
601.435/635 Approximation Algorithms Lecturer: Michael Dinitz
Topic: Randomized Rounding: Group Steiner Tree on Trees Date: 3/5/24
Scribe: Michael Dinitz

13.1 Introduction

Today we’re going to see a famous problem, Group Steiner Tree, which isn’t discussed in the
book, but which is important for a few reasons. It’s important historically, but also is important
for the techniques that we’ll use. In particular, we’ll use some probabilistic analysis techniques
that are more sophisticated than Chernoff bounds, and we’ll see randomized rounding techniques
that are (slightly) more sophisticated than independent randomized rounding. Moreover, GST is
one of the rare problems that is difficult even on trees, and in fact today we’re really only going to
focus on the tree case. This will motivate the next couple of lectures, when we’ll talk about ways
of reducing general graphs to trees.

13.2 Definition: Group Steiner Tree (GST)

• Input:

– Graph G = (V,E)

– Edge costs c : E → R≥0

– Root vertex r ∈ V

– K groups g1, g2, . . . , gk, where each gi ⊆ V

• Feasible: Tree T such that ∀i ∈ [k], ∃v ∈ gi such that T has a path between r and v.

• Objective: min
∑

e∈T c(e)

To get some intuition for this definition, note that if every group is a single vertex, then this is
exactly Steiner Tree (the root vertex doesn’t make any real difference). So the difference is that
in GST, we only have to connect one vertex (of our choice) from each group. In other words, we
now have an extra set of choices: instead of just deciding on how to connect the terminals, we now
need to decide which terminals to connect (subject to connecting at least one from each group) and
then decide how to connect them.

13.3 Hardness

Before we get to algorithms, let’s think about what kind of approximations we can hope to get.

Theorem 13.3.1 Set Cover is a special case of GST on trees.

Proof: Let (U,S) be a set cover instance. Then construct a star with

1

• Leaf for each S ∈ S

• Group ge for each e ∈ U where ge = {S ∈ S : e ∈ S}.

Consider a set cover S1, . . . , Sk. Then S1, . . . , Sk is a GST solution. Conversely, consider a GST
solution S1, . . . , Sk. Then S1, . . . , Sk is a set cover.

Corollary 13.3.2 It is NP-hard to approximate GST better than Ω(log n).

Proof: This follows from the Ω(log n)-hardness of Set Cover and Theorem 13.3.1. There is one
subtlety: the n in Set Cover is the number of elements, while n in the instance of GST that we
created is the number of sets (m). But the hard instances of Set Cover are ones in which m = O(nc)
for some constant c, so logm = log n and we get the same hardness (up to constants).

It turns out that GST is even harder than Set Cover. In fact, it was basically the very first problem
for which a polylogarithmic hardness result was shown:

Theorem 13.3.3 [Halperin, Krauthgamer 2003] For all constant ϵ > 0, GST on trees is
Ω(log2−ϵ n)-hard to approximate.

13.4 Approximation Algorithm

13.4.1 Assumptions

We’re going to assume that G is a tree – we’ll talk more about the non-tree case next class, but for
now, note that this is not without loss of generality. But once we assume that G is a tree, we can
assume without loss of generality that if v ∈ gi for any i, then v is a leaf (this is without loss of
generality since we can always add an extra zero-cost edge to a new leaf for any internal terminal).

Theorem 13.4.1 [Garg, Konjevod, Ravi 2000] There exists an O(log n log k)-approximation
to GST on trees.

13.4.2 Linear Programming Relaxation

Consider the following LP relaxation, which basically requires that for every cut which separates r
from some group, at least one edge crosses the cut:

minimize:
∑
e∈E

ce · xe (GST-LP)

subject to:
∑

e∈(S,S̄)

xe ≥ 1 ∀i ∈ [k], ∀S ⊆ V such that r ∈ S, gi ∩ S = ∅

0 ≤ xe ≤ 1 ∀e ∈ E

As usual, it’s straightforward to prove that if we have integrality constraints, this is an exact
formulation of GST.

Notice that there are exponential number of constraints. However, we can still solve this LP
on polynomial time by using the Ellipsoid algorithm with a separation oracle. Recall that for

2

separation, we need to solve the following problem: given a (fractional) x, determine whether x is
feasible or, if not, find a violated constraint. So for this LP, if we’re given some x, we need to find
whether there is a violated constraint: a set S with r ∈ S and gi ∩ S = ∅ for some i ∈ [k] so that∑

e∈(S,S̄) xe < 1. So we basically just need to find a min cut for each i! Slightly more formally, for
each i ∈ [k]:

• Add terminal ti adjacent to all nodes in gi with edges of value 1.

• Compute the minimum r − ti cut by using any polynomial-time min-cut algorithm (e.g.,
Edmonds-Ford).

• If the minimum cut is less than 1, then we’ve found a violated constraint.

If for every i the minimum si − ti cut is at least 1, then all constraints are satisfied to x is feasible.
Thus we have a polynomial time separation oracle, so can solve the LP in polynomial time.

It is also not hard to see based on max-flow min-cut that this is equivalent to an LP which requires
us to send one unit of flow from each r to to ti (the “fake” terminal adjacent to all of gi). Then
xe variables then are interpreted as capacities, and we would have extra flow variables. This would
give a compact formulation (which is how we would solve this in practice), but the cut-based
interpretation is somewhat cleaner. But we will make use of this flow-based interpretation later.

Independent randomized rounding is not appropriate in this problem. Consider the following tree

r

v

u

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

where there are n
2 − 1 nodes on both the r − u and r − v paths (not counting r, u, or v). Suppose

that g1 = {u, v}. Then if we sample each edge independently with probability equal to its LP value,

P (connect u to r) =
1

2n/2

So if we did independent randomized rounding, we would have an extremely low probability of
actually reaching a terminal from g1. (This type of example can be extended easily to have a
polynomial number of terminals in g1 with all LP values being inverse polynomials, so simple
inflation as in Set Cover will not work).

3

13.4.3 Rounding Algorithm

One quick definition and lemma:

Lemma 13.4.2 Let e ∈ E, p(e) be the parent edge of e (remember that G is a tree). Then in any
optimal x⃗, xp(e) ≥ xe.

Proof: First, note that WLOG due to the Ford-Fulkerson proof of the max-cut min-flow theorem,
we can assume that the minimum cut between r and each gi is a set S which includes r and is
connected. Suppose that xp(e) < xe. Let e = {v, w} and let p(e) = {u, v}. Since x is optimal,
we cannot reduce xe while maintaining feasibility, so there is some cut S which cuts e, i.e., v (and
thus u) are in S but w is not, so that

∑
e′∈(S,S̄) xe′ = 1. But then consider the cut S′ = S \ {v}.

Compared to S, in S′ the edge p(e) crosses the cut when it didn’t before, and e (and possibly
other edges) which did cross the cut no longer do. Thus

∑
e′∈(S′,S̄′) xe′ < 1, which contradicts the

feasibility of x.

Consider the following rounding algorithm:

Algorithm 1 GKR Rounding Algorithm for GST

for each e ∈ E do
Mark e with probability xe

xp(e)
. If e is incident on r, then mark e with probability xe.

end for
Include e if e and all its ancestors are marked.
return T

Lemma 13.4.3 Pr[include e] = xe for all e ∈ E.

Proof: Suppose e has i ancestors. Then

Pr[e included] =
xe
xp(e)

·
xp(e)

xp2(e)
·
xp2(e)

xp3(e)
. . .

xpi−1(e)

xpi(e)
· xpi(e)

= xe.

Corollary 13.4.4 E[ALG] ≤ LP .

Proof:

E[ALG] =
∑
e∈E

c(e) ·E[1e∈ALG] =
∑
e∈E

c(e) · xe = LP.

Claim 13.4.5 Using GKR rounding, ∀i ∈ [k],

Pr[gi connected to r] ≥ 1

O(log |gi|)
≥ 1

O(log n)
.

4

We will first show how to prove Theorem 13.4.1 by assuming Claim 13.4.5.

Proof of Theorem 13.4.1: First, suppose GKR rounding is run Θ(log n log k) times. Now fix
some gi and notice that

Pr[g not connected to r] ≤
(
1− 1

O(log |g|)

)Θ(logn log k)

≤ e− ln k =
1

k
,

(if we use appropriate constants in the asymptotic notation). Now for each i ∈ [k], let Pi be the
least expensive r− gi path. Then it is certainly true that c(Pi) ≤ OPT . Now if gi is not connected
to r after the randomized rounding, then add Pi. Then notice that

E[c(ALG)] ≤ O(log n log k) · LP +

k∑
i=1

1

k
· c(Pi) = O(log n log k) ·OPT.

This is to say that adding the shortest paths to the disconnected groups does not significantly hurt
us because the probability that a group is disconnected is small.

The rest of these notes will be aimed at proving Claim 13.4.5. First we give a lemma that gives
the general idea behind the proof. Let us fix some group g.

Definition 13.4.6 Let FAIL be the event that g is not connected to r.

Lemma 13.4.7 If x′e ≤ xe for all e ∈ E, then

Pr
[
FAIL using x′

]
≥ Pr[FAIL using x]

Proof: We prove this by considering one edge at a time and then using induction. So suppose
that the only difference between x and x′ is on one edge e = {v, u} (with v = p(u)) where x′e < xe.
Note that the probability of connecting every vertex outside of the subtree T rooted at u is exactly
the same in x and in x′, so we’ll only need to worry about the subtree that goes through e.

Suppose for simplicity that there are two children edges e1 = {u,w} and e2 = {u, z} of u (the
higher degree case has more complex math but everything works out basically the same). Let T1

be the subtree rooted at the child node of e1, and let T2 be the subtree rooted at the child node of
e2. Using the fractional solution x, let

p1 = Pr[fail to connect T1 ∩ g to w],

p2 = Pr[fail to connect T2 ∩ g to z].

Then

Pr[fail to connect T ∩ g to v] = (1− xe) + xe

((
1− xe1

xe

)
+

xe1
xe

p1

)((
1− xe2

xe

)
+

xe2
xe

p2

)
.

Here the first term is the probability that e is not picked, and then if e is picked we take the product
of failing to connect T1 to u and failing to connect T2 to u (since to fail on T we would have to fail
on both and they’re independent). Each of these terms can be broken into the probability of not

5

marking e1 (or e2) plus the probability of picking e1 (or e2) times to probability of failing in the
tree below that (p1 or p2 respectively).

When we simplify this expression, we get that

Pr[fail to connect T ∩ g to r] = 1− xe1(1− p1)− xe2(1− p2) +
xe1xe2(1− p1)(1− p2)

xe
.

This expression clearly increases as xe decreases. Thus we are less likely to fail using x than we are
using x′.

This lemma means that decreasing x values can’t help us, so if x′e ≤ xe for all e ∈ E and probability
of connecting g to r using x′ is at least 1

log |g| , then the same is true using x (which is what we are

trying to prove).

Now consider the following construction of x′.

1) Remove all leaves not in g and all unnecessary edges.

2) Reduce x values until minimally feasible (exactly one unit of flow is sent to g, or equivalently
the min r − g cut is equal to 1).

3) Round down to the next power of 2; now the flow is at least 1
2 because all edges will be at

least half of their original value (equivalently, the minimum r − g cut is at least 1/2).

4) Delete all edges with xe ≤ 1
4|g| . Since there are at most |g| leaves, the flow is still at least

1

2
− |g| · 1

4|g|
=

1

4
.

5) If xe = xp(e), then contract e (since our rounding will mark e with probability 1 anyway).

Lemma 13.4.8 The height of the tree is at most O(log |g|)
Proof: At each level, x values go down by at least a factor of 2 since we rounded to powers of 2
and contracted edges with the same value as their parent. Because of steps 2 and 4, we know that

1

4|g|
≤ xe ≤ 1.

Hence the number of levels is at most log(4|g|) = O(log |g|).
We now want to show that if we round using x′, the probability we connect g to r is at least 1

log |g| .
The natural way to do this would be to break this up into events corresponding to each terminal
in g being connected to r, but unfortunately there’s a lot of dependence among these events. So
it’s not at all clear how to analyze this. We’ll do this next class using Janson’s Inequality.

6

References

HK03 E. Halperin and R. Krauthgamer, Polylogarithmic Inapproximability. Proceedings of the
35th Annual ACM Symposium on Theory of Computing (STOC), 585-594, 2003.

GKR00 N. Garg, G. Konjevod, and R. Ravi, A polylogarithmic approximation algorithm for the
group Steiner tree problem, SODA 2000.

7

	Introduction
	Definition: Group Steiner Tree (GST)
	Hardness
	Approximation Algorithm
	Assumptions
	Linear Programming Relaxation
	Rounding Algorithm

