
601.435/635 Approximation Algorithms Lecturer: Michael Dinitz
Topic: FRT Tree Embedding Date: 3/12/24
Scribe: Michael Dinitz

15.1 Introduction

Last class we defined probabilistic tree embeddings and showed how to use them to reduce Group
Steiner Tree on general metrics toGroup Steiner Tree on trees. Today we’re going to actually
show how to do probabilistic tree embeddings, through the FRT algorithm/embedding [FRT04].
Recall the basic definition:

Definition 15.1.1 A tree metric (V ′, T) for a set of nodes V is a tree T on vertices V ′, where
V ⊆ V ′ are the leaves of T . Every edge of T has a nonnegative length.

We’re going to prove the following theorem:

Theorem 15.1.2 ([FRT04]) Let (V, d) be a metric. Then there is a randomized, polytime algo-
rithm that produces a tree metric (V ′, T) for V such that

1. d(u, v) ≤ dT (u, v) for all u, v ∈ V , and

2. E[dT (u, v)] ≤ O(log n) · d(u, v) for all u, v ∈ V .

FRT is the best possible result of this form, but it built off of ideas pioneered by Bartal, who intro-
duced the definition of probabilistic tree embeddings and gave one with O(log2 n) distortion [Bar96],
and then improved this to O(log n log log n) distortion [Bar98].

15.2 The FRT Algorithm

15.2.1 Hierarchical Cut Decomposition

The first key idea, which is what FRT will actually construct, is (the tree corresponding to) a
hierarchical cut decomposition. This is a special type of tree metric for V . For any u ∈ V and
r ∈ R≥0, let B(u, r) = {v ∈ V : d(u, v) ≤ r} be the ball around u of radius r. Without loss
of generality, we may assume (by scaling) that minu,v∈V :u̸=v d(u, v) = 1. For any set S ⊆ V , let
diam(S) = maxu,v∈S d(u, v) denote its diameter. Let ∆ = 2⌈log diam(V)⌉ be the smallest power of 2
such that ∆ ≥ diam(V).

Hierarchical Cut Decomposition: A tree metric (V ′, T) for (V, d) so that

1. Every vertex ℓ ∈ T is associated with the subset Sℓ ⊆ V where v ∈ Sℓ if and only if v is a
descendent of ℓ in T . Note that this implies:

• The root r of T has Sr = V .

1

• If u has children w1, . . . wk, then {Swi}i∈[k] partition Su (i.e., Su = ∪ki=1Swi and Swi ∩
Swj = ∅ for all i ̸= j).

2. If u is at level i of T , then diam(Su) < 2i (leaves at level 0, root at level log∆).

3. The length of an edge between a level i node and a level i+ 1 node is 2i+1.

This can be summed up with the following picture, which is directly from the textbook [WS11]:

Figure 15.2.1: Hierarchical Decomposition

The FRT algorithm will construct a hierarchical cut decomposition, but before we give the algo-
rithm, let’s start by showing a simple lemma which holds for any hierarchical cut decomposition.
Consider a hierarchical cut decomposition (V ′, T) of some metric (V, d).

Lemma 15.2.1 If the least common ancestor of two leaf nodes u and v in T is at level i, then
dT (u, v) ≤ 2i+2. Furthermore, dT (u, v) ≥ d(u, v) for all u, v ∈ V

Proof: Let u and v be leaf nodes in T , and let w be u and v’s least common ancestor (so w is at
level i). Then by construction we know that dT (u,w) =

∑i
j=1 2

j , so 2i ≤ dT (u,w) < 2i+1. Similarly,

2i ≤ dT (v, w) < 2i+1. Since dT (u, v) = dT (u,w) + dT (w, v), we get that 2i+1 ≤ dT (u, v) < 2i+2.
That proves the first part of the lemma. And because u, v are both contained in Sw, we know that
d(u, v) ≤ diam(Sw) ≤ 2i, which implies the second part.

15.2.2 Constructing the FRT tree

We can now finally give the FRT algorithm for constructing a tree embedding. FRT constructs a
hierarchical decomposition in a certain way, but since it does construct a hierarchical decomposition,
we know that no pair is contracted, and the distance between two nodes in the tree depends only
on the level of their LCA. This is going to make reasoning about distances in the tree much easier.

2

(As a side note, you might have noticed that these trees are not just trees, they’re special trees
where the distance between two nodes grows exponentially with the level of their LCA. So we’re
actually doing more than just giving a tree embedding: we’re giving a tree embedding into a special
class of trees known as Hierarchically Well-Separated Trees (HSTs). Occasionally it is useful to
utilize this property algorithmically: for GST we didn’t care whether we were in a HST or a general
tree, but for other problems it is sometimes easier to handle HSTs than general trees, and thanks
to FRT we only need to handle HSTs).

Algorithm 1 FRT embedding

Let π be a permutation of V , chosen uniformly at random
Let r0 be a value in

[
1
2 , 1

)
, chosen uniformly at random

Let ri = r0 · 2i for all i such that 1 ≤ i ≤ log∆
Let T be a tree with only a root node (at level log∆) which represents V
for i← log∆− 1 to 0 do

Let C be the set of nodes at level i+ 1
for C ∈ C do
S ← C
for j ← 1 to n do

P ← B(π(j), ri−1) ∩ S
if P ̸= ∅ then
S ← S \ P
Add P to T as a child of C at level i

end if
end for

end for
end for

return T

Note that there are two sources of randomness in this algorithm: the choice of π, and the choice of
r0.

15.3 Analysis of FRT

Since FRT gives a hierarchical cut decomposition we know that no distance is smaller in T than it
is in the original metric. So we just need to prove that the expected expansion is at most O(log n),
i.e., we want to prove the following theorem.

Theorem 15.3.1 E[dT (u, v)] ≤ O(log n)d(u, v) for all u, v ∈ V

For the rest of this section, let’s fix u and v. Let’s introduce a couple definitions. Recall that
B(w, r) denotes the ball with center w and radius r.

Definition 15.3.2 w settles u, v at level i if w is the first vertex in π s.t. B(w, ri−1)∩ {u, v} ≠ ∅.
Definition 15.3.3 w cuts u, v at level i if |B(w, ri−1) ∩ {u, v}| = 1.

3

From these definitions we can make the following obvious observation. Recall that LCA(u, v) is
the least common ancestor of u and v, and we know from our previous analysis of hierarchical cut
decompositions that the distance between u and v is essentially determined by their LCA.

Observation 15.3.4 LCA(u, v) is at level i + 1 if i is the largest value such that the vertex w
which settles u, v at level i also cuts u, v at level i.

To analyze the expected distortion we’ll need to analyze a few random variables:

Siw =

{
1, if w settles u, v at level i,

0, otherwise.

Xiw =

{
1, if w cuts u, v at level i,

0, otherwise.

We can now start analyzing the expected distortion, although we’ll have to stop a few places
along the way to prove useful lemmas. Using our random variables, there is a vertex which both
settles and cuts u, v at level i if

∑
w∈V SiwXiw = 1. Let i∗ be the level of LCA(u, v). Then using

our observation, i∗ − 1 is the largest i such that
∑

w∈V SiwXiw = 1. Moreover, we know from
Lemma 15.2.1 that dT (u, v) ≤ 2i

∗+2. Putting this together and changing the order of summation,
we get that

dT (u, v) ≤ 2i
∗+2 = max

i:
∑

w∈V SiwXiw=1
2i+3 ≤

log∆∑
i=0

2i+3
∑
w∈V

SiwXiw =
∑
w∈V

log∆∑
i=0

2i+3SiwXiw.

Now if we take the expectation, by using linearity of expectations and the definition of conditional
probabilities, we get that

E[dT (u, v)] ≤
∑
w∈V

log∆∑
i=0

2i+3E[SiwXiw]

=
∑
w∈V

log∆∑
i=0

2i+3Pr[Siw = 1 ∧Xiw = 1]

=
∑
w∈V

log∆∑
i=0

2i+3Pr[Siw = 1|Xiw = 1]Pr[Xiw = 1]

So we’ve (very formally) broken this up into analyzing two events: that w cuts u, v at level i (which
has nothing to do with π), and that w settles u, v at level i conditioned on it cutting u, v at level
i. We’re going to prove a few lemmas which let us analyze these events, but consider the following
intuition. w cutting u, v is independent of π: it only has to do with r0. On the other hand, if we
assume that w does cut u, v, then whether it also settles depends on π (and on r0). So the hope is
that this will be easier to analyze since we’ve removed the dependence on π from one of them.

The first lemma gives us a bound on the conditional event.

4

Lemma 15.3.5 For every vertex w there is some bw ∈ R≥0 such that:

1. Pr[Siw = 1|Xiw = 1] ≤ bw for all i, and

2.
∑

w∈V bw ≤ O(log n).

The second lemma gives us a bound on the cutting probability.

Lemma 15.3.6
∑log∆

i=0 2i+3Pr[Xiw = 1] ≤ 32d(u, v) for all w ∈ V .

Let’s now finish the proof of the main theorem, assuming these two lemmas. Continuing from our
previous inequalities:

E[dT (u, v)] ≤
∑
w∈V

log∆∑
i=0

2i+3Pr[Siw = 1|Xiw = 1]Pr[Xiw = 1]

≤
∑
w∈V

bw

log∆∑
i=0

2i+3Pr[Xiw = 1]

≤
∑
w∈V

bw32d(u, v) = 32d(u, v)
∑
w∈V

bw

≤ O(log n)d(u, v)

So now we just need to prove these two lemmas!

Proof of Lemma 15.3.5: We’re trying to analyze Pr[Siw = 1|Xiw = 1] for every w ∈ V . To do
this, let’s order V by distance to {u, v}, so

d(wi, {u, v}) ≤ d(wi+1, {u, v})

for all i.

Now let’s fix some wj , and suppose that wj cuts {u, v} at level i, i.e., |B(wj , ri−1) ∩ {u, v}| = 1.
Then by the definition of our ordering, every wk with k < j must have |B(wk, ri−1) ∩ {u, v}| > 0.
Thus if any of these nodes come before wj in π, we know that wj will not settle u, v at level i, since
at least one of u, v will have already been clustered by the time wj gets to form clusters. Since π
is a random permutation, the probability that wj comes before the xk for all k < j is exactly 1/j.
Thus Pr

[
Siwj = 1|Xiwj = 1

]
≤ 1/j. So by setting bwj = 1/j, we have proved the first part of the

lemma.

The proof of the second part of the lemma is now straightforward:

∑
w∈V

bw =
n∑

j=1

bwj =
n∑

j=1

1

j
= Hn = O(log n),

as claimed.

5

Proof of Lemma 15.3.6: Now we’re trying to prove that
∑log∆

i=0 2i+3Pr[Xiw = 1] ≤ 16d(u, v)
for all w ∈ V . Without loss of generality, let’s assume that d(w, u) ≤ d(w, v). In order for w to cut
u, v at level i (i.e., for Xiw = 1), it needs to be the case that ri−1 ∈ [d(w, u), d(w, v)). Moreover,
ri−1 is distributed uniformly in [2i−2, 2i−1). Thus

Pr[Xiw = 1] =
|[2i−2, 2i−1) ∩ [d(w, u), d(w, v))|

|[2i−2, 2i−1)|
=
|[2i−2, 2i−1) ∩ [d(w, u), d(w, v))|

2i−2
.

So we have that

2i+3Pr[Xiw = 1] =
2i+3

2i−2
|[2i−2, 2i−1) ∩ [d(w, u), d(w, v))|

= 32|[2i−2, 2i−1) ∩ [d(w, u), d(w, v))|.

Thus

log∆∑
i=0

2i+3Pr[Xiw = 1] ≤
log∆∑
i=0

32|[2i−2, 2i−1) ∩ [d(w, u), d(w, v)]|

= 32|[d(w, u), d(w, v)]| = 32(d(w, v)− d(w, u)) ≤ 32d(u, v),

where the final inequality is from the triangle inequality.

15.4 Steiner Point Removal

Recall that our definition of a tree embedding for (V, d) involved us creating a tree where V was
the leaves. A natural question is whether this is actually necessary: can we probabilistically embed
into trees on V itself (so without any “extra” nodes)? Or even more basically, forgetting the
probabilistic embedding:

Question 15.4.1 If (V ′, T ′) is a tree metric for V , is there a (weighted) tree T = (V,E) such that
dT ′(u, v) ≤ dT (u, v) ≤ αdT ′(u, v) for all u, v ∈ V , where α = O(1)?

This question asks whether we can turn any tree metric which uses steiner nodes (“extra” nodes)
into a tree without any steiner nodes. This question was resolved in a seminal paper by Anupam
Gupta [Gup01], who showed that this was possible with α = 8. Today we’re going to prove an easier
result which only holds for the kinds of tree embeddings that we construct, i.e., for hierarchical cut
decompositions.

Theorem 15.4.2 If (V ′, T ′) is a tree embedding for T which is a hierarchical cut decomposition,
then can find some other T s.t. dT ′(u, v) ≤ dT (u, v) ≤ 4dT ′(u, v) for all u, v ∈ V .

Proof: Use the following algorithm to construct T .

1. While there exists a node x ∈ V , s.t. p(x) /∈ V , contract (x, p(x)). This gives a tree with
vertex set V .

6

2. Multiply all edge weights by 4.

Here contracting edge (x, p(x)) means we just merge the subtree at x into p(x) and identify the
newly merged node as x. Contracting makes distance go down, and hence dT (u, v) ≤ 4dT ′(u, v).

Suppose the least common ancestor of u, v in T ′ is w at level i. Then dT ′(u, v) ≤ 2i+2. After
contractions, their distance in T is at least 2i (consider w and its child). So dT (u, v) ≥ 2i+2 as we
multiply each edge weights by 4. So dT ′(u, v) ≤ dT (u, v).

References

[Bar96] Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applications.
In Proceedings of 37th Conference on Foundations of Computer Science, FOCS ’96, pages
184–193, 1996.

[Bar98] Yair Bartal. On approximating arbitrary metrices by tree metrics. In Proceedings of the
Thirtieth Annual ACM Symposium on Theory of Computing, STOC ’98, pages 161–168,
1998.

[FRT04] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. Journal of Computer and System Sciences, 69(3):485 –
497, 2004. Special Issue on STOC 2003.

[Gup01] Anupam Gupta. Steiner points in tree metrics don’t (really) help. In Proceedings of the
Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’01, pages 220–
227, 2001.

[WS11] David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, New York, NY, USA, 1st edition, 2011.

7

	Introduction
	The FRT Algorithm
	Hierarchical Cut Decomposition
	Constructing the FRT tree

	Analysis of FRT
	Steiner Point Removal

