuck). Thus
when this algorithm terminates we will have a feasible solution for the original LP. Moreover, since
in every iteration we entirely remove the flow (of one commodity) from at least one edge, there are
at most n2 iterations per commodity, so there are only a polynomial number of iterations total.
And each iteration involves a connectivity (or shortest-path) computation using only edges that
still have original flow on them, so each iteration takes polynomial time.

References

[DP09] Devdatt Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis
of Randomized Algorithms. Cambridge University Press, New York, NY, USA, 1st edition,
2009.

6

	Introduction
	Integer Routing: Minimizing Congestion
	Definition and LP
	Algorithm and start of analysis
	Chernoff Bounds
	Using Chernoff to finish analyzing algorithm
	Remarks
	Solving the LP

