Grape Steiner Tree and Tree Embed dings:

$$
\begin{aligned}
\text { Input: } & -h=(v, t) \\
& - \text { edge costs } \quad c: E \rightarrow \mathbb{R} \geq 0 \\
& -v e r t e x \text { r }(\text { root }) \\
& -k \text { groups } g_{1}, g_{2} \ldots, g_{k} \text {,ec och } g_{i} \subseteq V
\end{aligned}
$$

Feasible: Tree $T \leqslant E$ sit. $\forall i \in(k)$, $\exists v \in g_{i}$ where T hes an $r \rightarrow v$ path
objective: min $c(T)=\sum_{c \in T} c(e)$

Lp relaxation:

$$
\begin{aligned}
& \min \quad \sum_{e \in \in}(l e) x_{e} \\
& \text { s.t. } \sum_{e \in(s, j)} x_{e} \geq 1 \quad \forall i \in(k), \forall s \leq V \text { r.t. } r \in s, g ; \cap s=\varnothing \\
& 0 \leq x_{e} \leq 1
\end{aligned}
$$

Def: Let $p(e)=$ parent edge of e

Lemma: $X_{p(e)} \geq x_{e} \quad \forall e$ in any optimal solution x

Baric Alg (GKR Rona ding)

- Solve $L P$ to get x
- For each e \in :
-mall e with probability $\frac{x_{e}}{x_{p(e)}}$. If e has no parent edge (incident on r), mar le Lith prob. Xe
-For each $e \in E$ i include in T it marked and all aneenters marked.

Lemma: $\operatorname{Pr}[e$ in $T]=x_{e}$

Thu: $\forall i \in(k)$,

$$
P,\left[g_{i} \text { connected tor in } T\right] \geq \frac{1}{O(\log \lg \cdot l)} \geq \frac{1}{O(\log a)}
$$

Let, $=9$ i be a group
Let FAIC be event that r nut connected to g

Lemma: If $x_{e}^{\prime} \leq x_{e} \quad \forall e$, then

$$
\text { PI[FAIL wing } x] \geq \operatorname{Pr}[\text { FAIL using } x]
$$

Crate x^{\prime} :

1) Remove all leaves nut ing, all unaecersivy edges
2) Reduce x values until minimally feasible Lexactly 1 flow can he sent from r to 9 , $\min r-g \quad$ cot $=1)$
3) Round each x_{e} down to power of $\frac{1}{2}$ (con send $\geq \frac{1}{2}$ flow, Min at $\geq \frac{1}{2}$)
4) Delete all edges with $x_{e} \leq \frac{1}{4|g|}$
(at most lg leaver), so flew \geq

$$
\left.\frac{1}{2}-\lg \left\lvert\, \frac{1}{4|y|}=\frac{1}{4}\right.\right)
$$

S) If $x_{e}=x_{p(e)}$, contract $e:{ }_{a}$ pe se $\Rightarrow a_{b}$
(e will he morlad with probability 1)

Lemma: Height of treee $\leq O(\log \lg 1)$

Def: For velv, let $e(u)$ be edse from v to $p(v) \quad l_{v(v)}^{p e(v)}$
$E[\{$ lueg: v (anacted $t-r\} \mid]=E\left[\sum_{v \in g} \mathbb{1}[v\right.$ conesected tor $\left.r]\right]$

$$
\begin{aligned}
& =\sum_{v \in g} p_{1}[v \text { comected tor }] \\
& =\sum_{v \in g} X_{e(v)}
\end{aligned}
$$

$=$ +.小l flow to,

$$
\left.\geq 1 \text { (aisy } x \text {) or } \geq \frac{1}{y} \quad \text { (uing } x\right)
$$

\Rightarrow it concentanted around expectation, won ld ha-e resoonable prolability of connectiong y tor

But lots of dependence!

New tool: Jansen's Inequality
Setup:

- S ground set of items
$-S_{1}, \ldots, S_{k}$ subsets of S

$$
-P_{e} \in[0,1] \quad \forall e \in S
$$

- S': set obtained by adding each es independently with probability P_{e}
$-\varepsilon_{i}=$ event that $S_{i} \leqslant S^{\prime}$

$\begin{aligned}-\Delta=\sum_{i \sim j} \operatorname{Pr}\left[\varepsilon_{i} \cap \varepsilon_{j}\right], \text { whore } & i \sim ; \text { if } \sin S_{j} \neq \varnothing \\ & \left(\varepsilon_{i} \varepsilon_{j} \text { dependent }\right)\end{aligned}$

Thm [Janson's Inequality]: If $\mu \leq \Delta$, then probubility that noue of the events occer is

$$
\operatorname{Pr}\left[\bigcap_{i=1}^{k} \bar{\xi}_{i}\right] \leq e^{-\frac{\mu^{2}}{2 D}}
$$

Use Janson for Groun Steiner Tree:
$-S=E$

$$
-p_{e}=\left[r C_{c \text { arlad }}\right)=\frac{x_{e}^{\prime}}{x_{p(c)}^{\prime}}
$$

- $S_{i}=$ path from rt. $v_{i} \in g$
- $E_{i}=$ eunt that all edsass on S_{i} are auslad (v_{i} counected to $r_{\text {, so }}$ g comected to r)
(Laim: $1 \geq \mu=\sum_{i} \operatorname{Pr}\left[\varepsilon_{i}\right] \geq \frac{1}{4}$
PE: Alreedy shoved $\mu \geq \frac{1}{4}$
$\mu \leq 1$ sive x^{\prime} minimally forithe for,
(lam: $\Delta=O(\log \lg l)$
Pf: Let $H=O(\log \lg 1)$ he height of tree

$$
\Delta=\sum_{i \sim j} P_{1}\left[\varepsilon_{i} \cap \varepsilon_{j}\right)=\sum_{n \in g} \sum_{\substack{v \in g: \\(C A(u, v) \neq r}} \operatorname{Pr}\left[\varepsilon_{n} \cap \varepsilon_{v}\right]
$$

$\int_{n} \int_{e n}^{r} e_{a}^{e}$
$c=$ lowest edge shored by S_{u}, S_{0}

$$
\Rightarrow P_{1}\left[\varepsilon_{n} \cap \varepsilon_{v}\right]=P_{1}\left[\varepsilon_{v} \mid \varepsilon_{n}\right] \cdot \operatorname{Pr}\left[\varepsilon_{n}\right]=\frac{x_{e_{n}}^{\prime} x_{e_{v}}^{\prime}}{x_{e}^{\prime}}
$$

Fix $u \in g$, let $\Delta_{n}=\sum_{\substack{u \in g: \\ C(A(u, v) \neq r}} P_{1}\left[\varepsilon_{u} \cap \varepsilon_{v}\right]$

$$
\Rightarrow \Delta=\sum_{u \in g} \Delta_{u}
$$

Let $F(e)=\left\{v \in g: e\right.$ lower edge in $\left.S_{u} \cap S_{v}\right\}$

$$
\begin{aligned}
& \operatorname{Pr}\left[\varepsilon_{n}\right]=x_{e_{n}}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{x_{e v}^{\prime}}{x_{e}^{\prime}}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \Delta_{n}=\sum_{\substack{v \in g \\
C(A(u, \nu) \neq r}} P_{1}\left[\varepsilon_{n} \cap \varepsilon_{v}\right] \\
& =\sum_{e \in S_{n}} \sum_{v \in f(e)} \operatorname{Pr}\left[\varepsilon_{n} \cap \varepsilon_{v}\right] \\
& =\sum_{e \in S_{u}} \sum_{v \in F(e)} \frac{x_{e_{u}}^{\prime} x_{e v}^{\prime}}{x_{e}^{\prime}} \\
& =\sum_{e \in S_{n}} \frac{x_{e e_{n}}^{\prime}}{x_{e}^{\prime}} \sum_{v \in f(e)} x_{e_{v}}^{\prime} \\
& \leq \sum_{e \in S_{n}} \frac{x_{e n}^{\prime}}{x_{e}^{\prime}} x_{e}^{\prime} \quad(f \text { low!) } \\
& =\sum_{e \in S_{n}} x_{e_{n}}^{\prime} \\
& =x_{e n}^{\prime} \sum_{e \in)_{n}} 1 \leq H x_{e n}^{\prime} \\
& \Rightarrow \Delta=\sum_{n \in g} \Delta_{n} \leq H \sum_{n \in g} x_{e_{n}}^{\prime} \leq H
\end{aligned}
$$

Now play into Jangon:
$P,[$ succasstully conect r to $g]$

$$
\begin{aligned}
& =1-\operatorname{Pr} C \text { fa:l to connect } r \text { to } g] \\
& \geq 1-e^{-\frac{\mu^{2}}{2 D}} \\
& \geq 1-e^{-\frac{\left(\frac{1}{y}\right)^{2}}{O(\operatorname{los}|l|)}}=1-e^{-\frac{1}{O(\log (g 1)}} \\
& \geq \frac{1}{\frac{O(\log \lg \mid)}{1+\frac{1}{O(\log \lg 1)}}} \quad\left(1-e^{-x} \geq \frac{x}{x+1} \quad \forall x^{>}-1\right) \\
& =\frac{1}{O(\log \lg \mid)}
\end{aligned}
$$

Tree Embeddings:
Goal: convert a gang into a tree so we can solve problem (GST) on tree.

Intuition: preserve distances.

Given $G=(v, \epsilon)$, is there a tree e T sot.

$$
d_{G}(n, v) \approx d_{\tau}(n, v) \quad \forall n, v+V ?
$$

Cn :

Remove any edge:
distance changes from 1 to $n-l$

Intuitive fix: choose edge to remove randomly

$$
\Rightarrow E\left[d_{T}(n, v)\right)=\frac{1}{n} \cdot(n-1)+\frac{n-1}{n} \cdot 1=2\left(\frac{n-1}{n}\right)=2\left(\left(-\frac{1}{n}\right)\right.
$$

Def: A tree metric $\left(V^{\prime}, T\right)$ for a set of nodes V is a tree T with vertices V^{\prime} sit. $V \leq V^{\prime}$ are the leaver of T, and a nonnegative length for exch edge in T

So tree metric $f r v$ is tree with V as leaves, sires distances between leaves

Def: Let (U, d) be a metric space, $\left(U^{\prime}, T\right)$ a tree metric for V. Then (U, d) embeds into T with distortion α it $d(u, v) \leq d_{T}(u, v) \leq \alpha \cdot d(u, v)$ $\forall u, v \in V$

Tum [Fakcharcenphol, Rad, Talwar 'O3]:
Let (u, d) he a metric space. Then there is a randomized, polytime algorithm that produces a tree metric $\left(V^{\prime}, T\right)$ for V s.f.

1) $d(u, v) \leq d_{T}(u, v) \quad \forall u, v \in V$
2) $E\left[d_{T}(u, v)\right] \leq O(\log n) \cdot d(u, v) \quad \forall u, v \in V$

Eubeddius into a distribution of trees (domianting trees)

GST on general graphs using FRT

1) Extend costs to metric space:
$C(x, v)=$ min cost u un path in G
2) Use $F R T$ to embed into tree $\left(U^{\prime}, T\right)$ - distortion $O(\log n)$
3) Use GKR to get tree T^{\prime} which is $O(\log n \log k)$ approx on T
4) "Shartant" T " to get cycle (only on terminals

5) Remove whitiary edge of C to get path, replace each edge of C by min-cost path in G. Return spanning tree H.

Thin: Returns a feasible solution
pt: T^{\prime} connects ≥ 1 node from exch grape
\Rightarrow (has ≥ 1 a ode from each group
\Rightarrow H hay ≥ 2 a ode from each goon
Tam: $E[C(H)] \leq O\left(\log ^{2} n \log \mid c\right) \cdot$ ORT
pt.
Notation:

- $s=$ terminals connected by ORT (so SMgi7 7 bi)
-Let C_{s} be cycle on S from shortiutting
$O P T \Rightarrow C\left(C_{s}\right) \leq 2 \cdot O P T$
-Let C_{T} be cost/distance in T (earlier d_{T})
$-\operatorname{OPT}(T)=$ optimal solution in T
$-T_{s}$ Esubtice of T induced by S (arty from s to $L C A C S$)

$$
\begin{aligned}
& \left.E L_{C}(\mathrm{H})\right] \leq E[(C)] \\
& \leq E\left[C_{T}(C)\right] \\
& \leq 2 \cdot E\left[C_{T}\left(T^{\prime}\right)\right] \\
& \left.\leq L \cdot E\left[O(1-\sin \log l c) \cdot c_{T}(O R T C T)\right)\right] \quad(G K R-\text { apprax) }) \\
& =O(\log n \log k) \cdot E\left[C_{T}(\operatorname{OPT}(T))\right] \quad \text { (inevity of expectionor)) } \\
& \leq O\left(\log \text { a }(\lg k) \cdot E\left[c_{T}\left(T_{s}\right)\right] \quad(\operatorname{det} \text { of } \operatorname{OTT}(T))\right. \\
& \leq O(\log \log k) \cdot E\left[C_{T}(C s)\right) \quad\left(C_{\text {a a crele on leacues at } \left.T_{S}\right)}\right. \\
& =O\left(\operatorname { l o g } n \operatorname { l o g } (c) \cdot E \left[\sum_{\left.(x, 0) \in c_{s} C_{T}(x, 0)\right] \quad(\text { det })}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \leq O\left(\log n \log |C| \cdot \sum_{(x, 0) \in C,} O(\log n) \cdot c(n, 0) \quad(F R T)\right. \\
& =O\left(\log ^{2} n \log (c) \cdot \sum_{(x, v) \in s)}\left(c_{n, v}\right) \quad\left(a \lg +b_{n a}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \leq O\left(l_{-g^{2} n(-g k) \cdot 2 \cdot O P T \quad\left(C_{s} \text { shortcutted OPT }\right)}^{=O\left(\log ^{2} n \log (c) \cdot O P T\right.} \quad\right.
\end{aligned}
$$

Metric Embeddings in Geneal (ska tech)
Def: (u, d) enkeds into (u, d) with distation α it

$$
d(u, v) \leq d^{\prime}(u, v) \leq \alpha \cdot d(u, v) \quad \forall u, v \in V
$$

Sos have a β-approx for problem in d^{\prime}, hut not in d

ALG: Embed into d', solve there
It costs $=$ sums of distances, then

$$
\begin{aligned}
& C(A C G)=\sum_{(n, 0) \in A C h} d(n, v) \leq \sum_{(4,0) \in A C G} d^{\prime}(u, v) \\
& \leq \beta \sum_{(4, v) \in \text { ORT }\left(d^{\prime}\right)} d^{\prime}(n, v) \\
& \leq \beta \sum_{(4,1 \in O R T} d^{\prime}(4, r) \\
& \leq \beta \alpha \sum_{(r u l \in U R T} d(\text { nu) } \\
& =\beta_{\alpha} \cdot c \text { (ooh) }
\end{aligned}
$$

