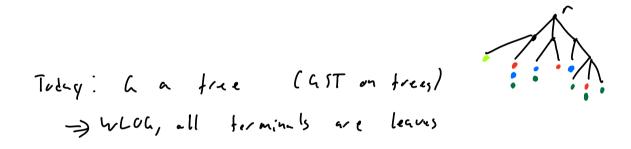
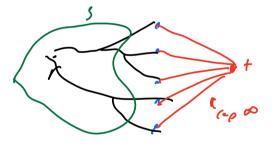
$\frac{hrong Steiner Tree:}{Input: -h=(V,E)}$ $-edge c.sts c:E \rightarrow R \ge 0$ -vertex r (reet) $-k grangs gu, gu, ..., g_k reach g; \subseteq V$ $Fensible: Tree T \subseteq E s.t. \forall i \in (k), j \lor eg; when T hy$ an r-v p-th $Objective: min c(T) = \xi c(e)$ eeT





min
$$\underset{e \in E}{\underset{e \in C}{\text{ for } x_e}} x_e \ge 1$$

s.t. $\underset{e \in (S,\overline{S})}{\underset{O \le x_e}{\text{ for } x_e}} x_e \ge 1$

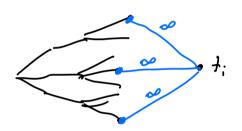
LP relaxation :

Vieckj, VSEV n.t. res, gins=p

The : ILP (add xee [0] (onstraints) is an exact formulation

Solve Lp:
Ellipsoid + Separation Oracle!
Separate: Given X, is there and Separating r
from 3: with
$$\xi \times \xi < 1$$
?
 $e_{\xi(1,\overline{3})}$

$$M_{in}$$
 $(-+!)$



Romding: (an't roud each edge independently!

$$\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

$$\frac{\text{Lemma}}{P_{p}(e)} \stackrel{\text{Price in T}}{=} \frac{x_{e}}{x_{e}}$$

$$\frac{P_{p}(e)}{P_{p}(e)} \stackrel{\text{T}}{=} \frac{x_{e}}{x_{p}(e)} \stackrel{\text{T}}{=} \frac{x_{p}(e)}{x_{p}(e)} \stackrel{\text{T}}{=} \frac{x_{p}(e)}{x_{p}(e)} \stackrel{\text{T}}{=} \frac{x_{p}(e)}{x_{p}(e)} \stackrel{\text{T}}{=} \frac{x_{p}(e)}{x_{p}(e)} \stackrel{\text{T}}{=} \frac{x_{e}}{x_{e}}$$

(crellary: ECALG) ELP

$$\frac{Pr}{E(ALG)} = E\left[\sum_{e \in E} c(e) \cdot \mathbb{1}\left[e \in T\right]\right] = \sum_{e \in E} c(e) \times e = LP$$

$$\frac{\text{Thm}}{P(l_{2}, \text{ connected } + r \text{ in } T]} \geq \frac{1}{O(l_{2}, l_{2}, l)} \geq \frac{1}{O(l_{2}, l_{2}, l)}$$

Firsti use then to get $O(l_{2}, n, l_{2}, k) = a_{Prex}$.
-Rem busic alg $\theta(l_{2}, n, l_{2}, k) + im_{2}, h, ke$ union
 $\exists F g; and canceled to r_{2}, add chargest r-g pull P_{i}
 $N + e : c(P_{i}) \leq OPT$
 $\Rightarrow feasible with probability 1$
 $P(l_{2}; n + canceled to r_{2}, mixer) \leq \frac{1}{k}$
 $f(l_{2}; n + canceled to r_{2}, mixer) \leq \frac{1}{k}$
 $\Rightarrow (l - \frac{1}{O(l_{2}, n)})^{\Theta(l_{2}, n, l_{2}, k)} \leq e^{-\Theta(l_{2}, k)} \leq \frac{1}{k}$
 $\Rightarrow E(c(ALC_{k})] \leq \Theta(l_{2}, n, l_{2}, k) \cdot CP + \sum_{i=1}^{k} \frac{1}{k} \cdot c(P_{i})$
 $\leq O(l_{2}, n, l_{2}, k) \cdot OPT$$

Reat of class: proof of them

$$\frac{Thm}{VieCk},$$

$$Pr[g; connected to r in T] \ge \frac{C}{O(log lg; V)} \ge \frac{L}{O(log n)}$$

$$Pr[g; connected to r in T] \ge \frac{C}{O(log lg; V)} \ge \frac{L}{O(log n)}$$

$$\frac{P + sketch}{U}$$
Une edge at a time, inderive.
Single edge e with $x'_e < x_e$, all other \hat{e} have $x'_e = x_e$
 $e = \{u, v\}$
 \hat{T} : u -three rooted at u
Nothing on ts : de of subfree rooted at v changes
 $P_i = P_i C f_{i}$: $t = canect = T_i A_g = t_e u$
 $P_i = P_i C f_{i}$: $t = canect = T_i A_g = t_e u$

$$P_{i}[f_{-i}] + connect \hat{T}Ag + conne$$

$$= |- \chi_{e_1}(|-p_1|) - \chi_{e_2}(|-p_2|) + \frac{\chi_{e_1} \chi_{e_2}(|-p_1|)(|-p_2|)}{\chi_{e_1}}$$

increases as the decreases!

So we can use smaller x' in analysis:
if
$$P(L_g \text{ connected } l_{e_g} \text{ in } T \text{ using } x') \ge \frac{1}{1-g lg l}$$
, then
 $P(L_g \text{ connected } l_{e_g} \text{ in } T \text{ using } x_s^1 \ge \frac{1}{1-g lg l}$

$$P(C_{\text{connect}} \cup eg \quad t = r) = x_{e(u)} \qquad \int_{v}^{le} \frac{1}{v} \\ \rightarrow E(t + a_{v} b_{v}) \quad in g \quad (a_{v} c_{v} t \in l \quad t = r) = \mathcal{E} \quad x_{e(u)} \geq \frac{1}{4} \\ \quad v \in g \qquad \qquad v \in g \qquad \quad v \in g \qquad \quad$$