
601.435/635 Approximation Algorithms Lecturer: Michael Dinitz
Topic: GST and Tree Embeddings Date: 3/7/24
Scribe: Michael Dinitz

14.1 Introduction

Today we’re going to finish off the O(log n log k)-approximation to Group Steiner Tree on Trees
that we started last class, and then introduce a new concept of tree embeddings and show how to
use them to reduce GST to GST on trees.

14.2 Review from Last Class

Let’s remember the GST on Trees problem, and the algorithm and where we were in the analysis.

• Input:

– Tree G = (V,E)

– Edge costs c : E → R≥0

– Root vertex r ∈ V

– K groups g1, g2, . . . , gk, where each gi ⊆ V

• Feasible: Tree T ⊆ E such that ∀i ∈ [k], ∃v ∈ gi such that T has a path between r and v.

• Objective: min
∑

e∈T c(e)

Theorem 14.2.1 [Garg, Konjevod, Ravi 2000] There exists an O(log n log k)-approximation
to GST on trees.

14.2.1 Linear Programming Relaxation

Consider the following LP relaxation, which basically requires that for every cut which separates r
from some group, at least one edge crosses the cut:

minimize:
∑
e∈E

ce · xe (GST-LP)

subject to:
∑

e∈(S,S̄)

xe ≥ 1 ∀i ∈ [k], ∀S ⊆ V such that r ∈ S, gi ∩ S = ∅

0 ≤ xe ≤ 1 ∀e ∈ E

14.2.2 Rounding Algorithm

Lemma 14.2.2 Let e ∈ E, p(e) be the parent edge of e (remember that G is a tree). Then in any
optimal x⃗, xp(e) ≥ xe.

1

Consider the following rounding algorithm:

Algorithm 1 GKR Rounding Algorithm for GST

for each e ∈ E do
Mark e with probability xe

xp(e)
. If e is incident on r, then mark e with probability xe.

end for
Include e if e and all its ancestors are marked.
return T

Lemma 14.2.3 Pr[include e] = xe for all e ∈ E.

Corollary 14.2.4 E[ALG] ≤ LP .

Claim 14.2.5 Using GKR rounding, ∀i ∈ [k],

Pr[gi connected to r] ≥ 1

O(log |gi|)
≥ 1

O(log n)
.

We showed how to prove Theorem 14.2.1 by assuming Claim 14.2.5, and were in the middle of
trying to prove Claim 14.2.5. Let g = gi be the group that we’re trying to prove the claim for.

Definition 14.2.6 Let FAIL be the event that g is not connected to r.

Lemma 14.2.7 If x′e ≤ xe for all e ∈ E, then

Pr
[
FAIL using x′

]
≥ Pr[FAIL using x]

This lemma means that decreasing x values can’t help us, so if x′e ≤ xe for all e ∈ E and probability
of connecting g to r using x′ is at least 1

log |g| , then the same is true using x (which is what we are

trying to prove).

Now consider the following construction of x′.

1) Remove all leaves not in g and all unnecessary edges.

2) Reduce x values until minimally feasible (exactly one unit of flow is sent to g, or equivalently
the min r − g cut is equal to 1).

3) Round down to the next power of 2; now the flow is at least 1
2 because all edges will be at

least half of their original value (equivalently, the minimum r − g cut is at least 1/2).

4) Delete all edges with xe ≤ 1
4|g| . Since there are at most |g| leaves, the flow is still at least

1

2
− |g| · 1

4|g|
=

1

4
.

5) If xe = xp(e), then contract e (since our rounding will mark e with probability 1 anyway).

x′ is the values that we get after these modifications.

Lemma 14.2.8 The height of the tree is at most O(log |g|)

2

14.3 Finishing the Proof via Janson’s Inequality

Now let’s do the new stuff. We now want to show that if we round using x′, the probability we
connect g to r is at least 1

log |g| . For v ∈ G, let’s abuse notation and let xv = xe where e is the edge

leading to v (recall that WLOG v is a leaf). Note that the expected number of terminals of g which
are connected is ∑

v∈g
Pr[v connected to r] =

∑
v∈g

x′v ≥ 1/4,

since as discussed in x we are still able to send 1/4 total flow to g. If we had concentration then
we would be basically be done: it would be unlikely for us to be below the expectation, but the
only integer below the expectation is 0, so it would be unlikely for us to get 0, so we would likely
get 1. Unfortunately, we can’t apply Chernoff since these events are not independent.

It turns out that we’ll need a new tool: Janson’s Inequality. Before stating it formally, we need to
set up some notation

• Let S be a ground set of items.

• Let P1, . . . , Pk be subsets of S.

• Let pe ∈ [0, 1] for each e ∈ S.

• Let S′ be the set obtained by adding each e ∈ S with probability pe.

• Let Ei be the event that Pi ⊆ S′.

• Let µ =
k∑

i=1

Pr[Ei] and ∆ =
∑
i∼j

Pr[Ei ∩ Ej] where i ∼ j if Pi ∩ Pj ̸= ∅ (i.e., if Ei and Ej are

dependent).

Theorem 14.3.1 (Janson’s inequality) If µ ≤ ∆, then the probability that none of the events
happen is

Pr

[⋂
i

Ei

]
≤ e−

µ2

2∆ .

To apply Janson’s inequality to the GST setting,

• S = E.

• Pi = path from r to vi ∈ g.

• S′ is the set of marked edges, so pe = xe/xp(e)

• For vi ∈ g, the event Ei is the event that all edges on the vi − r path are marked, i.e., the
event that vi is connected to r.

3

Claim 14.3.2

1 ≥ µ =
∑
i

P [Ei] ≥
1

4
.

Proof: For each vi ∈ g, the probability of Ei is, by Lemma 14.2.3, the x value of the edge incident
on vi. This is exactly the amount of flow sent to vi. Since at least 1/4 flow is sent in total to
vertices in g,

∑
i P [Ei] ≥ 1/4. On the other hand, since we made x′ minimal, the total flow to g is

at most 1.

Claim 14.3.3
∆ = O(log |g|).

Proof: Let H = O(log |g|) be the height of the tree. For u ∈ g, let ∆u =
∑

v∈g:v∼uPr[Eu ∩ Ev]
(so ∆ =

∑
u∈g ∆u). For v ∈ g with v ∼ u, let e be the lowest edge shared by r−u and r−w paths,

and let c(e) be the child node of e. Then

Pr[Ev|Eu] =
x′v
x′p(v)

·
x′p(v)

x′p(p(v))
. . .

x′c(e)

x′e
=

x′v
x′e

,

where we have slightly abuse notation to identify a vertex with the edge to its parent. Thus we get
that

Pr[Ev ∩ Eu] =
x′ux

′
v

x′e
.

Now let F (e) = {v ∈ g : lowest edge on r − u path and r − v path is e}. Then∑
v∈F (e)

Pr[Eu ∩ Ev] =
x′u
x′e

∑
v∈F (e)

x′v ≤ x′u
x′e

x′e = x′u,

where we’ve use the flow constraints in the inequality. This let’s us bound ∆u:

∆u =
∑

e∈r−u path

∑
v∈F (e)

Pr[Ev ∩ Eu] ≤
∑

e∈r−u path

x′u ≤ Hx′u.

And we can now final bound ∆:

∆ =
∑
u∈g

∆u ≤ H
∑
u∈g

x′u ≤ H,

as claimed.

By plugging µ and ∆ from the claims into Janson’s inequality, we get that

Pr[success] = 1−Pr

[⋂
i

Ēi

]
≥ 1− e

− 1
O(log |g|) ≥

1
O(log |g|)

1 + 1
O(log |g|)

=
1

O(log |g|)
,

where in addition to Janson’s inequality we’ve used the fact that 1 − e−x ≥ x
x+1 for all x ≥ −1.

This proves Claim 14.2.5, which in turn implies the claimed approximation ratio of O(log n log k).

4

14.4 Tree Embeddings

So now we have an O(log n log k)-approximation for Group Steiner Tree as long as the input is a
tree. This was a highly nontrivial algorithm and analysis – how can we possibly hope to extend it all
the way to general graphs? We’re going to do this by using a technique called metric embeddings:
we’re going to embed general metric spaces into trees.

Recall the definition of a metric space:

Definition 14.4.1 A pair (V, d) is a metric space if for all u, v, w ∈ V :

1. d(u, v) = 0 ⇐⇒ u = v

2. d(u, v) = d(v, u)

3. d(u, v) ≤ d(u,w) + d(w, v)

Note that it is common to simply refer to the metric as d instead of the pair (V, d). We’re going to
be concerned with a special type of metric known as a tree metric.

Definition 14.4.2 A tree metric (V ′, T) for a set of nodes V is a tree T on vertices V ′, where
V ⊆ V ′ are the leaves of T . Every edge of T has a nonnegative length.

The distance in T between any two vertices u, v ∈ V ′ is denoted dT (u, v), where the distance in T
is the length of the unique u− v path in T .

Definition 14.4.3 Let (V, d) be a metric and (V ′, T) a tree metric for V . Then (V, d) embeds into
T with distortion α if d(u, v) ≤ dT (u, v) ≤ α · d(u, v) for all u, v ∈ V .

Intuitively, if we can embed (V, d) into some tree (V ′, T) with small distortion, then T is “like” the
original metric space so we might hope that we can just solve any problem that we care about it on
T instead of on the original metric. Unfortunately, this is not always possible: even simple metric
spaces like the cycle Cn might require large distortion to embed into any tree. This is trivial to see
if we required T to be a subtree of the input graph, but since we’re not requiring that, this is a bit
harder to prove. It is possible to show that Cn requires distortion at least n−1

8 to embed into any
tree.

What can we do? Let’s take inspiration from the cycle: there’s no tree which allows small distortion,
but if we fix some pair u, v ∈ V , then a random subtree of Cn is pretty good in expectation! For
example, if u and v are adjacent in Cn, then with probability 1/n they get distance n, while with
probability n−1

n they’re still at distance 1. So the expected distance is at most 2. So for any pair of
nodes the expected distortion is small, even though once we instantiate some particular tree, there
will be some pair which is badly distorted. As it turns out, though this kind of expected distortion
is enough for many applications.

The best and provably optimal result for doing this is due to Fakcharoenphol, Rao, and Talwar,
who proved the following theorem.

Theorem 14.4.4 Let (V, d) be a metric. Then there is a randomized, polytime algorithm that
produces a tree metric (V ′, T) for V such that

5

1. d(u, v) ≤ dT (u, v) for all u, v ∈ V , and

2. E[dT (u, v)] ≤ O(log n) · d(u, v) for all u, v ∈ V .

In other words, this theorem gives an embedding into a distribution of dominating trees (a distri-
bution of trees each of which does not contract any pair). This algorithm is tight: there are metrics
for which any embedding into a distribution of dominating trees requires distortion Ω(log n).

We’re going to spend the next couple of classes proving this theorem and analyzing tree embeddings,
but before we do that, let’s show why they’re useful. It’s not hard to see that almost any problem
which involves distances can be turned into a problem on trees by using this theorem and losing
an extra O(log n) in the approximation ratio, but let’s see this for a particular problem: Group
Steiner Tree.

14.5 Group Steiner Tree on General Metrics

Recall the GST problem:

• Input:, A graph G = (V,E), edge costs c : E → R≥0, a root vertex r ∈ V , and groups
g1, . . . , gk ⊆ V .

• Feasible solution: A tree T such that for all i ∈ [k], there is some v ∈ gi such that T has a
path between r and v.

• Objective: min
∑
e∈T

c(e)

We saw last class that Garg, Konjevod, and Ravi (GKR) gave an O(log n log k)-approximation
when the input graph is a tree, and that the problem is Ω(log2−ϵ n)-hard to approximate even on
trees. How can we design an approximation algorithm for general metrics? Use FRT to change the
input into a tree!

Slightly more formally, consider the following algorithm:

1. Extend c to a metric space (V, d) where d(u, v) is the minimum cost of any u− v path.

2. Use FRT (Theorem 14.4.4) to embed (V, d) into a tree (V ′, T) with distortion O(log n). Note
that since V are the leaves of T , all of the terminals (vertices in the groups) are now leaves.

3. Make a new group which is just {r}, and then use the GKR algorithm to get a subtree T ′ of
T which is an O(log |V ′| log k)-approximation to the optimal solution on T .

4. Shortcut T ′ to get a cycle C only on terminals.

5. Use C (with one arbitrary edge removed) as our solution in the metric space (V, d). To get
a solution on G, replacing any edge of C which doesn’t exist in G with a path of the same
length.

6

This algorithm clearly gives a feasible solution: GKR returns a tree which connects at least one
terminal from each group (including r) to the root of T , so C has r and at least one terminal from
each group. Thus C gives a feasible solution. The algorithm also clearly takes only polynomial
time. So we just need to analyze the approximation ratio.

Theorem 14.5.1 This algorithm is a O(log2 n log k)-approximation, i.e.,

E[c(C)] ≤ O(log2 n log k) ·OPT.

Proof: Let’s set up some notation.

• Let S be the terminals connected by OPT (so S ∩ gi ̸= ∅ for all i ∈ [k])

• Let CS be the cycle on S obtained by shortcutting OPT (so c(CS) ≤ 2 ·OPT).

• T will be the (random) tree built by FRT, with costs cT or dT .

• Let OPT (T) denote the optimal solution in T .

• Let TS be the subtree of T induced by S (i.e., the subtree of T which consists of all the paths
from nodes in S up to the LCA of S.

Now we can actually prove the theorem.

E[c(C)] ≤ E[cT (C)] distances in T are nondecreasing

≤ E
[
2 · cT (T ′)

]
shortcutting costs at most a factor of 2

= 2 ·E
[
cT (T

′)
]

linearity of expectation

≤ 2E[O(log n log k) · cT (OPT (T))] GKR

= O(log n log k) ·E[cT (OPT (T))] linearity of expectations

≤ O(log n log k) ·E[cT (TS)] by definition of OPT (T)

≤ O(log n log k) ·E[cT (CS)] CS a cycle on leaves of TS

= O(log n log k) ·E

 ∑
(u,v)∈CS

dT (u, v)

 by definition

= O(log n log k) ·
∑

(u,v)∈CS

E[dT (u, v)] linearity of expectations

≤ O(log n log k) ·
∑

(u,v)∈CS

(O(log n) · d(u, v)) FRT

= O(log2 n log k) ·
∑

(u,v)∈CS

d(u, v) linearity of expectations

≤ O(log2 n log k) · 2 ·OPT shortcutting

= O(log2 n · log k) ·OPT asymptotic notation

7

So combining FRT with GKR gives an O(log2 n log k)-approximation to GST in general! This is
still the state of the art. The question of whether this extra log n loss can be avoided is still an
extremely important open question in approximation algorithms.

14.6 Metric Embeddings in General

We’re not going to talk too much about general metric embeddings, but our approach for GST can
be generalized to many other problems and other metrics. Let’s see this a bit abstractly.

Definition 14.6.1 (V, d) embeds into (V, d′) with distortion α is d(u, v) ≤ d′(u, v) ≤ αd(u, v) for
all u, v ∈ V .

There are equivalent definitions based on contraction rather than expansion or on both, which are
slightly more natural in some contexts, but this definition is more intuitive based on what we’ve
been doing.

Now suppose that we have a β-approximation for some problem in d′, but not in d. Then consider
the algorithm which first embeds d into d′ with distortion α, and then uses the β-approximation
for d′. If the problem that we care about has costs which are just sums of distances (like many of
the problems we’ve been thinking about), then we get that

c(ALG) =
∑

{u,v}∈ALG

d(u, v) ≤
∑

{u,v}∈ALG

d′(u, v) ≤ β
∑

{u,v}∈OPT (d′)

d′(u, v) ≤ β
∑

{u,v}∈OPT

d′(u, v)

≤ βα
∑

{u,v}∈OPT

d(u, v) = βα · c(OPT)

Handling probabilistic embeddings, like we did with FRT for GST, just involves putting expec-
tations in the right places, but it all works out the same. So as long as our problem is “about”
distances, we can use metric embeddings to transform the input metric into a “simpler” metric
(like a tree) by paying the distortion in the approximation ratio.

8

	Introduction
	Review from Last Class
	Linear Programming Relaxation
	Rounding Algorithm

	Finishing the Proof via Janson's Inequality
	Tree Embeddings
	Group Steiner Tree on General Metrics
	Metric Embeddings in General

