hroup Steiner Tree and Tree Embeddings;

Input:
$$-k \in (V, E)$$

 $-edge costs c: E \supset \mathbb{R}_{\geq 0}$
 $-vertex r (reat)$
 $-k groups grigering g_k reach grig V$
Feasible: Tree TEE s.t. $\forall ie(k)$, $\exists veg;$ where They
an $r-v$ path
 $0bjective:$ min $c(T) = \sum_{e \in T} c(e)$

LP relaxation :

min ξ c(e) x_e s.t. \mathcal{Z} x ≥ 1 $\forall i \in C(k), \forall s \in V i.t. r \in S, g; A S = \emptyset$ $e \in (S, \overline{S})$ $0 \leq x_e \leq 1$

Lemma : Pile in T] = Xe

$$\frac{Thm}{Vie(k)},$$

$$P(L_{2}; \text{ convected } t - r \text{ in } T) \geq \frac{L}{O(\log \log 1)} \geq \frac{1}{O(\log 1)}$$

Le will be norled with probability 1)

But lots of dependence!

New teol: Janson's Inequality
Setup:
- S grown d set of items
- Si, ..., Sie subsets of S
- Pe
$$\in Co_{11}$$
 dees
- S': set obtained by adding each ees independently
with probability Pe
- $\xi_{i} = event$ that $S_{i} \in S'$
- $M = \sum_{i=1}^{k} P \cdot C \xi_{i}$ (expected the events that acco)
 $\int_{U_{i}}^{U_{i}} Pe$
- $\Lambda = \xi P \cdot C \xi_{i} \Lambda \xi_{i}$, where inits if $S_{i} \wedge S_{i} \neq \emptyset$
(ξ_{i}, ξ_{i} dependent)

 $\frac{\text{Thm}\left[\text{Janson's Inequality}\right]: I \neq \mu \leq 0, \text{ then}}{\text{probability that none of the events occur is}}$ $\frac{P\left[\prod_{i=1}^{k} \overline{\xi_{i}}\right] \leq e^{-\frac{m^{2}}{20}}$

(luim: A=O(log lgl) PF: Let H= O(log lgl) be height of free $\Delta = \underbrace{\sum_{i \to j}^{2} P_{i} \left[\xi_{i} \wedge \xi_{j} \right]}_{i \to j} = \underbrace{\sum_{u \in g}^{2} P_{i} \left[\xi_{u} \wedge \xi_{u} \right]}_{\substack{u \in g : \\ u \in g : \\ u$ $= \frac{\chi_{ev}}{1}$ \rightarrow Pic $\{n \land \{v\} = Pic \{v \mid \{v\} \} \cdot Pic \{v\} = \frac{x_{en} \times x_{ev}}{x'}$ Fix LE9, let An= 2 Pil En NEu] UE9: L(A(4,4) Fr ∋ N= Z Nu 4€9 Lat F(e)= {veg : e lovest edge in Sun Sus

$$\exists \Delta_{n} = \underbrace{z} \quad P_{i} \underbrace{E} \underbrace{E} \Lambda \underbrace{E_{i}}_{i} \underbrace{F_{i}}_{i} \underbrace{F_{i}}_{i} \underbrace{E} \Lambda \underbrace{E_{i}}_{i} \underbrace{F_{i}}_{i} \underbrace{F_{i}}_{i}$$

Intritive $f; \chi$: choose edge to remove readouly $\Rightarrow E[d_{T}(\neg, \upsilon)] = \frac{1}{h} \cdot (n-1) + \frac{n-1}{h} \cdot 1 = 2(\frac{n-1}{h}) = 2(1-\frac{1}{h})$

So tree metric for V is tree with V as leaves, gives distances between leaves

Embedding into a distribution of trees (dominating trees)

65T on general graphs using FRT DExtend costs to metric space: c (au) = min cost unu path in G 2) Use FRT to embed into tree (U')T) - distortion O(log n)

3) Use GIRR to get tree T' which is O(los n los k) - npprox on T 4) "Shortcht" T' to get cycle C only on terminals

5) Remove a hitrary edge of (to get path, replace each edge of (by min-cost path in G. Return spanning tree H. Then Returns a Feasible solution Pt: T' connects 21 node from each grap -) (has 21 node from each group =) It hay 21 acde from each group / $\frac{T_{hm}}{E[(H)]} = O(\log^2 n \log k) \cdot OPT$ pt. Notation . - S= terminals connected by OPT (so SAg; 70 Hi) -Let Cs be cycle on S from short cutting $OPT \rightarrow c((s) \leq 2 \cdot OPT$ -Let CT be cost/distance in T $(earlier d_{T})$ -OPT(T)= optimal solution in T -Ts - subtree of T induced by S (paths from 5 to L(A(S)

$$E[(H)] \leq E[(C)] \qquad (H spaning tree or C)$$

$$\leq E[c_{T}(C)] \qquad (distring an-dereasing: c(un) \in c_{T}(-n))$$

$$\leq 1 \cdot E[c_{T}(T']] \qquad (sinter-Hisp costs 2)$$

$$\leq 1 \cdot E[0(I_{15} \times I_{15} \times I_{2}) + c_{T}(0PT(T))] \qquad (C \times R - apprex)$$

$$= O(I_{15} \times I_{15} \times I_{2}) + E[c_{T}(0PT(T))] \qquad (I_{10} \times I_{17} \times I_{2} \times I_{2})$$

$$\leq O(I_{15} \times I_{15} \times I_{2}) + E[c_{T}(0PT(T))] \qquad (I_{10} \times I_{17} \times I_{2} \times I_{2})$$

$$\leq O(I_{15} \times I_{15} \times I_{2}) + E[c_{T}(0PT(T))] \qquad (I_{10} \times I_{17} \times I_{2} \times I_{2})$$

$$= O(I_{15} \times I_{15} \times I_{2}) + E[c_{T}(0PT(T))] \qquad (I_{10} \times I_{17} \times I_{2} \times I_{2})$$

$$= O(I_{15} \times I_{15} \times I_{2}) + E[c_{T}(C_{11})] \qquad (I_{10} \times I_{17} \times I_{2} \times I_{2})$$

$$= O(I_{15} \times I_{15} \times I_{2}) + E[c_{T}(C_{11})] \qquad (I_{10} \times I_{17} \times I_{17})$$

$$= O(I_{15} \times I_{15} \times I_{2}) + E[c_{T}(C_{10})] \qquad (I_{10} \times I_{17} \times I_{2} \times I_{2})$$

$$= O(I_{15} \times I_{15} \times I_{2}) + E[c_{T}(C_{10})] \qquad (I_{10} \times I_{17} \times I_{2} \times I_{2})$$

$$= O(I_{15} \times I_{15} \times I_{2}) + E[c_{T}(C_{10})] \qquad (I_{10} \times I_{17} \times I_{2} \times I_{2})$$

$$= O(I_{15} \times I_{15} \times I_{2}) + E[c_{T}(C_{10})] \qquad (I_{10} \times I_{17} \times I_{2} \times I_{2})$$

$$= O(I_{15} \times I_{15} \times I_{2}) + E[c_{T}(C_{10})] \qquad (I_{10} \times I_{17} \times I_{2} \times I_{2})$$

$$= O(I_{15} \times I_{15} \times I_{2} \times I_{2} \times I_{2} \times I_{2} \times I_{2})$$

$$= O(I_{15} \times I_{15} \times I_{2} \times I_{17} \times$$

40(1-5 n (-s k). 2.0PT (Cs shortenthed OPT) = O(log 'n log kl. OPT

$$Def: (v_1d) endeds into (v_1d') with distortion α if

$$d(v_1v) \leq d'(v_1v) \leq \alpha \cdot d(v_1v) \quad \forall v_1v \in V$$$$

ALG: Ended into d', solve there

$$2t$$
 (..., $t_{s} = s - n_{s} = t_{s} + d_{s} + d_{s$