LP Solutions as Metrics:
Previously: frying to solve problem on metric space Today: interpret $C \rho$ solution as metric space!

Warmup: Min st (ut
Input: $-C=(U, E)$ (undirected)

$$
- \text { costs } \quad c: E \rightarrow \mathbb{R}^{+}
$$

-Sauce $s \in V$, sink $t \in V$
Feasible: $A \subseteq E$ sit. GoA has are sot path
Objective: $\min \sum_{e \in A} c(e)$

Def: $P_{u, v}=\{$ all $u-v$ paths in 6$\}$

Lp relaxation:

$$
\begin{array}{ll}
\min & \sum_{e \in E} c(e) x_{e} \\
\text { s.t. } & \sum_{e \in P} x_{e} \geq 1 \quad \forall P \in P_{s, t} \\
& 0 \leq x_{e} \leq 1 \quad \forall e \in E
\end{array}
$$

Thu: LP can be solved in polytime
PE:
Separation oracle: given $x$, is there a $P_{\in} P_{s, t}$ with $\sum_{e \in p} x_{e}<1$ ?

Shortest path!


Let $x$ be an LP solution. How to round?
Intuition. from reparation. Think of $x$ as lengths

Def: $d(n)=$ shortest path distance from $s$ to $u$ under edge lengths $x$

Dat: $B(s, v)=\{v \in V: d(v) \leq r\}$


Def: For $S \leqslant V$, let $\delta(S)=E(S, \bar{S})=\{e \in E:$ en St $\varnothing$ and $e n \hat{s} \not \subset \varnothing\}$

Rounding Alg ( $x$ an LP solution)

- (bose $r$ uniformly at random in $(0,1)$
$-S=B(r, r)$
- return $A=\delta(S)$


Claim: A feasible with probulility 1
Pf: For all (hrices of $r, s \in S, t \notin S(\operatorname{since} d(t) \geq 1)$
$\Rightarrow A$ a teasible s-t cut
(1aim: $\operatorname{Pr}[e \in A) \leq x_{e} \quad \forall e \in E$
Pf: Let $e=\{u, v\}$.
LLOG, $d(u) \leq d(v)$
$e \in A$ iff $\quad d(u) \leq r<d(v)$

(i)

$$
\begin{aligned}
& \Rightarrow \operatorname{Pr}[(+A]=\operatorname{Pr}[d(n) \leq r<d(u)] \\
& =\frac{d(u)-d(n)}{1} \leq x_{e} \\
& \left.\Rightarrow E[c(A)]=E C \sum_{e \in \in}(e) \cdot \mathbb{1}(e \in A]\right) \leq d(u)+x_{e}
\end{aligned}
$$

$$
\leq \sum_{e \in A}(l) x_{e}=L \rho \leq O P T
$$

Rendomized alg for s-t minent!
Deterministic:

- After solving LP to get $x$, $n$ different cots alg might return

-Try each, take best.
$\Rightarrow$ hest ha, (out $\leq$ expectation, $\Rightarrow c(A) \leq O P T$
-exact algorithm!

Multivay Cut:
Input: - $h=(v, E)$ (undirected)

$$
\begin{aligned}
& - \text { costs } \quad c \cdot E \rightarrow \mathbb{R}^{+} \\
& -T=\left\{s_{1}, s_{L}, \ldots, s_{k}\right\} \leq V
\end{aligned}
$$



Feasible: $A \subseteq E$ sit. $G \backslash A$ has no sits; path

$$
\forall i \neq j \in[k]
$$

Objective. $\min \sum_{e \in A}(l e)$

Lp:

$$
\begin{array}{ll} 
& \min \\
\quad \sum_{e \in \in}\left(l_{e}\right) x_{e} \\
& \text { s.t. } \sum_{e \in P} x_{e} \geq 1 \quad \forall i, j \in[k], i \neq j, \forall P \in P_{s, j ;} \\
& O \leq x_{e} \leq 1 \quad \forall e \in E
\end{array}
$$

Interpret $x$ as edge lengths, get shortest-path metric d

Rounding Algorithm:

$$
A=\varnothing
$$

Choose $r$ uniformly at random from $\left(0, \frac{1}{2}\right)$
for $i=1$ to $k\{$

$$
A_{i}=\delta\left(B\left(s_{i}, r\right)\right)
$$

3

$$
\text { retwn } A=\bigcup_{i=1}^{k} A_{i}
$$



Clam: A feasible
Pe: $L P$ constraints $\Rightarrow d\left(r_{i}, s_{j}\right) \geq 1 \quad \forall i j \in(k)$
$\Rightarrow$ Every s; -s; path uses rome edge in $A_{i}$
(lam: $\operatorname{Pr}[e \in A] \leq 2 x_{e} \quad \forall e \in E$
Pf: Let $C_{i}=\left\{m \in V: d(r ; m)<\frac{1}{2}\right\}$
Note: Each $w \in V$ in at most one $C_{i}$ otherwise:


Let $e=\{n, u\} \in E$
wok, $d(c, T) \leq d(u, T)$
( $u$ is closer to a terminal than $v$ is)
Case 1: $u, v \in C_{i}$ for some i


$$
\begin{aligned}
& \operatorname{Pr}(e \in A)=\operatorname{Pr}[\operatorname{Pr}[d(\{; n) \leq r<d(\{; v)] \\
& =\frac{d(r, u)-d(r, n)}{\frac{1}{2}} \leq \frac{d(n, u)}{\frac{1}{2}} \leq 2 x_{e}
\end{aligned}
$$

(case 2: No i st. $u, v \in C_{i}$
it neither $u$ her $v$ in any of the $(i s$

$$
\Rightarrow P_{r}(e \in A)=0 \leq 2 x_{e}
$$

So bLOG $u \in C_{i}$ for some $i$


Observation : $e \in A$ it $r \geq d(r ; \mu)$

$$
\begin{aligned}
& d\left(r_{i}, n\right) \leq r<\frac{1}{2} \\
& \Rightarrow \operatorname{Pr}[e \in A]=\frac{\frac{1}{2}-d(\{, i, u)}{\frac{1}{2}} \\
& =L\left(\frac{1}{2}-d(r, n)\right) \\
& \leq 2 d(n, u) \quad\left(d\left(r_{0}\right) \geq \frac{1}{2}-d(\xi, \mu)\right) \\
& \leq L x_{e}
\end{aligned}
$$

Linearity of Expectations:

$$
E[c(A)]=\sum_{e \in E} c(e) \cdot \operatorname{pr}(e \in A] \leq 2 \sum_{e \in E} c(e) \cdot x_{e}=2 \cdot L p
$$

Tightness. integrality gap
Thu: The integrality gap of the $L P$ is $\geq 2\left(1-\frac{1}{k}\right)$
Pf: Star, terminals are leavers


$$
\begin{aligned}
& \text { OPT: } n-2 \quad k=n-1 \\
& \text { LP: } \frac{n-1}{2}
\end{aligned}
$$

$$
\Rightarrow \frac{O P T}{L P} \geq \frac{k-1}{\frac{k}{2}}=2\left(\frac{k-1}{k}\right)=2\left(1-\frac{1}{k}\right)
$$

Better Algorithm:
Need a better $L P$ relaxation!

Think of opt int $F \subseteq E$.


Let $C_{i}=\left\{w \in V: w\right.$ reachable from $s_{i}$ in $\left.G l f\right\}$

$$
\Rightarrow C_{i} \wedge C_{j}=\varnothing \quad \forall i \neq \in(k)
$$

Clan: (is form petition
PF: Need to show $w \in \bigcup_{i=1}^{k} C_{i} \quad \forall w \in V$
See false: LOG, a connected

$\Rightarrow$ Different point of vier:
find partition $C_{1}, C_{2}, \ldots, C_{k}$ of $V$ sit. $s: \in C_{i}$, cut $=$ edges between parts

New Lp:
variables: $\quad x_{n}^{i}= \begin{cases}1 & \text { it } w \in C_{i} \\ 0 & \text { otherwise }\end{cases}$

$$
Z_{e}^{i}= \begin{cases}1 & \text { if } e \in \delta\left(C_{i}\right) \\ 0 \text { otherwise }\end{cases}
$$


$\min \frac{1}{2} \sum_{e \in E} \sum_{i=1}^{k}\left((e) z_{e}^{i} \sum_{e \in E}\left(c_{e}\right)\left(\frac{1}{2} \sum_{i=1}^{k} z_{e}^{i}\right)\right.$
s.t. $\sum_{i=1}^{k} x_{i}^{i}=1 \quad \forall n \in V$
$x_{s_{i}}^{i}=1 \quad \forall i \in[k]$
$Z_{e}^{i} \geq x_{n}^{i}-x_{v}^{i} \quad \forall e=\{n, v\} \in \in, \forall i \in[k]$
$z_{e}^{i} \geq x_{v}^{i}-x_{n}^{i} \quad \forall e=\{n, u\} \in E, \forall i \in[k]$
$0 \leq x_{2}^{i} \leq 1 \quad \forall n \in V, \forall i \in[k]$
$0 \leq z_{e}^{i} \leq 1 \quad \forall e \in E, \forall i \in[K]$

