
601.435/635 Approximation Algorithms Lecturer: Michael Dinitz
Topic: LP Solutions as Metrics: Multiway Cut and Multicut Date: 3/26/24
Scribe: Michael Dinitz

17.1 Review from Last Week

We’re going to continue from last week, where we were trying to design a better-than-2-approximation
for Multiway Cut by using a better LP relaxation. Let’s review where we were, starting with the
definition of Multiway Cut

Input: Graph G = (V,E)

Costs c : E → R+

T = {s1, s2, ..., sk} ⊆ V

Feasible: A ⊆ E s.t. G−A has no si − sj path ∀i, j ∈ {1, 2, ..., k}

Objective: min
∑
e∈A

c(e)

Consider some optimal solution F . Then let Ci = {v ∈ V : v reachable from si in G \ F}. Clearly
since F is a feasible multiway cut, Ci ∩ Cj = ∅ for all i ̸= j. But it turns out that they also form
a partition: every node is in some Ci. To see this, suppose that it is false, and let S be the set of
nodes that unreachable from any terminal in G \ F . Add S to C1 to get C ′

1, which together with
the other Ci’s now form a partition. Then any edge which is cut under the new sets was also cut
by the old sets, so this new solution is just as good as the old solution.

Thus WLOG, we can assume that the optimal solution is actually a partition C1, C2, . . . Ck where
si ∈ Ci for all i ∈ [k], and the edges we cut are the edges between the parts of the partition.

This point of view suggests the following, different LP relaxation. We’ll have the following variables.

xiu =

{
1 if u ∈ Ci

0 else

zie =

{
1 if e ∈ δ(Ci)
0 else

1

We now define an LP using these indicator variables

min
1

2

∑
e∈E

k∑
i=1

c(e)zie

subject to
k∑

i=1

xiu = 1 ∀u ∈ V

zie ≥ xiu − xiv ∀e = {u, v} ∈ E, ∀i ∈ 1, 2, ..., k

zie ≥ xiv − xiu ∀e = {u, v} ∈ E, ∀i ∈ 1, 2, ..., k

xisi = 1 ∀i ∈ 1, 2, ..., k

0 ≤ xiu ≤ 1 ∀u ∈ V, ∀i ∈ [k]

0 ≤ zie ≤ 1 ∀e ∈ E, ∀i ∈ [k]

17.2 Continuing Multiway Cut

It is straightforward to verify that this is a valid relaxation of the multiway cut problem. We will
give a more compact way of writing this LP which makes the connection to metrics clear.

Definition 17.2.1 Let x, y ∈ Rk then their ℓ1-distance is ∥x− y∥1 =
∑k

i=1 |xi− yi| where xi is the
ith coordinate of the vector x.

Definition 17.2.2 The k-simplex is ∆k = {x ∈ Rk :
∑k

i=1 x
i = 1 ∧ xi ≥ 0 ∀i} where xi is the ith

coordinate of the vector x.

Definition 17.2.3 Let ei be a vector with a 1 in the ith coordinate and zeros elsewhere

Let xu = (x1u, x
2
u, ..., x

k
u) and xv = (x1v, x

2
v, ..., x

k
v). Note that zie = |xiu − xiv| in any optimal LP

solution because of the constraints on zie and because we are minimizing the objective function. So,
∥xu − xv∥1 =

∑k
i=1 z

i
e. Using all these definitions we can rewrite the new LP as follows

min
1

2

∑
e={u,v}∈E

c(e)∥xu − xv∥1

subject to xsi = ei ∀i ∈ 1, 2, ..., k

xu ∈ ∆k

Note that ∥xsi − xsj∥1 = ∥ei − ej∥1 = 2 for all i ̸= j ∈ [k].

Now we need a way of rounding this LP. We’re going to use a technique due to Calinescu, Karloff,
and Rabani [CKR00], which might look familiar: it’s a lot like one level of FRT! Formally, we’ll
use the following algorithm. We’ll define balls as one would expect, i.e., we’ll let B(si, r) = {v ∈
V : ∥ei − xv∥1 ≤ r}.

2

1. Initially we set Ci = ∅ for all i ∈ [k], and set another set X = ∅.

2. Pick r ∈ (0, 2) uniformly at random, and pick a permutation π of [k] uniformly at random.

3. For i = 1 to k − 1:

(a) Set Cπ(i) ← B(sπ(i), r) \X
(b) X ← X ∪ Cπ(i)

4. Set Cπ(k) = V \X

5. Return A = ∪ki=1δ(Ci) (the edges cut by the partition that we built)

We’re going to prove the following theorem.

Theorem 17.2.4 This is a 3/2-approximation.

To prove this, for every edge {u, v} let Zu,v be an indicator random variable which will be 1 if this
rounding algorithm separates u and v (i.e., includes e in the cut) and is 0 otherwise. We’ll first
state the following lemma.

Lemma 17.2.5 Pr[Zu,v = 1] ≤ 3
4∥xu − xv∥1 for all {u, v} ∈ E.

It’s straightforward to see that this lemma implies the theorem:

E[ALG] = E

 ∑
e={u,v}∈E

c(e)Zu,v

 =
∑

e={u,v}∈E

c(e)E[Zu,v]

≤
∑

e={u,v}∈E

c(e)
3

4
∥xu − xv∥1 =

3

2
· 1
2
·

∑
e={u,v}∈E

c(e)∥xu − xv∥1

≤ 3

2
·OPT.

So we just need to prove Lemma 17.2.5. This is going to look an awful lot like a simplified version of
FRT. Fix some {u, v} ∈ E. Define Si to be 1 if i is the first index in π such that |B(si, r)∩{u, v}| ≥ 1
(i.e., si settles {u, v}) and 0 otherwise. Define Xi to be 1 if |B(si, r) ∩ {u, v}| = 1 (i.e., si cuts
{u, v}) and 0 otherwise.

Similar to FRT (but simpler since there’s only one “level”), we can note that Zu,v = 1 if and
only if there is some i ∈ [k] such that Si = Xi = 1. And by the definition of Si there is at most
one i which settles {u, v}, and thus some i ∈ [k] has Si = Xi = 1 if and only if

∑k
i=1 SiXi = 1.

Thus Zu,v =
∑k

i=1 SiXi, so by linearity of expectations we get that E[Zu,v] =
∑k

i=1E[SiXi], and

thus Pr[Zu,v = 1] =
∑k

i=1Pr[Si = Xi = 1]. Less formally, the probability that {u, v} is cut by the
algorithm is equal to the sum over all terminals of the probability that the algorithm cut the edge
because of that terminal.

Let’s start by analyzing the cut probabilities. To do this, let’s prove another easy lemma.

Lemma 17.2.6 For all w ∈ V and i ∈ [k], w ∈ B(si, r) if and only if 1− xiw ≤ r/2.

3

Proof: We have the following series of if and only if statements:

w ∈ B(si, r)⇔ ∥ei − xw∥1 ≤ r

⇔
k∑

j=1

|eji − xjw| ≤ r

⇔ 1− xiw +
∑
j ̸=i

xjw ≤ r

⇔ 2(1− xiw) ≤ r

⇔ 1− xiw ≤ r/2,

as claimed.

To interpret this lemma, it says that we can think of the distance from w to si as being 2(1− xiw).
This lemma implies that

Pr[Xi = 1] = Pr
[
min(1− xiv, 1− xiu) ≤ r/2 < max(1− xiu, 1− xiv)

]
= |xiu − xiv|.

Let ℓ ∈ [k] be the index minimizing minki=1min(1−xiu, 1−xiv), i.e., sℓ is the terminal that is closest
to {u, v} in the ℓ1-metric given by the LP. For this special index, we can bound the probability
that the algorithm cuts {u, v} in because of sℓ by

Pr[Sℓ = Xℓ = 1] ≤ Pr[Xℓ = 1] ≤ |xℓu − xℓv|

Now consider some i ̸= ℓ. If i cuts {u, v}, then |B(sℓ, r)∩{u, v}| ≥ 1 since ℓ is closer to {u, v} than
i is. This if i cuts {u, v}, a necessary condition for it to settle {u, v} is for it to be before ℓ in π.
Since π is chosen uniformly at random, this happens with probability 1/2. Thus we get that

Pr[Si = Xi = 1] = Pr[Si = 1|Xi = 1]Pr[Xi = 1] ≤ 1

2
|xiu − xiv|.

Putting this all together we have

Pr[Zu,v = 1] =

k∑
i=1

Pr[Xi = Si = 1] ≤ |xℓu − xℓv|+
1

2

∑
i ̸=ℓ

|xiu − xiv|

=
1

2
|xℓu − xℓv|+

1

2
∥xu − xv∥1

≤ 3

4
∥xu − xv∥1.

which completes the proof of Lemma 17.2.5 and thus the proof of Theorem 17.2.4. However, to
prove the last inequality, we actually need one final lemma.

Lemma 17.2.7 For any index j and any u, v ∈ V , |xju − xjv| ≤ 1
2∥xu − xv∥1.

4

Proof: Without loss of generality, let’s assume that xju ≥ xjv. Then

|xju − xjv| = xju − xjv =

1−
∑
i ̸=j

xiu

−
1−

∑
i ̸=j

xiv

 =
∑
i ̸=j

(
xiv − xiu

)
≤

∑
i ̸=j

|xiv − xiu|.

Adding |xju − xjv| to both sides and then dividing by two gives the lemma.

17.3 Multicut

Definition 17.3.1 In the Multicut problem, we are given a graph G = (V,E) with costs c : E →
R+, and k pairs (s1, t1), . . . , (sk, tk) of nodes. A feasible solution is a set F ⊆ E such that si and
ti are not connected in G \ F for all i ∈ [k]. The objective is to minimize

∑
e∈F c(e).

For the remainder of the day, we’re going to prove the following theorem:

Theorem 17.3.2 There is an O(log n)-approximation algorithm for Multicut.

We will use Pi to denote the set of all si-ti paths. The problem admits the following LP relaxation:

minimize:
∑
e∈E

c(e) · xe (MULTICUT-LP)

subject to:
∑
e∈P

xe ≥ 1 ∀ i ∈ [k],∀P ∈ Pi (17.3.1)

0 ≤ xe ≤ 1 for each edge e ∈ E (17.3.2)

Note: As with multiway cut, we can solve this LP in polytime via ellipsoid, using shortest path
(for each Pi) to separate. For the remainder, we will use x⃗ to refer to the solution of the LP, and
set V ∗ =

∑
e∈E c(e)xe as the value of the solution.

Definition 17.3.3 Let d : V × V → R+ be the shortest path metric using the LP solution x⃗ for
the edge lengths.

Similarly to what we had for Multiway Cut, we know that d(si, ti) ≥ 1 for all i ∈ [k]. How should we
round the LP solution? Before we say how, let’s first define what we want. In particular, consider
the following definition.

Definition 17.3.4 Given a metric space (V, d), a Low-Diameter Random Decomposition with pa-
rameter δ is a randomized algorithm which creates a partition C1, C2, . . . , Cℓ of V with the following
properties.

1. diam(Ci) ≤ δ for all i ∈ [ℓ]

2. Pr[u, v in different clusters] ≤ d(u,v)O(logn)
δ for all u, v ∈ V .

Suppose that we have a LDRD algorithm with parameter 1− ϵ for some ϵ > 0. If we apply this to
the metric space from the LP, we get a bunch of clusters and can define F to be the edges between

5

the clusters, i.e., set F = ∪ℓi=1δ(Ci). Since d(si, ti) ≥ 1, we know that si and ti are in different
clusters, and thus are not connected in G \ F . So this would give a feasible solution.

To analyze the expected cost, for every edge {u, v} let Zu,v be an indicator random variable for u
and v being in different clusters of the partition. Then the expected cost of our solution is

E

[∑
e∈E

c(e)Ze

]
=

∑
e∈E

c(e)E[Ze] ≤
∑

e={u,v}∈E

c(e)
d(u, v)O(log n)

1− ϵ
≤ O(log n)

1− ϵ

∑
e∈E

c(e)xe

≤ O(log n) · LP

So if we can design an algorithm for Low-Diameter Random Decompositions, we get an O(log n)-
approximation for Multicut. And, amazingly, we already know how to design an LDRD: it’s
basically a single level of FRT!

• Choose r uniformly at random in [δ/4, δ/2]

• Choose a random permutation π : [n]→ V

• Let S ← V

• For j = 1 to n

– P = B(π(j), r) ∩ S

– If P ̸= ∅
∗ Add P as a cluster

∗ S ← S \ P

Clearly the diameter of every cluster is at most δ, as desired. So we just need to analyze the
probability of separating u and v. Let’s just repeat what we did for FRT!

Definition 17.3.5 w settles u, v if w is the first vertex in π s.t. B(w, r) ∩ {u, v} ≠ ∅.
Definition 17.3.6 w cuts u, v if |B(w, r) ∩ {u, v}| = 1.

Clearly u and v are in different clusters if and only if there is some w ∈ V that both settles and
cuts u, v. Let Sw be an indicator random variable for the event that w settles u, v, and let Xw be
an indicator random variable for the event that w cuts u, v. As with FRT, since exactly one node
settles u, v, there is some w which both settles and cuts u, v if and only if

∑
w∈V SwXw = 1. So we

have that

Pr[u, v in different clusters] = Pr

[∑
w∈V

SwXw = 1

]
= E

[∑
w∈V

SwXw

]
=

∑
w∈V

E[SwXw]

=
∑
w∈V

Pr[Sw = Xw = 1] =
∑
w∈V

Pr[Sw = 1|Xw = 1]Pr[Xw = 1]

The following lemma is identical to the FRT setting, so we won’t reprove it here.

6

Lemma 17.3.7 We can assign a value bw to each w ∈ V such that:

1. Pr[Sw = 1|Xw = 1] ≤ bw, and

2.
∑

w∈V bw ≤ O(log n)

The next lemma is slightly different, since it’s actually simpler than the FRT setting since there’s
only one level.

Lemma 17.3.8 Pr[Xw = 1] ≤ 4d(u, v)/δ for all w ∈ V

Proof: As in FRT, Pr[Xw = 1] depends only on the random choice of r, not on π. WLOG,
assume that d(w, u) ≤ d(w, v). Then in order for w to cut u, v, it must be the case that d(w, u) ≤
r < d(w, v). Since r is distributed uniformly in [δ/4, δ/2], this happens with probability at most

d(w, v)− d(w, u)

δ/4
≤ 4d(u, v)

δ
,

as claimed.

Now we put these together, and we get that

Pr[u, v in different clusters] =
∑
w∈V

Pr[Sw = 1|Xw = 1]Pr[Xw = 1]

≤
∑
w∈V

bw
4d(u, v)

δ

≤ d(u, v)O(log n)

δ

So we have our LDRD algorithm!

References

[CKR00] Gruia Călinescu, Howard Karloff, and Yuval Rabani. An improved approximation al-
gorithm for multiway cut. Journal of Computer and System Sciences, 60(3):564 – 574,
2000.

7

	Review from Last Week
	Continuing Multiway Cut
	Multicut

