
601.435/635 Approximation Algorithms Lecturer: Michael Dinitz
Topic: LP Solutions as Metrics: Multiway Cut Date: 3/14/24
Scribe: Michael Dinitz

16.1 Introduction

The last few weeks we’ve done a lot of work on metric spaces, i.e., on problems where WLOG the
input is a metric space. Then we focused on embedding these metrics, allowing us to solve problems
on trees rather than on general graphs. We’ve also done a lot of work on LP-based approximation
algorithms. Now we’re going to consider some interesting settings in which metrics and LPs are
combined in a different way: the solution to the LP is a metric, rather than the input being a metric.
So then after solving the LP we’ll have a metric space that we can manipulate algorithmically.

We’re going to see this first in an exact algorithm (not an approximation algorithm) for the classical
min s− t cut problem. Then we’ll see it used in an approximation algorithm for Multiway Cut.

16.2 Min s− t Cut

We recall the basic definition of the Min Cut Problem

Input: Graph G = (V,E)

Costs c : E → R+

Source s ∈ V and sink t ∈ V

Feasible: A ⊆ E s.t. G−A has no s− t path

Objective: min
∑
e∈A

c(e)

We note that this definition of Min Cut Problem can be written in an equivalent form:

Input: Graph G = (V,E)

Costs c : E → R+

Source s ∈ V and sink t ∈ T

Feasible: S ⊆ V s.t. s ∈ S and t ̸∈ S

Objective: min
∑

e∈E(S,S̄)

c(e)

Definition 16.2.1 Ps,t = {all s− t paths}
We define the following LP, whose integer solutions are solutions to the Min Cut Problem

1

min
∑
e∈E

c(e)xe

subject to
∑
e∈P

xe ≥ 1 ∀P ∈ Ps,t

0 ≤ xe ≤ 1 ∀e ∈ E

Intuitively, this states that along each path at least one edge must be in the cut.

Theorem 16.2.2 This LP can be solved in polytime, even though it has an exponential number of
constraints.

Proof: Suppose x⃗ is not a feasible solution to the LP. There must thus be a path P ∈ Ps,t
s.t.

∑
e∈P xe < 1. We now think of xe as a length assigned to edge e ∈ E. We can easily find a

shortest s− t path (e.g., using Dijkstra’s algorithm). Because it is the shortest path, and there is
some P ∈ Ps,t with

∑
e∈P xe < 1, the shortest s − t path P ∗ also has

∑
e∈P ∗ xe < 1, and thus P ∗

corresponds to a violated constraint. Thus we can use Dijkstra’s algorithm as a separation oracle
for the ellipsoid method, allowing us to solve the LP in polynomial time.

Now we can solve the LP, so let’s define a rounding algorithm. We don’t want to use independent
randomized rounding, though – it’s not hard to see that this will not do well. Let’s instead use the
interpretation of x as edge lengths, and round in a way that corresponds to the metric that this
gives.

We begin by defining a few variables.

Definition 16.2.3 Let d(u) denote the shortest path distance from s to u under the edge lengths
xe ∈ x⃗.

Definition 16.2.4 Let B(s, r) = {v ∈ V : d(v) ≤ r}.
Definition 16.2.5 If S ⊂ V , let δ(S) = E(S, S̄) = set of edges with one endpoint in S and one
endpoint in S̄ .

Algorithm 1 LP rounding for Min Cut

Input: Graph G = (V,E) and solution to the LP x⃗
Output: S ⊆ E

Choose r uniformly at random in (0, 1)
S ← B(s, r)
return A← δ(S)

Claim 16.2.6 With probability 1, the algorithm returns a feasible solution.

Proof: Since x is a feasible solution, every path from s to t has length at least 1. So t ̸∈ B(s, r)
for any choice of r, and thus A cuts t from s.

Claim 16.2.7 Pr[e ∈ A] ≤ xe for all e ∈ E.

2

Proof: Let e = {u, v}. Without loss of generality, let d(u) ≤ d(v). In order for e to be in A, we
must have r ∈ [d(u), d(v)). So Pr[e ∈ A] = Pr[r ∈ [d(u), d(v))] ≤ d(v)−d(u) ≤ d(u, v) ≤ xe, where
d(u, v) denotes the length of the shortest u− v path.

So now by linearity of expectations we know that E[c(A)] =
∑

e∈E c(e)Pr[e ∈ A] =
∑

e∈E c(e)xe =
LP . So this algorithm performs as well as the LP in expectation.

We can take this seemingly randomized algorithm and make it deterministic by simply trying all
possibilities. Suppose there is no node w such that d(u) ≤ d(w) ≤ d(v). Thus any r ∈ [d(u), d(v)]
will yield the same cut. Thus there are a linear number of possible cuts, which can each be tested
in polynomial time. So our algorithm will be to solve the LP and try each of these cuts, taking
whichever is best. Clearly this runs in polynomial time. Since the randomized algorithm does no
worse than the LP in expectation, at least one of these cuts must do as well as the LP, so we will
return a cut of cost at most

∑
e∈E c(e)xe. Thus this algorithm returns the optimal solution, since∑

e∈E c(e)xe ≥ OPT . So we have yet another polynomial-time algorithm for min s− t cut.

16.3 Multiway Cut

Let’s move to a problem that’s actually NP-hard: Multiway Cut.

Input: Graph G = (V,E)

Costs c : E → R+

T = {s1, s2, ..., sk} ⊆ V

Feasible: A ⊆ E s.t. G−A has no si − sj path ∀i, j ∈ {1, 2, ..., k}

Objective: min
∑
e∈A

c(e)

In other words, rather than disconnecting s and t, we need to disconnect every terminal from every
other terminal (nodes in T are usually called terminals). We define the following LP, whose integer
solutions are solutions to Multiway Cut.

min
∑
e∈E

c(e)xe

subject to
∑
e∈P

xe ≥ 1 ∀i, j ∈ {1, 2, ..., k}, ∀P ∈ Psi,sj

0 ≤ xe ≤ 1 ∀e ∈ E

Note that the LP solution x⃗ induces a metric d on the nodes through the shortest-path distances,
and the constraints guarantee that d(si, sj) ≥ 1 for all i, j ∈ [k]. We use the same separation oracle
as we did for Min Cut example, but simply use it to check for each pair of {i, j}. Thus this LP can
also be solved in polynomial time. As earlier, the LP solution x⃗, when interpreted as edge lengths,
gives a metric d by shortest-paths.

3

Now consider the following rounding algorithm, which is the obvious generalization of the algorithm
we designed for Min s− t Cut.

Algorithm 2 LP rounding for Multiway Cut

Input: Graph G = (V,E) and solution to the LP x⃗
Output: S ⊆ E

A← ∅
Choose r uniformly at random from [0, 12)
for all i ∈ {1, 2, .., k} do

Ai ← δ(B(si, r))
A← A ∪Ai

end for
return A

Claim 16.3.1 This algorithm always returns a feasible solution.

Proof: By the LP constraints on x, we know that d(si, sj) ≥ 1 for all terminals si, sj . Since
r < 1/2, this implies that Ai is enough to cut si from sj (so is Aj , in fact).

Now let’s analyze the cost.

Claim 16.3.2 Pr[e ∈ A] ≤ 2xe for all e ∈ E.

Proof: Let w ∈ V . By the triangle inequality, d(si, w) + d(w, sj) ≥ d(si, sj) ≥ 1 for all si, sj ∈ T .
This implies that for every w ∈ V , there is at most one si ∈ T such that d(si, u) < 1/2. So we can
define the following disjoint subsets:

Definition 16.3.3 Let Ci = {w ∈ V : d(si, w) <
1
2}.

Let e = {u, v} ∈ E. To prove the claim, w break into two cases.

Case 1: u, v ∈ Ci for some i ∈ 1, 2, ..., k. WLOG we assume d(si, u) ≤ d(si, v).

Pr[e ∈ A] = Pr[e ∈ Ai] = Pr[r ∈ [d(si, u), d(si, v))] =
d(si, v)− d(si, u)

1
2

≤ 2d(u, v) ≤ 2xe

Case 2: There is no i such that u, v ∈ Ci. If neither u nor v is in any of the Ci’s, then Pr[e ∈ A] = 0
so we’re finished. Otherwise, we know that u ∈ Ci, and either v is not in any Cj or v ∈ Cj for
j ̸= i. WLOG, let’s assume that d(si, u) ≤ d(sj , v). Then e will be in A if and only if r ≥ d(si, u).
So we get that

Pr[e ∈ A] = Pr[r ∈ [d(si, u), 1/2)] ≤
1
2 − d(si, u)

1
2

= 2

(
1

2
− d(si, u)

)
≤ 2d(u, v) ≤ 2xe

So in all cases Pr[e ∈ A] ≤ 2xe.

By linearity of expectations E[c(A)] =
∑

e∈E c(e)Pr[e ∈ A] ≤
∑

e∈E c(e)(2xe) ≤ 2
∑

e∈E c(e)xe =
2 · LP . So this is a 2-approximation in expectation, and we can derandomize as we did with min
s− t cut by trying out all relevant values of r.

4

16.3.1 Integrality Gap

Is our analysis tight? We consider the star with k nodes around the outside connected by a single
node v. We choose as our k terminal nodes the outside nodes.

The optimal solution OPT is clearly given by cutting all but one edge. So the cost is k − 1.

The best LP solution is given by assigning all edges 1
2 . So the cost is k

2

Thus the gap is given by OPT
LP = k−1

k
2

= 2(1− 1
k). So our analysis is tight.

16.3.2 A Better Algorithm

Despite this integrality gap, it turns out that we can do better by using a better LP relaxation! To
construct a better relaxation, we first need to change our viewpoint a bit. Consider some optimal
solution F . Then let Ci = {v ∈ V : v reachable from si in G \ F}. Clearly since F is a feasible
multiway cut, Ci∩Cj = ∅ for all i ̸= j. But it turns out that they also form a partition: every node
is in some Ci. To see this, suppose that it is false, and let S be the set of nodes that unreachable
from any terminal in G \F . Add S to C1 to get C ′

1, which together with the other Ci’s now form a
partition. Then any edge which is cut under the new sets was also cut by the old sets, so this new
solution is just as good as the old solution.

Thus WLOG, we can assume that the optimal solution is actually a partition C1, C2, . . . Ck where
si ∈ Ci for all i ∈ [k], and the edges we cut are the edges between the parts of the partition.

This point of view suggests the following, different LP relaxation. We’ll have the following variables.

xiu =

{
1 if u ∈ Ci

0 else

zie =

{
1 if e ∈ δ(Ci)
0 else

We now define an LP using these indicator variables

min
1

2

∑
e∈E

k∑
i=1

c(e)zie

subject to

k∑
i=1

xiu = 1 ∀u ∈ V

zie ≥ xiu − xiv ∀e = {u, v} ∈ E, ∀i ∈ 1, 2, ..., k

zie ≥ xiv − xiu ∀e = {u, v} ∈ E, ∀i ∈ 1, 2, ..., k

xisi = 1 ∀i ∈ 1, 2, ..., k

0 ≤ xiu ≤ 1 ∀u ∈ V, ∀i ∈ [k]

0 ≤ zie ≤ 1 ∀e ∈ E, ∀i ∈ [k]

5

It is straightforward to verify that this is a valid relaxation of the multiway cut problem. We will
give a more compact way of writing this LP which makes the connection to metrics clear.

Definition 16.3.4 Let x, y ∈ Rk then their ℓ1-distance is ∥x− y∥1 =
∑k

i=1 |xi− yi| where xi is the
ith coordinate of the vector x.

Definition 16.3.5 The k-simplex is ∆k = {x ∈ Rk :
∑k

i=1 x
i = 1 ∧ xi ≥ 0 ∀i} where xi is the ith

coordinate of the vector x.

Definition 16.3.6 Let ei be a vector with a 1 in the ith coordinate and zeros elsewhere

Let xu = (x1u, x
2
u, ..., x

k
u) and xv = (x1v, x

2
v, ..., x

k
v). Note that zie = |xiu − xiv| in any optimal LP

solution because of the constraints on zie and because we are minimizing the objective function. So,
∥xu − xv∥1 =

∑k
i=1 z

i
e. Using all these definitions we can rewrite the new LP as follows

min
1

2

∑
e={u,v}∈E

c(e)∥xu − xv∥1

subject to xsi = ei ∀i ∈ 1, 2, ..., k

xu ∈ ∆k

Note that ∥xsi − xsj∥1 = ∥ei − ej∥1 = 2 for all i ̸= j ∈ [k].

Now we need a way of rounding this LP. We’re going to use a technique due to Calinescu, Karloff,
and Rabani [CKR00], which might look familiar: it’s a lot like one level of FRT! Formally, we’ll
use the following algorithm. We’ll define balls as one would expect, i.e., we’ll let B(si, r) = {v ∈
V : ∥ei − xv∥1 ≤ r}.

1. Initially we set Ci = ∅ for all i ∈ [k], and set another set X = ∅.

2. Pick r ∈ (0, 2) uniformly at random, and pick a permutation π of [k] uniformly at random.

3. For i = 1 to k − 1

(a) Set Cπ(i) ← B(sπ(i), r) \X
(b) X ← X ∪ Cπ(i)

4. Set Cπ(k) = V \X

5. Return A = ∪ki=1δ(Ci) (the edges cut by the partition that we built)

We’re going to prove the following theorem.

Theorem 16.3.7 This is a 3/2-approximation.

To prove this, for every edge {u, v} let Zu,v be an indicator random variable which will be 1 if this
rounding algorithm separates u and v (i.e., includes e in the cut) and is 0 otherwise. We’ll first
state the following lemma.

6

Lemma 16.3.8 Pr[Zu,v = 1] ≤ 3
4∥xu − xv∥1 for all {u, v} ∈ E.

It’s straightforward to see that this lemma implies the theorem:

E[ALG] = E

 ∑
e={u,v}∈E

c(e)Zu,v

 =
∑

e={u,v}∈E

c(e)E[Zu,v]

≤
∑

e={u,v}∈E

c(e)
3

4
∥xu − xv∥1 =

3

2
· 1
2
·

∑
e={u,v}∈E

c(e)∥xu − xv∥1

≤ 3

2
·OPT.

So we just need to prove Lemma 16.3.8. This is going to look an awful lot like a simplified version of
FRT. Fix some {u, v} ∈ E. Define Si to be 1 if i is the first index in π such that |B(si, r)∩{u, v}| ≥ 1
(i.e., si settles {u, v}) and 0 otherwise. Define Xi to be 1 if |B(si, r) ∩ {u, v}| = 1 (i.e., si cuts
{u, v}) and 0 otherwise.

Similar to FRT (but simpler since there’s only one “level”), we can note that Zu,v = 1 if and
only if there is some i ∈ [k] such that Si = Xi = 1. And by the definition of Si there is at most
one i which settles {u, v}, and thus some i ∈ [k] has Si = Xi = 1 if and only if

∑k
i=1 SiXi = 1.

Thus Zu,v =
∑k

i=1 SiXi, so by linearity of expectations we get that E[Zu,v] =
∑k

i=1E[SiXi], and

thus Pr[Zu,v = 1] =
∑k

i=1Pr[Si = Xi = 1]. Less formally, the probability that {u, v} is cut by the
algorithm is equal to the sum over all terminals of the probability that the algorithm cut the edge
because of that terminal.

Let’s start by analyzing the cut probabilities. To do this, let’s prove another easy lemma.

Lemma 16.3.9 For all w ∈ V and i ∈ [k], w ∈ B(si, r) if and only if 1− xiw ≤ r/2.

Proof: We have the following series of if and only if statements:

w ∈ B(si, r)⇔ ∥ei − xw∥1 ≤ r

⇔
k∑

j=1

|eji − xjw| ≤ r

⇔ 1− xiw +
∑
j ̸=i

xjw ≤ r

⇔ 2(1− xiw) ≤ r

⇔ 1− xiw ≤ r/2,

as claimed.

To interpret this lemma, it says that we can think of the distance from w to si as being 2(1− xiw).
This lemma implies that

Pr[Xi = 1] = Pr
[
min(1− xiv, 1− xiu) ≤ r/2 < max(1− xiu, 1− xiv)

]
= |xiu − xiv|.

7

Let ℓ ∈ [k] be the index minimizing minki=1min(1−xiu, 1−xiv), i.e., sℓ is the terminal that is closest
to {u, v} in the ℓ1-metric given by the LP. For this special index, we can bound the probability
that the algorithm cuts {u, v} in because of sℓ by

Pr[Sℓ = Xℓ = 1] ≤ Pr[Xℓ = 1] ≤ |xℓu − xℓv|

Now consider some i ̸= ℓ. If i cuts {u, v}, then |B(sℓ, r)∩{u, v}| ≥ 1 since ℓ is closer to {u, v} than
i is. This if i cuts {u, v}, a necessary condition for it to settle {u, v} is for it to be before ℓ in π.
Since π is chosen uniformly at random, this happens with probability 1/2. Thus we get that

Pr[Si = Xi = 1] = Pr[Si = 1|Xi = 1]Pr[Xi = 1] ≤ 1

2
|xiu − xiv|.

Putting this all together we have

Pr[Zu,v = 1] =

k∑
i=1

Pr[Xi = Si = 1] ≤ |xℓu − xℓv|+
1

2

∑
i ̸=ℓ

|xiu − xiv|

=
1

2
|xℓu − xℓv|+

1

2
∥xu − xv∥1

≤ 3

4
∥xu − xv∥1.

which completes the proof of Lemma 16.3.8 and thus the proof of Theorem 16.3.7. However, to
prove the last inequality, we actually need one final lemma.

Lemma 16.3.10 For any index j and any u, v ∈ V , |xju − xjv| ≤ 1
2∥xu − xv∥1.

Proof: Without loss of generality, let’s assume that xju ≥ xjv. Then

|xju − xjv| = xju − xjv =

1−
∑
i ̸=j

xiu

−
1−

∑
i ̸=j

xiv

 =
∑
i ̸=j

(
xiv − xiu

)
≤

∑
i ̸=j

|xiv − xiu|.

Adding |xju − xjv| to both sides and then dividing by two gives the lemma.

References

[CKR00] Gruia Călinescu, Howard Karloff, and Yuval Rabani. An improved approximation al-
gorithm for multiway cut. Journal of Computer and System Sciences, 60(3):564 – 574,
2000.

8

	Introduction
	Min s-t Cut
	Multiway Cut
	Integrality Gap
	A Better Algorithm

